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This study investigates the use of the Markov Chain (MC) method to forecast future rainfall in Tanah 

Merah, Kelantan, by observing daily rainfall data and categorising it into five distinct states, denoted 

as S={1,2,3,4,5}, each representing different levels of rainfall intensity. A structured examination of 

rainfall transitions between states is made possible by the research's discrete definitions of the state 

space and the temporal set. The study reflects the dynamic character of weather patterns by 

capturing the possibility of changes in rainfall amounts through the creation of a Transition 

Probability Matrix (TPM) for each month. In addition to forecasting rainfall, the study computes the 

limiting distribution of the TPMs to create risk matrices for every state. These risk matrices, which 

are based on recent and past rainfall data, offer a probabilistic evaluation of future flood hazards. 
The monthly risk matrices provide important insights into flood prediction and disaster 

preparedness by showing how the likelihood of rainfall in each state can affect the chance of flooding 

in succeeding months. The study illustrates the potential of the MC technique in enhancing flood 

risk management in the region and improving rainfall forecasts by utilising the concept of long-run 

behaviour. 
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I. INTRODUCTION 

 
The development of flora and wildlife in the natural world 

depends on rainfall. It is necessary for people, plants, 

animals, and other living things (Abeywardena, 1955). In 

addition, rainfall, which is considered the most natural 

resource on earth, is a crucial resource for agricultural output. 

However, particularly in low-income areas, excessive rainfall 

can have a disastrous effect, especially on farmers (Meza-Pale 

& Yunez Naude, 2015). Then, receiving the right amount of 

rainfall to suit human demands and continue to use in daily 

life may be difficult due to changing global climate 

conditions. Therefore, in order to meet human needs and 

raise awareness of the potential for natural disasters that 

unexpectedly intense rainfall could cause, it is now crucial to 

evaluate rainfall patterns and attempt to predict rain. 

According to Bopi et al. (2016), Sarawak and Sabah, as well 

as the Peninsular region, get 2500 mm and 3500 mm of rain 

annually, respectively. Because of several elements, including 

geology and winds, the frequency of rainfall differs according 

to each state in Malaysia. The Malaysian east coast has faced 

significant rainfall, especially during the North-East 

Monsoon, which has an average annual rainfall of 2700 mm. 

This monsoon typically lasts from November to March each 

year. 

A day with more than 0.1 millimetres of rain may be referred 

to as a rainy day, according to Telipot (2000). There are a few 

states in Malaysia where it frequently rains heavily during 

specific times of the year, and among them is the state of 

Kelantan. For this study, the main focus would be the area of 

Tanah Merah. In addition, Tanah Merah experiences hot, 

humid and cloudy weather. Throughout the year, the 

temperature fluctuates between 25°C and 33°C, rarely 

dropping below 20°C or going over 34°C. Tanah Merah has a 

tropical monsoon climate with significant seasonal variations 

in monthly rainfall. Every year, Tanah Merah experiences 
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248.38 wet days (68.05% of the total), with an average of 

164.43 millimetres (6.47 inches) of precipitation. There are 

also several researchers that perform study in Tanah Merah 

on rainfall, but these studies concentrate more on various 

research goals like the development of a rainfall rate 

monitoring system, such as Bopi et al. (2016) and the analysis 

of annual maximum and partial duration rainfall series, in Ng 

et al. (2016). 

Statistics can be used to predict rainfall, especially the 

amount, which becomes increasingly important as the year 

progresses. In addition to hydrological goals, it is used to 

model economic development, including typical corporate 

processes. For instance, land management systems, 

agricultural growth, the design of urban drainage systems, 

and other environmental initiatives are some of the industries 

that require a forecast of rainfall distribution each year, 

according to Parmar et al. (2017). According to Joseph and 

Ratheesh (2013), rainfall forecasting has become one of the 

world's most challenging scientific and technological 

conundrums. 

Furthermore, one of the factors that might lead to several 

issues is incorrect or poor rainfall forecasting. The accuracy 

of Tanah Merah's different enterprises and the facilitation of 

local affairs were both aided by the accurate rainfall forecast. 

Therefore, this study employed the Markov Chain (MC) 

model to predict future rainfall in Tanah Merah, Kelantan. 

According to Karlin (2014), the MC has probability analysis 

for reducibility, periodicity, recurring and transitory states, 

and limiting distribution as a stochastic process. The 

Department of Irrigation and Drainage and World Weather 

Online are utilised to collect the three years of rainfall data in 

Tanah Merah, Kelantan, from 2018 to 2020. 

 
II. MATERIALS AND METHOD 

 
Rainfall data is gathered from Kusial station in Kelantan's 

Tanah Merah area, and it is recorded hourly, daily, and 

measured in millimetres. The Department of Irrigation and 

Drainage in Malaysia and World Weather Online (WWO) 

provided the daily rainfall data for three years in a row, 

starting on January 1st, 2018, and ending on December 31st, 

2020 (1095 days number of observation). 

The Discrete Time Markov Chain (DTMC) method is widely 

used in environmental research studies. For example, 

Holmes et al. (2021) used discrete-time Markov chains to 

study the stochastic behaviour of air pollution indices in 

Ontario, Canada; Yakasiri (2019) studied the stochastic 

approach for the state-wise forecast of wind speed using 

discrete-time Markov chains in Japan; and Nop et al. (2021) 

studied rainfall in ideal rainwater harvesting system 

operation in Japan. This study employed the DTMC model to 

replicate the rainfall data on day-to-day basis. From this 

basis, this study may observe 364 steps. Based on the Markov 

property in this DTMC model, regardless of the past state, the 

probability of transition to the next state only depends on the 

current state. 

Additionally, some research on rainfall employs the MC 

model. A study from Setiawan and Ilhamsyah (2020) 

addresses rainfall analysis in the Indian Ocean using a 6-State 

MC model, Mahanta and Khosro (2018) discussed utilising 

an MC to analyse the rainfall conditions in Bangladesh, Da 

Silva (2019) used information from five weather stations 

spread throughout the state's mesoregions to examine the 

patterns of daily rainfall in the State of Paraíba through MC 

and Rohit et al. (2021) used MC in characterising the 

inherently stochastic nature of the dimensionless time 

distribution of extreme rainfall in India and United States. 

Five different states are used in the study to represent 

rainfall classification. Each state has its intensity of rainfall., 

State 1 indicates that there will be no rain that day because 

the rainfall intensity is less than 1 mm/h. Next, the state will 

be 2 for rainfall intensities ranging from 1 to 10 mm/h, 

indicating that the rainfall on that day is light rain. Then, 

moderate rain, defined as 11 to 30 mm/h, will be classified as 

State 3. 

Heavy rain will be classified as State 4 if the rainfall is 

between 31 and 60mm/h. Finally, State 5 denotes extreme 

rain with a rainfall rate of greater than 60 mm/h. The table 

below summarises all the rainfall states and rainfall intensity 

and their classification. 

 

Table 1. Rainfall states, intensity, and its classification 

State Rainfall Intensity 
(mm/h) 

Classification of 
rainfall 

1 Less than 1 No Rain 
2 1 to 10 Light Rain 
3 11 to 30 Moderate Rain 
4 31 to 60 Heavy Rain 
5 More than 60 Extreme Rain 
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The rainfall is assumed to be an independent random 

variable, complying with time homogeneity, and therefore: 

Pij = Pr (Xk+1 = sj |Xk = si)  

where: 

Pij: The probability that is moving from state i to state j 

k: The current time of the transition probability matrix, 

k=1,2,3,4 and 5 

si: The state of the transition probability matrix at time i 

sj: The state of the transition probability matrix at time j. 

The equation above is used to construct the transition 

probability matrix. However, since the daily rainfall data is 

not in probability form, some modification needs to be done 

to obtain the transition probability matrix. To obtain the 

monthly transition probability matrix, the rainfall sequences 

are created using daily rainfall data acquired from the 

Department of Irrigation and Drainage, as illustrated below: 

Q = 

1
2
3
4
5

  

⎣
⎢
⎢
⎢
⎡
𝑛𝑛11 𝑛𝑛12 𝑛𝑛13 𝑛𝑛14 𝑛𝑛15
𝑛𝑛21 𝑛𝑛22 𝑛𝑛23 𝑛𝑛24 𝑛𝑛25
𝑛𝑛31 𝑛𝑛32 𝑛𝑛33 𝑛𝑛34 𝑛𝑛35
𝑛𝑛41 𝑛𝑛42 𝑛𝑛43 𝑛𝑛44 𝑛𝑛45
𝑛𝑛51 𝑛𝑛52 𝑛𝑛53 𝑛𝑛54 𝑛𝑛55⎦

⎥
⎥
⎥
⎤
 

where 𝑛𝑛𝑖𝑖𝑖𝑖 denoted as frequency in state i followed by state j 

for i,j = {1, 2, 3, 4 and 5}.  

The sequences of monthly rainfall transition probability 

matrix will be constructed as below, 𝑃𝑃 =
𝑛𝑛𝑖𝑖𝑖𝑖
∑𝑛𝑛𝑖𝑖𝑖𝑖

  for each row: 

P = 

1
2
3
4
5

  

⎣
⎢
⎢
⎢
⎡
𝑝𝑝11 𝑝𝑝12 𝑝𝑝13 𝑝𝑝14 𝑝𝑝15
𝑝𝑝21 𝑝𝑝22 𝑝𝑝23 𝑝𝑝24 𝑝𝑝25
𝑝𝑝31 𝑝𝑝32 𝑝𝑝33 𝑝𝑝34 𝑝𝑝35
𝑝𝑝41 𝑝𝑝42 𝑝𝑝43 𝑝𝑝44 𝑝𝑝45
𝑝𝑝51 𝑝𝑝52 𝑝𝑝53 𝑝𝑝54 𝑝𝑝55⎦

⎥
⎥
⎥
⎤
 

The transition probability matrix analysis is conducted to 

confirm that the transition probability matrix is an ergodic 

MC. By classifying the state of the transition probability 

matrix, 𝑝𝑝𝑝𝑝𝑝𝑝, this confirmation of an ergodic MC must be 

accomplished to identify the existence of a limiting 

distribution in this chain. The ergodic Markov chain, which is 

irreducible, positive recurrent, and aperiodic if and only if the 

MC, 𝑋𝑋𝑛𝑛, has an ergodic initial state, which also is of sequence 

k where (k = 1,2,3, 4,) for all 𝑛𝑛 (Karlin, 2014). It has also been 

found that if the generated Markov chain model is 

irreducible, aperiodic, and recurrent, then an irreducible and 

aperiodic ergodic MC will be achieved if a finite-state MC 

indicates ergodic behaviour. Aside from that, this study's goal 

requires that the transition probability matrix not be an 

absorbing state to confirm a limiting distribution in this 

chain. The classification of this transition probability matrix 

can be divided into three sections: irreducible Markov chain, 

periodicity Markov chain, and recurrent and transient states. 

 
a. Irreducible 

According to Karlin (2014) and Ross (2014), the MC is 

irreducible when each state can return. It is also possible to 

conclude that if all states communicate with one another, the 

MC with finite states is irreducible [5]. 

 
b.   Periodicity 

According to Karlin (2014) and Ross (2014), if the period is 

less than 2, the state is aperiodic, whereas if the period is 

equivalent or greater than 2, the state is said to be periodic. 

According to [5], a state in a sequence is shown to be periodic 

if the chain can only return to it at multiples of a particular 

integer greater than 1. 

 
c.  Recurrent and Transient States 

Recurrent and transient states can be distinguished if, for 

given state i, let fi be the probability that the process will ever 

return to state i. State i is recurrent if fi = 1 and transient if fi 

< 1. If j→i for every i and j, then it can also be said that the 

states are recurrent and that no transient state occurs. 

 
d. Ergodic 

Limiting distribution can be calculated if the MC is stationary, 

ergodic MC, and absorbing state. Long-run behaviour is 

forecasted using a limiting distribution with the steady-state 

probabilities independent from initial conditions. As a result, 

the states' probability will be stationary. The probability 

distribution 𝜋𝜋 = (𝜋𝜋1,𝜋𝜋2,𝜋𝜋3,𝜋𝜋4,𝜋𝜋5)  is called the limiting 

distribution of the MC 𝑋𝑋𝑛𝑛  if 𝜋𝜋𝑗𝑗 =  lim
𝑛𝑛→∞

𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑗𝑗|𝑋𝑋1 = 𝑖𝑖)  for 

∑𝜋𝜋𝑗𝑗 = 1 for all i,j in the state space, where j = 1,2,3,4 and 5. 

This convergence means that in the long run (𝑛𝑛 → ∞), the 

probability of finding the MC in state j is approximate to 𝜋𝜋𝑗𝑗  

no matter in which state the chain began at time 0. Therefore, 

this study will obtain the values of 𝜋𝜋𝑗𝑗  by using the following 

formula and steps: 

𝜋𝜋𝑗𝑗 =  ∑ 𝜋𝜋𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛5
𝑛𝑛=1  for j = 1,2,3,4 and 5. Thus, 𝜋𝜋𝑗𝑗 = 1.  

For Rainfall Matrix (RM), was developed to show the 

different types of rainfall impact that Tanah Merah 
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experiences throughout the upcoming month. In order to 

represent the likelihood of flood impact resulting from the 

long-run behaviour of rainfall, the Rainfall Matrix employs 

four different colours: green, yellow, orange and red. The 

level of flood hazard has also been observed in this Rainfall 

Matrix based on the Department of Irrigation and Drainage 

level of flood indicator that is used in Malaysia. The following 

is the explanation for the colours and likelihood of rainfall 

impact, the classification of flood hazard, and the indicator of 

flood impact. 

 

Table 2. Likelihood of flood impact 

C0lour Likelihood of Flood Impact 
 Very low occurrence of flood 

hazard 
 Low occurrence of flood hazard 
 Moderate occurrence of flood 

hazard 
 High occurrence of flood hazard 

 

Table 3. Classification of flood hazard 

Flood 
Hazard Explanations 

Normal The flood level is at a safe level. 

Alert The flood level is above the normal level. 

Warning The flood level increases to near flooding 
level and prepares for any evacuation 
action. 

Danger The flood level is causing considerable 
flooding, and evacuation is initiated. 

 

Table 4. Indicator of flood impact 

Limiting Distribution 
Probability 

Flood Impact 

< 0.20 Very low 
0.20 to 0.40 Low 
0.41 to 0.60 Moderate 

> 0.60 High 
 

Table 5 until Table 9 below is constructed based on the 

combination of Table 2 to Table 4 to indicate the events of 

flood hazard based on the likelihood of flood impact for each 

rainfall state. 

 

 

 

 

 

 

 

 

Table 5. Justification for State 1 (no rain) flood hazard 

 

 

Table 6. Justification for State 2 (light rain) flood hazard 

 

 

Table 7. Justification for State 3 (moderate rain) flood 

hazard 

 

 



ASM Science Journal, Volume 20(2), 2025  
 

5 

Table 8. Justification for State 4 (heavy rain) flood hazard 

 

 

Table 9. Justification for State 5 (extreme rain) flood hazard 

 

 

III. RESULT AND DISCUSSION 
 
Figure 1 shows the sequence of rain fall and Figure 2 show the 

matrix of transition probability, which was generated to 

obtain sequences of monthly matrix, and it also be plotted to 

observe the probability from one state to another in Figure 4. 

There are 265 sequences from no rain to no rain, showing the 

highest rainfall sequences in 2018 to 2020 and 145 series 

from extreme rain to extreme rain. Meanwhile, the lowest 

rainfall sequence between 2018 and 2020 is ten sequences, 

from heavy to no rain. Then, compared to other states, the no 

rain to no rain state has the most significant sequences from 

February to June and November. The highest sequences of 

light rain to light rain are found in July, August, and October, 

whereas the highest sequences of moderate rain to light rain 

are found in September. Finally, the highest sequences for 

December are the extreme rain to extreme rain state. 

 

 

 

January 

⎣
⎢
⎢
⎢
⎡
10 2 3 3 2
8 9 1 0 4
2 6 2 2 2
0 1 2 0 7
0 5 6 5 10⎦

⎥
⎥
⎥
⎤
 

April 

⎣
⎢
⎢
⎢
⎡
48 2 4 1 2
5 0 0 2 1
1 3 0 1 1
1 1 1 0 3
1 3 1 2 5⎦

⎥
⎥
⎥
⎤
 

July 

⎣
⎢
⎢
⎢
⎡
7 3 1 1 0
3 22 9 3 2
2 11 12 1 1
0 3 1 1 2
0 0 4 1 2⎦

⎥
⎥
⎥
⎤
 

October  

⎣
⎢
⎢
⎢
⎡
6 3 1 0 6
7 15 10 0 2
2 13 4 0 2
0 1 2 0 0
1 1 5 3 8⎦

⎥
⎥
⎥
⎤
 

February                                   

⎣
⎢
⎢
⎢
⎡
33 2 2 1 4
5 9 1 0 2
1 5 1 2 0
2 1 1 0 1
2 0 3 2 4⎦

⎥
⎥
⎥
⎤
 

May 

⎣
⎢
⎢
⎢
⎡
53 3 4 2 1
7 1 2 0 2
3 4 2 0 0
0 2 1 1 0
0 2 0 1 1⎦

⎥
⎥
⎥
⎤
 

August 

⎣
⎢
⎢
⎢
⎡
6 8 0 0 4
9 20 9 0 4
2 8 4 0 1
1 2 0 1 0
0 3 3 3 4⎦

⎥
⎥
⎥
⎤
 

November 

⎣
⎢
⎢
⎢
⎡
22 0 0 2 4
0 0 0 1 2
0 0 0 0 2
2 3 2 0 3
3 0 0 7 36⎦

⎥
⎥
⎥
⎤
 

March                                           

⎣
⎢
⎢
⎢
⎡
54 6 3 1 1
7 2 2 0 2
3 3 1 0 1
0 1 0 0 0
1 1 2 0 1⎦

⎥
⎥
⎥
⎤
 

June 

⎣
⎢
⎢
⎢
⎡
26 1 2 1 3
2 4 3 2 4
2 4 3 2 0
1 2 1 3 6
2 3 3 5 4⎦

⎥
⎥
⎥
⎤
 

September 

⎣
⎢
⎢
⎢
⎡
0 3 4 0 1
6 9 10 3 2
1 12 6 3 3
1 6 4 2 1
0 0 1 6 5⎦

⎥
⎥
⎥
⎤
 

December 

⎣
⎢
⎢
⎢
⎡
0 1 0 0 2
0 0 0 2 1
0 0 0 0 3
2 2 2 6 0
1 0 1 5 65⎦

⎥
⎥
⎥
⎤
 

Figure 1. Sequence of Monthly Rainfall in Tanah Merah, 

Kelantan for the years 2018 to 2020 

 
January 

⎣
⎢
⎢
⎢
⎡
0.5000 0.1000 0.1500 0.1500 0.1000
0.3636 0.4091 0.0455 0.0000 0.1818
0.1429 0.4286 0.1429  0.1429 0.1429
0.0000 0.1000 0.2000 0.0000 0.7000
0.0000 0.1923 0.2308 0.1923 0.3846⎦

⎥
⎥
⎥
⎤
 

 

July 

⎣
⎢
⎢
⎢
⎡
0.5833 0.2500 0.0833 0.0833 0.0000
0.0769 0.5641 0.2308 0.0769 0.0513
0.0741 0.4074 0.4444  0.0370 0.0370
0.0000 0.4286 0.1429 0.1429 0.2857
0.0000 0.0000 0.5714 0.1429 0.2857⎦

⎥
⎥
⎥
⎤
 

February                                   

⎣
⎢
⎢
⎢
⎡
0.7857 0.0476 0.0476 0.0238 0.0952
0.2941 0.5294 0.0588 0.0000 0.1176
0.1111 0.5556 0.1111  0.2222 0.0000
0.4000 0.2000 0.2000 0.0000 0.2000
0.1818 0.0000 0.2727 0.1818 0.3636⎦

⎥
⎥
⎥
⎤
 

August 

⎣
⎢
⎢
⎢
⎡
0.3333 0.4444 0.0000 0.0000 0.2222
0.2143 0.4762 0.2143 0.0000 0.0952
0.1333 0.5333 0.2667  0.0000 0.0667
0.2500 0.5000 0.0000 0.2500 0.0000
0.0000 0.2308 0.2308 0.2308 0.3077⎦

⎥
⎥
⎥
⎤
 

 

March                                           

⎣
⎢
⎢
⎢
⎡
0.8308 0.0923 0.0462 0.0154 0.0154
0.5385 0.1538 0.1538 0.0000 0.1538
0.3750 0.3750 0.1250  0.0000 0.1250
0.0000 1.0000 0.0000 0.0000 0.0000
0.2000 0.2000 0.4000 0.0000 0.2000⎦

⎥
⎥
⎥
⎤
 

September 

⎣
⎢
⎢
⎢
⎡
0.0000 0.3750 0.5000 0.0000 0.1250
0.2000 0.3000 0.3333 0.1000 0.0667
0.0400 0.4800 0.2400  0.1200 0.1200
0.0714 0.4286 0.2857 0.1429 0.0714
0.0000 0.0000 0.0833 0.5000 0.4167⎦

⎥
⎥
⎥
⎤
 

 

April 

⎣
⎢
⎢
⎢
⎡
0.8421 0.0351 0.0702 0.0175 0.0351
0.6250 0.0000 0.0000 0.2500 0.1250
0.1667 0.5000 0.0000  0.1667 0.1667
0.1667 0.1667 0.1667 0.0000 0.5000
0.0833 0.2500 0.0833 0.1667 0.4167⎦

⎥
⎥
⎥
⎤
 

 

October  

⎣
⎢
⎢
⎢
⎡
0.3750 0.1875 0.0625 0.0000 0.3750
0.2059 0.4412 0.2941 0.0000 0.0588
0.0952 0.6190 0.1905  0.0000 0.0952
0.0000 0.3333 0.6667 0.0000 0.0000
0.0556 0.0556 0.2778 0.1667 0.4444⎦

⎥
⎥
⎥
⎤
 

May 

⎣
⎢
⎢
⎢
⎡
0.8413 0.0476 0.0635 0.0317 0.0159
0.5833 0.0833 0.1667 0.0000 0.1667
0.3333 0.4444 0.2222  0.0000 0.0000
0.0000 0.5000 0.2500 0.2500 0.0000
0.0000 0.5000 0.0000 0.2500 0.2500⎦

⎥
⎥
⎥
⎤
 

 

November 

⎣
⎢
⎢
⎢
⎡
0.7857 0.0000 0.0000 0.0714 0.1429
0.0000 0.0000 0.0000 0.3333 0.6667
0.0000 0.0000 0.0000  0.0000 1.0000
0.2000 0.3000 0.2000 0.0000 0.3000
0.0652 0.0000 0.0000 0.1522 0.7826⎦

⎥
⎥
⎥
⎤
 

June 

⎣
⎢
⎢
⎢
⎡
0.7879 0.0303 0.0606 0.0303 0.0909
0.1333 0.2667 0.2000 0.1333 0.2667
0.1818 0.3636 0.2727  0.1818 0.0000
0.0769 0.1538 0.0769 0.2308 0.4615
0.1176 0.1765 0.1765 0.2941 0.2353⎦

⎥
⎥
⎥
⎤
 

 

December 

⎣
⎢
⎢
⎢
⎡
0.0000 0.3333 0.0000 0.0000 0.6667
0.0000 0.0000 0.0000 0.6667 0.3333
0.0000 0.0000 0.0000 0.0000  0.0000
0.1667 0.1667 0.1667 0.5000 0.0000
0.0141 0.0000 0.0141 0.0563 0.9155 ⎦

⎥
⎥
⎥
⎤
 

Figure 2. Transition Probability Matrix in Tanah Merah, 

Kelantan for the years 2018 to 2020 

 

As a result, the periodicity of the MC is aperiodic since the 

period value is 1 for each month. If the return value for the 

character vector of the recurrent state is equivalent to 1, it is 

concluded that the MC has recurrent states. Since the 

communicating class value for each month are equal to 1, it 

revealed a list for each slot that has the names of the states 

returned in the communicating class. Thus, it is confirmed 

that the MC communicates with each other and is irreducible 

because the chain follows all the properties of communication, 

which are reflexivity, symmetry, and transitivity. In 

conclusion, the MC is ergodic as the MC is aperiodic, 

irreducible and has recurrent states for every month. It is 
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proven that the transition probability matrix is stationary, 

and the limiting distribution exists. 

 
January 

 

April 

 

July 

 

October  

 

February                                   

 

May 

 

August 

 

November 

 

March                                           

 

June 

 

 

September 

 

December 

 

Figure 3. Transition Probability Diagram in Tanah Merah, 

Kelantan for the years 2018 to 2020 

 
Table 10. Classification of classes of data for each month in 

2018 to 2020 

States Classes Return value 
Irreducible Aperiodic Period = 1, 

Absorbing states = (0) 
Periodicity Aperiodic Period = 1 

Recurrent States Has recurrent 
states 

Recurrent {1,2,3,4,5}, 
fi=1 

Transient States Has no transient 
states 

Transient = (0) 

Communication The class is 
communicated 
with each other 

Communicating Class 
= 1 

Conclusion The Markov chain is ergodic 
 

The probability of long-run behaviour for each month 

beginning in January and ending in December for 2018 

through 2020 is displayed in the Table 11. Five states classify 

rainfall, with State 1 indicating no rain and State 2 meaning 

light rain. States 3, 4, and 5 denote moderate, heavy, and 

intense rain, respectively. 

The probability represents the long-run behaviour for each 

month for the future year. The likelihood of limiting 

distribution for each state is obtained by calculating each of 

the limiting distributions of the MC, π = (π1, π2, π3, π4, π5) 

in each transition probability matrix for each month. The 

Limiting Distribution Matrix (LDM) table represents the 

likelihood of a fixed probabilities value. Each row in the LDM 

table reflects the limiting distribution probabilities of each 

state, commonly known as the long-run probabilities.  

As shown in the Table 11, the limiting distribution 

probability matrix for January is [0.2256, 0.2515, 0.1495, 

0.1065, 0.2668], indicating that the rainfall pattern will 

follow the probability pattern in the future. Thus, regardless 

of the weather on any given day in January, the likelihood of 

no rain is 0.2256, while the probabilities of light rain, 

moderate rain, heavy rain, and heavy rain are 0.2515, 0.1495, 

0.1065, and 0.2668, respectively. For February, the limiting 

distribution probability matrix is [0.5274, 0.1890, 0.0942, 

0.0575, 0.1319], showing that the average rainfall might 

follow the probability distribution in the foreseeable. Hence, 

the probability for no rain, light rain, moderate rain, heavy 

rain, and extreme rain is on any particular day in February is 

0.5274, 0.1890, 0.0942, 0.0575, and 0.1319 correspondingly, 

while March's limiting distribution probability matrix is 

[0.7065, 0.1413, 0.0870, 0.0109, 0.0543], implying that 

future rainfall patterns will follow the probability pattern. 

Similarly, the chance of no rainfall on any given day in March 

is 0.7065. In contrast, the probabilities of light rain, moderate 

rain, and heavy rain are 0.1413, 0.0870, 0.0109, and 0.0543, 

respectively, regardless of the weather. 

In addition, for the next three months, which is April, May 

and June, the limiting distribution probability matrix for 

these three months that implying in the future, the rainfall 

pattern will follow the likelihood pattern are [0.6216, 0.1018, 

0.0670, 0.0707, 0.1389], [0.6848, 0.1304, 0.0978, 0.0435, 

0.0435], and [0.3726, 0.1584, 0.1355, 0.1459, 0.1876]. Thus, 

the probability of no rain on any given day in these three 

months is 0.6216, 0.6848, and 0.3726, while the possibilities 

of light rain are 0.1018, 0.1304, and 0.1584. Afterwards, the 

probability of moderate rain in April, May, and June are 

0.0670, 0.0978, and 0.1355. The likelihood of heavy rain for 

each month is 0.0707, 0.0435, and 0.1459. Lastly, the 

chances of extreme rain regardless of the weather for these 

three months are 0.1389, 0.0435 and 0.1876. 

Then, for the months in July, August, and September, the 

limiting distribution probability matrix is [0.1304, 0.4239, 

0.2935, 0.0761, 0.0761], [0.1947, 0.4465, 0.1748, 0.0433, 

0.1407] and [0.0899, 0.3371, 0.2809, 0.1573, 0.1348]. It 

means that in the long run, the no rain chances for each 

month will be 0.1304, 0.1947, and 0.0899. The light rain 

probabilities will be 0.4239, 0.4465, and 0.3371 each month. 

Following that, the medium rain probabilities for each month 

will be 0.2935, 0.1748, and 0.2809. The heavy rain 

probability for July, August, and September will be 0.0761, 
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0.0433, and 0.1573, respectively, while the extreme rain 

probabilities for the same months will be 0.0761, 0.1407, and 

0.1348. 

Finally, for the months that are in October, November, and 

December, the limiting distribution probability matrix is 

[0.1726, 0.3609, 0.2384, 0.0326, 0.1956], [0.0566, 0.3611, 

0.1194, 0.1279, 0.3350], and [0.2179, 0.4136, 0.0921, 0.0558, 

0.2206]. It indicates that the long-term chances of no rain are 

0.1726, 0.0566, and 0.2179 for each month. The probability 

of light rain will be 0.3609, 0.3611, and 0.4136. Then, the 

monthly medium rain probabilities will be 0.2384, 0.1194, 

and 0.0921. In the same future months for October, 

November, and December, heavy rain chances are 0.1956, 

0.3350, and 0.2206, respectively. Meanwhile, heavy rain 

chances are 0.1956, 0.3350, and 0.2206. 

 
Table 11. Probability of long run behaviour of rainfall for 

each month 

Month Probability 

January π = [0.2256, 0.2515, 0.1495, 0.1065, 0.2668] 

February π = [0.5274, 0.1890, 0.0942, 0.0575, 0.1319] 

March π = [0.7065, 0.1413, 0.0870, 0.0109, 0.0543] 

April π = [ 0.6216, 0.1018, 0.0670, 0.0707, 0.1389] 

May π = [0.6848, 0.1304, 0.0978, 0.0435, 0.0435] 

June π = [ 0.3726, 0.1584, 0.1355, 0.1459, 0.1876] 

July π = [0.1304, 0.4239, 0.2935, 0.0761, 0.0761] 

August π = [0.1947, 0.4465, 0.1748, 0.0433, 0.1407] 

September π = [ 0.0899, 0.3371, 0.2809, 0.1573, 0.1348] 

October π = [0.1726, 0.3609, 0.2384, 0.0326, 0.1956] 

November π = [ 0.0566, 0.3611, 0.1194, 0.1279, 0.3350] 

December π = [ 0.2179, 0.4136, 0.0921, 0.0558, 0.2206] 

 

Based on the RM constructed below, for State 1, which has 

no rain, most of the month has a very low occurrence of no 

rain in July, August, September, October, and November, 

which will lead to high chances of flood. Thus, the red colour 

for warning and danger indicates the high occurrence of flood 

hazards as the flood level rises to near flooding levels. The 

flood level has reached critical levels, necessitating 

evacuation. January, June and December have a low 

occurrence of no rain. The colour for everyday alert and 

warning are orange because there is a possibility that flood 

hazard will occur, and the water level is above the safe level. 

Meanwhile, February is the only month with moderate 

occurrence for no rain, which means there is a low possibility 

for the flood to occur. In the remaining month, which is 

March, April, and May, no rain is high. Therefore, there are 

minimal chances of a flood event because the colour for alert, 

warning, and danger are green, which indicates a very low 

occurrence of flood hazard, and the flood level is at a safe level. 

Next, State 2 is light rain. This state also has the most 

significant number of the month with a very low occurrence, 

same as State 1, but State 2 for light rain. February, March, 

April, May, and June have a very low event of light rain, 

implying a moderate probability of flooding due to rainfall 

intensity. January, September, October, and November have 

the same light rain occurrence, which is low. The moderate 

light rain occurrence is in July, August, and December. The 

light rain for the occurrence of low and moderate both have 

very low chances a flood event to occur. There is no existence 

of a high occurrence of light rain. 

Moreover, moderate rain is labelled as State 3. There are 

only two types of flood impact in this state: low and low. Nine 

over twelve months have very low flood impact: January, 

February, March, April, May, June, August, November, and 

December. The normal and alert have the likelihood of 

moderate occurrence of flood event, which is in orange colour. 

The warning and danger are in yellow as low flood hazards. 

July, September, and October have low flood impacts for 

moderate rain. The colour for normal, alert, warning and 

danger is the opposite colour for very low, which means that 

the colour for normal and alert are yellow, and the colour for 

warning and danger is orange. 

Furthermore, State 4 is indicated as heavy rain. All the 

months, including January, February, March, April, May, 

June, July, August, September, October, November and 

December, have the same range of the limiting distribution 

probability, which is less than 0.20, indicating the very low 

occurrence of heavy rain. In all months, the likelihood of the 

flood level has already been reduced to a safe level is high, and 

the flood level is increasing to near flooding level is low. 

Hence, the flood event's chances to occur are low for all 

months. 

Lastly, for State 5, which is extreme rain. The result for State 

5 is very similar to State 3 because there is only low and very 

low for flood impact. Starting with February, March, April, 

May, June, July, August, and September, this month has a 

very low extreme rainfall occurrence. The colour for the 

warning and danger shows that there will be a very low flood 
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event to happen. In other months, such as January, October, 

November and December, extreme rainfall is low. Thus, the 

possibility of flood will be low because the chances of the 

flood level in a safe level are high. 

 
Table 12. Monthly Rainfall Matrix 
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IV. CONCLUSION 
 
To sum up the preceding, the probability transition matrix is 

essential to indicate each state's probabilities. The transition 

probability matrix obtained is used to analyse the classes in 

the transition probability matrix. The limiting distribution 

probability can also be calculated using this transition 

probability matrix. Then, the transition probability matrix 

analysis is also crucial to obtain the ergodic MC as the ergodic 

MC can confirm the stationarity of the transition probability 

matrix to show the limiting distribution in the transition 

probability matrix exist. 

Next, the long-run behaviour of the rainfall in Tanah Merah 

shows that heavy rain has the lowest probability of 

occurrence in that year. The limiting distribution method was 

executed to develop the future possibility for each state of the 

transition probability matrix that has been obtained. Other 

than heavy rain, the output established from the limiting 

distribution method demonstrates that the probability of no 

rain is the highest among the other states in those years, 

followed by moderate rain and extreme rain. However, the 

frequency of rainfall varies by state in accordance with the 

limited distribution probability. 

Lastly, the RM can be used to interpret the long-run 

behaviour of rainfall probability in Tanah Merah into an 

understandable visualisation matrix. In other words, by using 

the likelihood of long-run behaviour, the RM for each month 

is generated to show the impact of rainfall probability for each 

state that can lead to the flood hazard in the upcoming month. 

Therefore, RM can be used by the government as one of their 

initial actions to forecast future floods.  
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