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China's commitment to carbon neutrality by 2060 demands accurate and interpretable forecasting 

tools at the provincial level. This study develops and validates a hybrid framework integrating the 

STIRPAT model, XGBoost machine learning, and SHAP interpretability analysis to forecast coal 

and total energy consumption across six representative Chinese provinces (2005-2021). The 

STIRPAT model reveals industrial structure as the dominant driver of coal dependence, while 

SHAP confirms structural consistency and highlights nonlinear effects of urbanisation and income. 

The XGBoost model achieves competitive forecasting performance (Mean Absolute Percentage 

Error (MAPE): 5.26% for coal and 3.02% for total energy) and effectively captures regional 

disparities in coal transition trajectories. These results support differentiated and structurally 

grounded policy interventions, offering practical guidance for subnational energy planning under 

China's dual-carbon strategy. The framework offers broad applicability to other structurally 

diverse and data-constrained contexts. 
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I. INTRODUCTION 

 
China aims to achieve peak carbon emissions by 2030 and 

carbon neutrality by 2060. This commitment has increased 

the need for forecasting frameworks that are both 

technically accurate and structurally interpretable at the 

subnational level. While the central government has 

outlined ambitious decarbonization targets, provincial-level 

trajectories remain highly heterogeneous due to differing 

industrial legacies, energy structures, and institutional 

capacities. For instance, provinces such as Shaanxi and 

Inner Mongolia continue to rely on coal for over 70% of their 

primary energy consumption, while eastern coastal regions 

like Guangdong and Zhejiang have diversified their energy 

mixes with coal shares below 35% (Liu, Zhang, & Wang, 

2021). These disparities challenge unified policy design. 

They also necessitate the development of tailored 

forecasting models capable of capturing cross-regional 

structural variations. 

The challenges associated with subnational energy 

planning are not exclusive to China. In the United States, for 

example, California has implemented far-reaching clean 

energy initiatives within a decentralised policy system, while 

resource-dependent states such as Wyoming have 

progressed more slowly despite national climate targets 

(Carley & Konisky, 2020). A similar divergence is observed 

in Germany, where individual federal states (Länder) follow 

distinct decarbonisation pathways under a shared 

Energiewende framework, illustrating how local economic 

structures and resource endowments shape transition 

trajectories (Ohlhorst, 2015). These international 

experiences highlight the importance of developing 
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forecasting tools that are capable of addressing multi-level 

governance dynamics and regional heterogeneity in energy 

systems. 

However, conventional modelling approaches often 

struggle to balance predictive accuracy with interpretability. 

Econometric approaches, including the STIRPAT model 

(Stochastic Impacts by Regression on Population, Affluence, 

and Technology), provide a solid theoretical foundation for 

understanding environmental drivers. However, they often 

fall short in representing complex nonlinear relationships 

and can be sensitive to data limitations (York, Rosa & Dietz, 

2003). Meanwhile, machine learning algorithms such as 

XGBoost (Extreme Gradient Boosting) are highly effective at 

detecting intricate, high-dimensional patterns. A recurring 

criticism, however, concerns their opaque nature and 

limited capacity for providing clear explanations. Such 

drawbacks reduce their practical usefulness in policy-

making contexts, where both numerical robustness and 

interpretive clarity are essential. 

In light of these methodological trade-offs, a growing body 

of work has sought to merge machine learning techniques 

with theory-guided modelling frameworks. Such 

integrations strive to improve not only predictive 

performance but also the interpretability of model 

structures. For example, Wu et al. (2023) incorporated 

XGBoost with spatial indicators of urban form to study 

energy intensity variations among Chinese cities, achieving 

gains in both accuracy and explanatory insight. Other 

scholars, such as Lundberg and Lee (2017), have adopted 

SHAP (Shapley Additive Explanations) to interpret gradient 

boosting models, using game-theoretic principles to 

attribute predictions to individual input features. Despite 

these advances, provincial-scale energy transition 

forecasting still lacks a unified framework that incorporates 

these methodological innovations within a consistent 

theoretical structure. 

In this study, we develop and validate a hybrid modelling 

approach that integrates the elasticity-based interpretability 

of STIRPAT, the nonlinear predictive power of XGBoost, 

and the transparent attribution mechanisms of SHAP. 

Moving beyond prior work that uses machine learning 

merely as a black-box extension of conventional models, our 

research emphasises theoretical consistency, model 

interpretability, and relevance to policy applications. We test 

the proposed framework using data from six Chinese 

provinces over the period 2005-2021, assessing its utility 

along three key dimensions: (1) predictive performance 

under realistic constraints; (2) coherence of structural 

attributions across different model components; and (3) 

applicability to policy-focused energy analysis at the 

subnational level. 

Beyond its empirical focus, the hybrid framework offers 

tangible value for engineering applications in regional 

energy infrastructure planning. Accurate forecasts of coal 

share trajectories can support power grid design, fossil fuel 

asset retirement scheduling, and renewable capacity 

deployment, particularly in provinces undergoing industrial 

restructuring. Moreover, the SHAP-based interpretability 

enhances the model's suitability for engineering decision 

support systems by enabling transparent diagnostic insights 

into structural drivers. These features make the framework 

readily integrable into energy system modelling workflows, 

such as those supporting distributed grid design or 

renewable planning tools. 

 

II. MATERIALS AND METHOD 

 

A. Study Area and Data Sources 

 
This analysis examines six Chinese provinces selected to 

represent diverse regional characteristics and ensure data 

completeness: Guangdong and Jiangsu (eastern developed 

regions), Henan and Hubei (central transitional areas), and 

Sichuan and Shaanxi (western resource-abundant 

provinces). These provinces were chosen based on three 

criteria: (1) availability of complete annual energy and 

socioeconomic data from 2005 to 2021; (2) structural 

diversity in terms of industrialisation, urbanisation, and 

economic development; and (3) policy relevance under 

China's dual carbon strategy. The study period yields 102 

province-year observations, capturing both pre-crisis 

stability and recent carbon policy intensification. 

All data were sourced from official Chinese statistical 

publications, specifically the China Statistical Yearbook and 

China Energy Statistical Yearbook (National Bureau of 

Statistics of China & National Energy Administration, 2006-

2022). Data cleaning procedures included cross-checking 
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across years, interpolation for occasional missing entries, 

and standardisation of energy units using official conversion 

coefficients. All variables were reviewed for internal 

consistency and temporal comparability to ensure panel 

reliability. 

The core variables used in the modelling framework are 

defined as follows: 

(1) CoalConsumption: Annual coal consumption (10,000 

tonnes) 

(2) TotalEnergyConsumption:Total primary energy 

consumption (10,000 tonnes standard coal equivalent) 

(3) CoalShare:Coal consumption as percentage of total 

energy consumption (calculated as 

CoalConsumption/TotalEnergyConsumption×100) 

(4) UrbanRate: Urban population as percentage of total 

population 

(5) GDPperCap: Per capita gross domestic product (yuan, 

constant 2005 prices) 

(6) IndusShare: Secondary industry value-added as 

percentage of total GDP 

All continuous variables were log-transformed to reduce 

skewness and allow elasticity interpretation in the 

econometric component. These structural variables were 

selected based on their theoretical roles in driving energy 

consumption: urbanisation reflects population density and 

infrastructure demand; income captures affluence-driven 

energy intensity changes; and industrial structure captures 

sectoral energy dependency, particularly coal-intensive 

manufacturing (Zhang et al., 2021). Variable descriptions 

and sources are listed in Appendix A.  

 

B. STIRPAT Model Specification 
 

The theoretical foundation of the hybrid framework employs 

the STIRPAT model, widely used for analysing 

environmental impacts under structural change. We 

implement a fixed-effects panel specification to control for 

unobserved provincial heterogeneity, as specified in Eq. (1): 

ln(𝐶𝑜𝑎𝑙𝑆ℎ𝑎𝑟𝑒𝑖𝑡
 ) = 𝛼𝑖 +

𝛽1 ln(𝑈𝑟𝑏𝑎𝑛𝑅𝑎𝑡𝑒𝑖𝑡)+𝛽2 ln(𝐺𝐷𝑃𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡) +

𝛽3 ln(𝐼𝑛𝑑𝑢𝑠𝑆ℎ𝑎𝑟𝑒𝑖𝑡) + 𝛽4 𝑌𝑒𝑎𝑟𝑡 + 𝜀𝑖𝑡                                          (1) 

where represents the coal share in province i during, 

captures province-specific fixed effects, and is a linear time 

trend capturing national policy effects. The model is 

estimated using fixed-effects regression with cluster-robust 

standard errors to address heteroskedasticity and within-

group autocorrelation. 

Multicollinearity diagnostics confirm that all variance 

inflation factors (VIF) remain below 5.0, ensuring parameter 

stability (Appendix C). The log-linear specification enables 

direct interpretation of coefficients as elasticities, facilitating 

comparison with machine learning attributions. 

 

 

Figure 1. Pearson correlation heatmap of the log-

transformed predictor variables. 

 
To further assess potential collinearity among the 

explanatory variables, Figure 1 presents a Pearson 

correlation heatmap for the log-transformed predictors. The 

observed maximum pairwise correlation (0.89) occurs 

between ln_UrbanRate and ln_GDPperCap, which is 

theoretically expected given the co-movement of 

urbanisation and affluence in economic transitions. 

However, this correlation remains just below the 

multicollinearity threshold of 0.90, and the remaining 

pairwise correlations (e.g., with ln_IndusShare) are notably 

lower and negative. These results are consistent with the VIF 

diagnostics, which all fall under the standard cutoff of 5.0, 

indicating no significant risk of multicollinearity. As such, 

the inclusion of all three variables is statistically appropriate 

and structurally justified. 

This econometric formulation, using panel fixed-effects 

and heteroskedasticity-robust inference, is widely accepted 
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for environmental impact decomposition models with 

repeated cross-sectional data (Bergmeir et al., 2018). 

 

C. XGBoost Forecasting Strategy 
 

To address the STIRPAT model's limitations in capturing 

nonlinear relationships and interactions, the hybrid 

framework incorporates XGBoost (Extreme Gradient 

Boosting) for predictive modeling. Rather than directly 

forecasting CoalShare, the framework separately predicts 

CoalConsumption and TotalEnergyConsumption, then 

calculates the coal share ratio to ensure consistency with 

energy accounting identities. This two-stage structure 

prevents statistical distortions from modelling 

compositional ratios directly and improves the model's 

physical interpretability. 

For each prediction target  

Yit ∈{ CoalConsumptionit , TotalEnergyConsumptionit }, the 

model estimates a nonlinear function as shown in Eq. (2): 

𝑌̂𝑖𝑡 = 𝑓(𝑋𝑖𝑡) + 𝜀 (2) 

Where Xit  includes the same log-transformed structural 

variables from the STIRPAT specification: 

⚫    ln(UrbanRate it) 

⚫    ln(GDPperCap it) 

⚫    In(IndusShare it) 

⚫    Yeart 

To capture latent nonlinear interactions, three interaction 

terms are additionally constructed, as shown in Eqs. (3)-(5): 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡1𝑖𝑡 = 𝑙𝑛(𝑈𝑟𝑏𝑎𝑛𝑅𝑎𝑡𝑒𝑖𝑡) × 𝑙𝑛(𝐼𝑛𝑑𝑢𝑠𝑆ℎ𝑎𝑟𝑒𝑖𝑡) (3)  
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡2𝑖𝑡 = 𝑙𝑛(𝐺𝐷𝑃𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡) × 𝑙𝑛(𝐼𝑛𝑑𝑢𝑠𝑆ℎ𝑎𝑟𝑒𝑖𝑡) (4)    

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡3𝑖𝑡 = 𝑙𝑛(𝑈𝑟𝑏𝑎𝑛𝑅𝑎𝑡𝑒𝑖𝑡) × 𝑌𝑒𝑎𝑟𝑡  (5) 

These interactions allow the model to encode region-specific 

elasticities that vary with structural characteristics such as 

industrial intensity or urban development stage, which 

would be infeasible under a linear framework. 

The model was trained on data from 2005 to 2019 (N=90), 

while the period 2020-2021 (N=12) was held out for out-of-

sample testing. This temporal hold-out approach follows 

common protocols in machine learning with time-series 

data (Chen & Guestrin, 2016), helping improve the model’s 

generalisability. To strengthen robustness and reduce 

overfitting, we implemented a five-fold cross-validation 

procedure along with a comprehensive grid search over 108 

hyperparameter combinations within the training set. This 

tuning process entailed 540 training iterations in total, 

aiming to minimise out-of-fold prediction error (Hutter et 

al., 2019). Additional details regarding hyperparameter 

tuning can be found in Appendix D. The final model 

configuration was chosen to balance complexity and 

predictive performance, taking advantage of XGBoost’s 

inherent regularisation properties (Liang et al., 2021), and is 

outlined below: 

⚫  n_estimators = 700 

⚫  max_depth = 7 

⚫  learning_rate = 0.05 

⚫  subsample = 0.8 

⚫  colsample_bytree = 0.8 

This configuration, which combines a moderate learning 

rate and tree depth with a large number of estimators, 

enables the model to gradually capture complex patterns, 

thereby reducing the risk of overfitting often associated with 

small panel datasets (Molnar, 2022). The use of 

subsampling parameters-specifically subsample and 

colsample_bytree-further improves generalisation by 

introducing stochasticity into the training process, a 

fundamental regularisation feature of the algorithm. 

 

D. SHAP-Based Model Interpretation 
 
To enhance the interpretability of the XGBoost model and 

evaluate its alignment with the econometric findings, this 

study employs SHAP (Shapley Additive Explanations)-a 

model-agnostic interpretation method based on cooperative 

game theory (Aas et al., 2021). SHAP decomposes 

predictions into contributions from individual features by 

calculating each feature’s average marginal contribution 

across all possible subsets of features. This ensures both 

local accuracy and global consistency, addressing the 

transparency limitations of black-box models. Global SHAP 

values represent average feature importance across the 

dataset, while local values provide province-year-specific 

explanations. 

This dual-level attribution allows validation of theoretical 

consistency by comparing SHAP rankings with STIRPAT 

coefficients. It also reveals conditional effects (e.g., 

nonlinear urbanisation-industry interactions) that linear 

regressions cannot capture. The approach thus bridges 
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accuracy and structure, reinforcing the coherence of the 

hybrid model (Hyndman & Athanasopoulos, 2018). The 

SHAP analysis was implemented using the Python shap 

package (version 0.41) in combination with the 

TreeExplainer module designed for tree-based models such 

as XGBoost. This ensures compatibility between predictive 

outputs and post-hoc interpretability layers. 

 

E. Model Validation and Performance Evaluation 
 
The model is trained on 2005-2019 data and validated on 

2020-2021 to ensure temporal robustness. For 

benchmarking, Ordinary Least Squares (OLS) and Auto 

regressive Integrated Moving Average (ARIMA) (1,1,1) 

models are fitted on 2005-2017 data and tested on 2018-

2019. This design reflects realistic forecasting conditions 

and aligns with best practices in time-series learning 

(International Energy Agency, 2022). 

Forecast accuracy is evaluated using three standard metrics: 

Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE), as 

shown in Eqs. (6)-(8): 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖𝑡̂ − 𝑌𝑖|

𝑛

𝑖=1

(6) 

     

𝑅𝑆𝑀𝐸 = √
1

𝑛
∑(𝑌𝑖𝑡̂ − 𝑌𝑖)

2
𝑛

𝑖=1

(7) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑌𝑖𝑡̂ − 𝑌𝑖

𝑌𝑖

|

𝑛

𝑖=1

(8) 

These indicators collectively assess both absolute and 

relative forecast deviation, enabling consistent comparison 

across methods under limited-data constraints. 

 

 

 

 

 

 

 

 

 

 

III. RESULT AND DISCUSSION 
 

A. Results 
 

1. STIRPAT Model: Structural Driver Analysis 

 

 

Figure 2. Coefficient estimates from the STIRPAT model for 

provincial coal share (2005-2021). 

 
The fixed-effects panel regression results reveal the 

structural determinants of provincial coal consumption 

patterns (Figure 2Figure 2). The model demonstrates strong 

overall explanatory power with an adjusted R² of 0.885 and 

a highly significant F-statistic (F = 77.23, p < 0.001), 

indicating that the selected structural variables jointly 

explain the majority of variation in coal share across 

provinces and time. Full regression results are available in 

Appendix F. 

The fixed-effects panel regression results identify 

industrial structure as the primary driver of provincial coal 

consumption patterns (Figure 2). The coefficient for 

ln(IndusShare) is 103.95 (p < 0.01), indicating a strong 

positive relationship with coal share. It should be noted that 

this elasticity estimate may be influenced by the bounded 

nature of the CoalShare variable, particularly in provinces 

where coal dependence approaches upper limits. 

While the direction and significance of this relationship 

are clear, the precise magnitude of the elasticity should be 

interpreted with caution. The results confirm that provinces 

with manufacturing-intensive economies maintain higher 

coal consumption levels but also suggest that the 

relationship may not be fully captured by a simple log-linear 

specification. 

The coefficients for urbanisation (-20.23) and per capita 

income (-12.40) are negative but statistically insignificant, 

indicating that their effects may be conditional or nonlinear. 

The time trend coefficient (2.40) is also statistically 
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insignificant, suggesting no uniform temporal decline in coal 

share after controlling for structural factors. 

These findings highlight the need for more flexible 

modelling approaches to capture the complex relationships 

between structural factors and energy consumption 

patterns, which we address through the XGBoost framework 

in the following section. 

 
2. XGBoost Model: Predictive Performance Assessment 

 

Table  1. Forecasting performance of XGBoost, OLS, and 
ARIMA models (2020-2021) 

Variable Model MAE RMSE 
MAPE 

(%) 

CoalCons
umption 

XGBoost 1154.61 1403.33 5.26 

OLS 514.83 592.85 3.79 

ARIMA 
(1,1,1) 

810.71 958.58 3.79 

TotalEner
gyConsu
mption 

XGBoost 980.47 1211.08 3.02 

OLS 579.06 601.35 2.61 

ARIMA 
(1,1,1) 

453.98 481.02 2.07 

 

The XGBoost forecasting model demonstrates competitive 

performance across both target variables, with results 

benchmarked against traditional statistical approaches 

(Table 1). For coal consumption forecasting, XGBoost 

achieves an MAE of 1154.61 (10,000 tonnes), RMSE of 

1403.33, and MAPE of 5.26%. While OLS regression shows 

lower MAE (514.83) and ARIMA demonstrates comparable 

MAPE (3.79%), XGBoost provides superior handling of 

structural nonlinearities and missing data patterns. 

For total energy consumption, XGBoost records an MAE of 

980.47, RMSE of 1211.08, and MAPE of 3.02%, representing 

strong predictive accuracy. Traditional methods show mixed 

performance: ARIMA achieves the lowest MAPE (2.07%) for 

total energy consumption, while OLS demonstrates 

intermediate accuracy levels. 

Importantly, XGBoost's primary advantage lies not in raw 

forecasting accuracy but in its capacity to incorporate 

multiple structural features simultaneously while providing 

interpretable output through SHAP analysis. The model 

successfully captures complex interactions between 

urbanisation, economic development, and industrial 

structure that linear approaches cannot accommodate. 

 

 

Figure 3. Observed and predicted coal share trajectories for 

the six provinces (2005-2030). 

 
Figure 3 illustrates the model's capability to reproduce 

historical CoalShare trajectories and generate plausible 

future projections through 2030. A vertical red line marks 

the division between the training period (2005-2019) and 

the forecast horizon (2020-2030). Predictions for 2020–

2021 align closely with observed values across all six 

provinces, indicating reliable near-term forecasting 

performance. 

Provincial trends display clear divergence: Guangdong and 

Jiangsu sustain consistently low coal shares with a gradual 

decline, whereas Shaanxi maintains a high dependence on 

coal with limited structural shift. Henan and Hubei show 

intermediate levels of coal use, accompanied by moderate 

fluctuations, consistent with their transitional energy mix 

characteristics. 

 
3. SHAP Analysis: Feature Importance and Structural 

Consistency 
 

Figure 4. Global SHAP feature importance for the coal 

consumption prediction model. 



ASM Science Journal, Volume 20(2), 2025  
 

  7  

SHAP global importance analysis confirms the structural 

insights derived from STIRPAT regression while revealing 

the relative significance of each factor in the machine 

learning context (Figure 4). Industrial share 

(ln_IndusShare) dominates feature importance with a mean 

absolute SHAP value of 17.23, consistent with its statistical 

significance in the econometric analysis. 

Urbanisation (ln_UrbanRate) is identified as the second 

most influential factor, with a SHAP value of 10.87-notably 

exceeding what its econometric significance would imply. 

This divergence suggests that the impact of urbanisation 

may involve strong nonlinear or interactive effects, which 

machine learning methods are better suited to capture. In 

comparison, the time trend (Year) and income level 

(ln_GDPperCap) show more modest contributions, with 

SHAP values of 4.88 and 4.76, respectively. 

The agreement between STIRPAT and SHAP results 

regarding the role of industrial structure reinforces the 

internal consistency of the hybrid framework. Conversely, 

the discrepancies observed for other variables underscore 

the benefit of integrating both linear and nonlinear 

modelling approaches. Moreover, province-specific driver 

rankings (Appendix B) and normalised contribution analysis 

(Appendix E) point to substantial regional heterogeneity, 

emphasising that factors such as urbanisation and industrial 

structure exert differentiated influence across China. 

 
4. SHAP-Based Interaction Effects 

 
While global SHAP values provide insight into the average 

contribution of each structural variable, they do not capture 

how these effects vary under different contextual conditions. 

To address this, SHAP interaction plots are generated to 

examine how the marginal impact of one variable is 

conditioned by another. These visualisations uncover 

structural dependencies that are often masked in additive 

models. 

 

Figure 5. SHAP interaction dependence plot: GDP per capita 

and industrial share. 

 

SHAP interaction plots reveal complex conditional 

relationships that linear models cannot capture. 

 

Figure 5 demonstrates the interaction between GDP per 

capita and industrial share, where the effect of income on 

coal consumption varies substantially with industrial 

intensity. In provinces characterised by lower industrial 

shares (represented by yellow data points), elevated per 

capita GDP correlates with a reduction in coal consumption. 

Conversely, in regions with higher industrial intensity 

(indicated by blue points), this relationship reverses and 

turns positive. This suggests that economic affluence may in 

fact reinforce coal dependency within manufacturing-

intensive regions, a nuance effectively captured by the 

STIRPAT-model-informed analysis. 
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Figure 6. SHAP interaction dependence plot: urbanisation 

rate and industrial share. 

 

Figure 6 illustrates how urbanisation effects depend on 

industrial structure. When industrial share is low (blue 

regions), urbanisation shows positive SHAP values, 

potentially reflecting energy-intensive suburban expansion. 

Conversely, in highly industrialised provinces (red regions), 

urbanisation demonstrates negative or neutral effects, 

indicating structural efficiency gains or service sector 

transitions. 

 
Figure 7. Temporal SHAP value distribution for the 

urbanisation rate variable (2005-2021). 

 

Figure 7 illustrates the shifting influence of urbanisation 

over time. In earlier years (depicted by purple points), its 

impact was primarily positive, whereas in more recent 

periods (shown in yellow), this effect has diminished or 

reversed. This temporal pattern indicates a fundamental 

shift in how urbanisation relates to coal consumption, likely 

driven by policy changes, technological advances, or broader 

economic restructuring. 

These interactive dynamics highlight that the drivers of 

coal consumption are not only interconnected but also 

exhibit substantial variability over time and space, 

underscoring the importance of flexible modelling 

frameworks capable of capturing such complexity. 

 

5. Provincial Trajectory Analysis: Regional Heterogeneity 
 

Figure 8. Forecasted provincial coal share trajectories from 

the hybrid framework (2022-2030). 

 

The projected coal share trajectories up to 2030 reveal 

starkly different patterns across provinces (Figure 8), 

underscoring the regional heterogeneity in China's energy 

transition. Appendix D details the SHAP-derived 

contributions of structural factors for each province. Based 

on these projections, we categorise the six provinces into 

three distinct groups: 

Stable High-Coal Regions: Shaanxi’s coal share is 

projected to remain high with little decline, indicating 

strong structural inertia. Its flat trajectory and narrow 

confidence intervals suggest limited capacity for 

diversification, a common trait among resource-dependent 

western provinces. 

Rapid Transition Regions: Henan and Jiangsu show a 

clear and accelerating decline in coal share, especially after 

2025. This trend aligns with substantial structural 
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adjustments in these regions, likely driven by policy-led 

industrial upgrading and diversification. 

Plateau Regions: Sichuan, Hubei, and Guangdong exhibit 

relatively stable trends with minor fluctuations. Guangdong 

sustains a low coal share, consistent with its advanced 

service economy, while Sichuan’s profile is shaped by a 

balanced combination of hydroelectric and thermal power 

generation. 

These heterogeneous pathways highlight that China's 

energy transition is far from uniform. Our findings stress the 

necessity for province-specific strategies that account for 

local economic structures and developmental stages. 

 

B. Discussion 
 

1. Methodological Contributions and Framework 
Validation 

 
This study proposes a practical and adaptable forecasting 

framework that integrates econometric and machine 

learning approaches to address subnational energy 

forecasting under data scarcity. The framework combines 

STIRPAT, XGBoost, and SHAP, leveraging their 

complementary strengths: theoretical grounding through 

elasticity analysis, flexible pattern recognition via tree-based 

algorithms, and post-hoc interpretability based on game-

theoretic feature attribution. 

The strong agreement between STIRPAT coefficients and 

SHAP-derived feature importance confirms the internal 

consistency of the framework, particularly in identifying 

industrial structure as the primary driver of coal 

consumption. At the same time, machine learning reveals 

nuanced, context-dependent effects of urbanisation and 

income-effects that traditional models often overlook. These 

divergences do not reflect contradiction but rather 

demonstrate SHAP’s capacity to uncover conditional 

relationships that are masked in global regression estimates. 

Beyond internal validation, the framework is designed for 

transferability to other data-constrained settings, especially 

in developing countries with fragmented or heterogeneous 

energy systems. Unlike conventional econometric models 

that require long time series, our approach remains robust 

even with short panel data, enhancing its practicality in 

regions with limited official statistics. 

Benchmarking results indicate that while XGBoost does 

not always outperform traditional models in sheer predictive 

accuracy, it offers a superior ability to incorporate multiple 

structural predictors while maintaining interpretability. This 

aligns with the study’s focus on methodological 

transparency and policy relevance, rather than optimization 

alone. In contrast to black-box AI tools, the hybrid 

framework emphasises clarity, traceability, and diagnostic 

value for decision-making. 

 
2. Policy Implications for Provincial Decarbonisation 

 
Our empirical findings underscore the necessity of region-

specific strategies to steer China's coal transition. In eastern 

provinces such as Guangdong and Jiangsu—where coal 

shares are already low and declining—policy efforts should 

focus on sustaining this momentum through market-based 

renewable energy incentives, support for digital grid 

modernisation, and electrification of transport and services. 

Their diversified economic structures enable these regions 

to pilot next-generation energy technologies without 

compromising supply stability. 

In contrast, central provinces like Henan and Hubei 

exhibit steady but slower decarbonisation trajectories and 

require targeted policy interventions to overcome structural 

inertia. Although less coal-dependent than western 

provinces, they often lack the fiscal and institutional 

capacity to accelerate transitions independently. Measures 

such as tiered electricity pricing, performance-linked 

subsidies, and regional carbon trading pilots could improve 

the cost-effectiveness and implementation feasibility of such 

interventions. Coupling these with industrial upgrading 

initiatives may produce more durable outcomes than 

standardised policies. 

Western provinces-particularly Shaanxi-remain 

constrained by structural dependencies on coal-related 

employment, infrastructure, and fiscal revenue. Here, rapid 

coal substitution is impractical, necessitating longer-term 

strategies. Central government support is crucial, both in 

financing renewable energy infrastructure and promoting 

economic diversification to reduce reliance on extractive 

industries. Without dedicated investments and institutional 

capacity-building, market-based reforms alone are unlikely 

to spur substantial change (Wilson et al., 2012). 

SHAP interaction analysis further reveals that the effects 

of urbanisation and income are highly contextual, implying 
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that uniform policies may lead to divergent provincial 

outcomes. For example, income growth can reinforce fossil 

energy use in industry-intensive provinces, while potentially 

supporting efficiency gains in service-oriented regions. 

These insights reinforce the importance of tailored strategies 

that reflect local economic structures and development 

stages. International experience, such as the state-level 

energy transition paths in the United States and Germany's 

regionally varied coal phase-out plans, further illustrates 

that subnational differentiation is not only appropriate but 

necessary for feasible decarbonisation (Steckel et al., 2013). 

 
3. Limitations and Future Research Directions 

 
Several limitations constrain the generalisability and scope 

of these findings. The sample includes only six provinces, 

potentially limiting representativeness across China's 

diverse regional landscape. Future research should expand 

coverage to include additional provinces and autonomous 

regions, particularly those with unique economic structures 

or energy endowments. 

Furthermore, this study relies on official statistical 

yearbooks, which, despite being the most comprehensive 

source, may contain inherent data biases that could 

influence the results. A significant concern is the systematic 

under-reporting or misclassification of coal consumption, 

particularly in regions with heavy reliance on small, 

informal, or inefficient industrial boilers and furnaces, 

which are often poorly monitored (Liu et al., 2015). Such 

non-random measurement errors could lead to an 

underestimation of the true coal share and attenuate the 

measured strength of the relationship between industrial 

structure (ln_IndusShare) and coal dependence. 

Consequently, the SHAP-derived feature importance from 

the XGBoost model might also be affected, potentially 

altering the perceived ranking of key drivers. Future 

research should aim to integrate alternative data sources, 

such as remote sensing data for nighttime lights or 

atmospheric pollutants, to cross-validate official statistics 

and improve the accuracy of energy transition forecasts. 

The analysis excludes several potentially important factors 

such as technological innovation indicators, policy 

enforcement strength, and renewable energy capacities due 

to data availability constraints. Incorporating such variables, 

where measurable, could enhance both forecasting precision 

and policy targeting. 

Although the hybrid framework performs reliably within 

the observed sample, several limitations remain. First, the 

model does not account for external disruptions such as the 

COVID-19 pandemic, volatile global energy prices, or 

sudden shifts in regulatory policy. These shocks can 

introduce structural breaks that are difficult to anticipate 

using trend-based models alone. Incorporating scenario-

based simulations or variables that proxy such disruptions 

would improve the model's adaptability under uncertainty. 

Second, the current study period (2005-2021) predates 

major developments under China's 14th Five-Year Plan and 

the full-scale implementation of the dual carbon strategy. As 

post-2022 data becomes available, re-estimating the model 

will be important for capturing new dynamics, validating 

projection accuracy, and refining long-term transition 

trajectories. 

Third, while this study focuses on forecasting coal share at 

the provincial level, it does not encompass broader aspects 

of energy system transformation. Key dimensions such as 

electrification progress, renewable energy integration, and 

power market reform are not yet reflected in the model 

structure. Future research could expand this hybrid 

approach to address multi-sector interactions or adopt a 

whole-system modelling perspective, enabling a more 

comprehensive assessment of China's energy transition 

pathway. 

 
4. Applicability and Sample Scope Considerations 

 
Although this study covers only six provinces, the hybrid 

STIRPAT-XGBoost-SHAP framework is structurally 

modular and adaptable, making it suitable for application in 

other subnational contexts where similar energy and 

socioeconomic indicators are available. The model 

architecture is modular and can be retrained with minimal 

modifications across different regions, assuming availability 

of basic structural indicators such as industrial share, 

urbanisation rate, and income level. This makes the 

framework highly transferable to other emerging economies 

or decentralised energy systems facing similar challenges in 

coal share and structural heterogeneity. 



ASM Science Journal, Volume 20(2), 2025  
 

  11  

Nonetheless, the limited sample scope introduces 

constraints on statistical generalisability and scenario 

diversity. While the selected provinces span a range of 

development stages and energy profiles, the framework may 

not fully capture outlier dynamics (e.g., in highly 

autonomous regions or special economic zones). To mitigate 

small-sample limitations, the study leverages panel fixed 

effects, robust standard errors, and SHAP-based 

disaggregation to ensure model stability and interpretability 

under constrained data conditions. Future work will aim to 

expand the provincial panel, incorporate more recent data, 

and test cross-country applicability to validate external 

robustness and policy relevance in broader engineering 

applications. 

 

IV. CONCLUSION 
 

In response to the need for accurate and interpretable 

subnational energy forecasting, this study has developed and 

validated a hybrid STIRPAT-XGBoost-SHAP framework for 

provincial coal consumption prediction in China. The 

integration of econometric theory, machine learning 

prediction, and interpretable attribution provides a 

comprehensive approach to subnational energy forecasting 

that balances structural understanding with predictive 

capability. 

 

 

Key findings include: 

(1) Industrial structure emerges as the dominant driver of 

provincial coal consumption patterns, confirmed across both 

econometric and machine learning analyses; 

(2) Urbanisation and income effects are highly nonlinear 

and context-dependent, requiring flexible modelling 

approaches to uncover their true influence; 

(3) Forecasted coal transition trajectories display 

significant heterogeneity across provinces, underscoring the 

need for differentiated and locally grounded policy 

responses; 

(4) The hybrid framework demonstrates internal 

consistency and practical feasibility for policy-oriented 

energy modelling in data-constrained environments. 

The methodology contributes to the energy forecasting 

literature by bridging traditional econometric frameworks 

with modern machine learning techniques, while retaining 

interpretability essential for policy formulation. Unlike 

black-box models that emphasise predictive accuracy at the 

expense of transparency, this study highlights the value of 

structural interpretability for informing real-world decision-

making. The findings affirm that decarbonisation strategies 

must be tailored to regional conditions to effectively support 

China’s dual carbon goals, especially in light of pronounced 

differences across provinces in industrial structure, 

urbanisation pathways, and governance capabilities. 

Integrating SHAP into the forecasting workflow enables 

province-level diagnostic insights, revealing the relative 

influence of key drivers and offering actionable guidance for 

policymakers designing local energy transition roadmaps. 

From an engineering standpoint, these insights help 

prioritise infrastructure investments-such as aligning 

capacity expansion with regional demand patterns, 

optimising the sequence of grid upgrades, and improving 

system resilience amid uncertainty. 

Future studies should extend the analysis to include more 

provinces with varying developmental backgrounds. 

Incorporating additional indicators-such as renewable 

energy adoption rates, regulatory effectiveness, or industrial 

modernisation metrics-could strengthen the model’s policy 

relevance and explanatory power. This hybrid framework 

may also be extended to simulate system-wide transitions, 

including renewable integration, power market 

restructuring, and carbon pricing mechanisms. 

In summary, this study provides a scalable and 

transferable framework for subnational energy modelling 

under data constraints. With improved data availability and 

computational tools, the approach can serve as an effective 

decision-support tool for devolving climate planning and 

infrastructure strategies in other emerging economies 

undergoing similar energy transitions. 
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