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China's commitment to carbon neutrality by 2060 demands accurate and interpretable forecasting
tools at the provincial level. This study develops and validates a hybrid framework integrating the
STIRPAT model, XGBoost machine learning, and SHAP interpretability analysis to forecast coal
and total energy consumption across six representative Chinese provinces (2005-2021). The
STIRPAT model reveals industrial structure as the dominant driver of coal dependence, while
SHAP confirms structural consistency and highlights nonlinear effects of urbanisation and income.
The XGBoost model achieves competitive forecasting performance (Mean Absolute Percentage
Error (MAPE): 5.26% for coal and 3.02% for total energy) and effectively captures regional
disparities in coal transition trajectories. These results support differentiated and structurally
grounded policy interventions, offering practical guidance for subnational energy planning under

China's dual-carbon strategy. The framework offers broad applicability to other structurally

diverse and data-constrained contexts.
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I. INTRODUCTION

China aims to achieve peak carbon emissions by 2030 and
carbon neutrality by 2060. This commitment has increased
the need for forecasting frameworks that are both
technically accurate and structurally interpretable at the
subnational level. While the central government has
outlined ambitious decarbonization targets, provincial-level
trajectories remain highly heterogeneous due to differing
industrial legacies, energy structures, and institutional
capacities. For instance, provinces such as Shaanxi and
Inner Mongolia continue to rely on coal for over 70% of their
primary energy consumption, while eastern coastal regions
like Guangdong and Zhejiang have diversified their energy
mixes with coal shares below 35% (Liu, Zhang, & Wang,

2021). These disparities challenge unified policy design.
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They also necessitate the development of tailored
forecasting models capable of capturing cross-regional
structural variations.

The challenges associated with subnational energy
planning are not exclusive to China. In the United States, for
example, California has implemented far-reaching clean
energy initiatives within a decentralised policy system, while
resource-dependent states such as Wyoming have
progressed more slowly despite national climate targets
(Carley & Konisky, 2020). A similar divergence is observed
in Germany, where individual federal states (Lander) follow
distinct decarbonisation pathways under a shared
Energiewende framework, illustrating how local economic
structures and resource endowments shape transition
(Ohlhorst, 2015). These

highlight the

trajectories international

experiences importance of developing
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forecasting tools that are capable of addressing multi-level
governance dynamics and regional heterogeneity in energy
systems.
However, conventional modelling approaches often
struggle to balance predictive accuracy with interpretability.
Econometric approaches, including the STIRPAT model
(Stochastic Impacts by Regression on Population, Affluence,
and Technology), provide a solid theoretical foundation for
understanding environmental drivers. However, they often
fall short in representing complex nonlinear relationships
and can be sensitive to data limitations (York, Rosa & Dietz,
2003). Meanwhile, machine learning algorithms such as
XGBoost (Extreme Gradient Boosting) are highly effective at
detecting intricate, high-dimensional patterns. A recurring
criticism, however, concerns their opaque nature and
limited capacity for providing clear explanations. Such
drawbacks reduce their practical usefulness in policy-
making contexts, where both numerical robustness and
interpretive clarity are essential.
In light of these methodological trade-offs, a growing body
of work has sought to merge machine learning techniques
with frameworks.  Such

theory-guided  modelling

integrations strive to improve not only predictive

performance but also the interpretability of model
structures. For example, Wu et al. (2023) incorporated
XGBoost with spatial indicators of urban form to study
energy intensity variations among Chinese cities, achieving
gains in both accuracy and explanatory insight. Other
scholars, such as Lundberg and Lee (2017), have adopted
SHAP (Shapley Additive Explanations) to interpret gradient
boosting models, using game-theoretic principles to
attribute predictions to individual input features. Despite
these advances, provincial-scale energy transition
forecasting still lacks a unified framework that incorporates
these methodological innovations within a consistent
theoretical structure.

In this study, we develop and validate a hybrid modelling
approach that integrates the elasticity-based interpretability
of STIRPAT, the nonlinear predictive power of XGBoost,
and the transparent attribution mechanisms of SHAP.
Moving beyond prior work that uses machine learning
merely as a black-box extension of conventional models, our
research theoretical model

emphasises consistency,

interpretability, and relevance to policy applications. We test
the proposed framework using data from six Chinese
provinces over the period 2005-2021, assessing its utility
along three key dimensions: (1) predictive performance
under realistic constraints; (2) coherence of structural
attributions across different model components; and (3)
applicability to policy-focused energy analysis at the
subnational level.

Beyond its empirical focus, the hybrid framework offers
tangible value for engineering applications in regional
energy infrastructure planning. Accurate forecasts of coal
share trajectories can support power grid design, fossil fuel
asset retirement scheduling, and renewable capacity
deployment, particularly in provinces undergoing industrial
restructuring. Moreover, the SHAP-based interpretability
enhances the model's suitability for engineering decision
support systems by enabling transparent diagnostic insights
into structural drivers. These features make the framework
readily integrable into energy system modelling workflows,

such as those supporting distributed grid design or

renewable planning tools.

II. MATERIALS AND METHOD
A. Study Area and Data Sources

This analysis examines six Chinese provinces selected to
represent diverse regional characteristics and ensure data
completeness: Guangdong and Jiangsu (eastern developed
regions), Henan and Hubei (central transitional areas), and
Sichuan and Shaanxi (western resource-abundant
provinces). These provinces were chosen based on three
criteria: (1) availability of complete annual energy and
socioeconomic data from 2005 to 2021; (2) structural
diversity in terms of industrialisation, urbanisation, and
economic development; and (3) policy relevance under
China's dual carbon strategy. The study period yields 102
province-year observations, capturing both pre-crisis
stability and recent carbon policy intensification.

All data were sourced from official Chinese statistical
publications, specifically the China Statistical Yearbook and
China Energy Statistical Yearbook (National Bureau of
Statistics of China & National Energy Administration, 2006-

2022). Data cleaning procedures included cross-checking
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across years, interpolation for occasional missing entries,
and standardisation of energy units using official conversion
coefficients. All variables were reviewed for internal
consistency and temporal comparability to ensure panel
reliability.

The core variables used in the modelling framework are
defined as follows:
(1) CoalConsumption: Annual coal consumption (10,000

tonnes)

(2) TotalEnergyConsumption:Total primary

consumption (10,000 tonnes standard coal equivalent)

energy

(3) CoalShare:Coal consumption as percentage of total

energy consumption (calculated as
CoalConsumption/TotalEnergyConsumptionx100)

(4) UrbanRate: Urban population as percentage of total
population

(5) GDPperCap: Per capita gross domestic product (yuan,
constant 2005 prices)

(6) IndusShare: Secondary industry value-added as
percentage of total GDP

All continuous variables were log-transformed to reduce

skewness and allow elasticity interpretation in the

econometric component. These structural variables were

selected based on their theoretical roles in driving energy

consumption: urbanisation reflects population density and

infrastructure demand; income captures affluence-driven

energy intensity changes; and industrial structure captures

sectoral energy dependency, particularly coal-intensive

manufacturing (Zhang et al., 2021). Variable descriptions

and sources are listed in Appendix A.

B. STIRPAT Model Specification

The theoretical foundation of the hybrid framework employs

the STIRPAT model, widely used for analysing

environmental impacts under structural change. We
implement a fixed-effects panel specification to control for
unobserved provincial heterogeneity, as specified in Eq. (1):
In(CoalShare;) = a; +

B In(UrbanRate; )+, In(GDPperCap;;) +

B3 In(IndusShare;,) + B, Year, + € (1

where represents the coal share in province i during,

captures province-specific fixed effects, and is a linear time

trend capturing national policy effects. The model is
estimated using fixed-effects regression with cluster-robust
standard errors to address heteroskedasticity and within-
group autocorrelation.

Multicollinearity diagnostics confirm that all variance
inflation factors (VIF) remain below 5.0, ensuring parameter
stability (Appendix C). The log-linear specification enables
direct interpretation of coefficients as elasticities, facilitating

comparison with machine learning attributions.
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Figure 1. Pearson correlation heatmap of the log-

transformed predictor variables.

To further assess potential collinearity among the

explanatory variables, Figure 1 presents a Pearson
correlation heatmap for the log-transformed predictors. The
observed maximum pairwise correlation (0.89) occurs
between In_UrbanRate and In_GDPperCap, which is
the co-movement of

theoretically expected given

urbanisation and affluence in economic transitions.

However, this correlation remains just below the
multicollinearity threshold of 0.90, and the remaining
pairwise correlations (e.g., with In_IndusShare) are notably
lower and negative. These results are consistent with the VIF
diagnostics, which all fall under the standard cutoff of 5.0,
indicating no significant risk of multicollinearity. As such,
the inclusion of all three variables is statistically appropriate
and structurally justified.

This econometric formulation, using panel fixed-effects

and heteroskedasticity-robust inference, is widely accepted
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for environmental impact decomposition models with

repeated cross-sectional data (Bergmeir et al., 2018).
C. XGBoost Forecasting Strategy

To address the STIRPAT model's limitations in capturing

nonlinear relationships and interactions, the hybrid

framework incorporates XGBoost (Extreme Gradient
Boosting) for predictive modeling. Rather than directly
forecasting CoalShare, the framework separately predicts
CoalConsumption and TotalEnergyConsumption, then
calculates the coal share ratio to ensure consistency with
energy accounting identities. This two-stage structure
prevents  statistical  distortions from  modelling
compositional ratios directly and improves the model's

physical interpretability.
For each prediction target

Yi; €{ CoalConsumption;; , TotalEnergyConsumption;; }, the

model estimates a nonlinear function as shown in Eq. (2):

Vie=f(X) +e (2)
Where X;; includes the same log-transformed structural
variables from the STIRPAT specification:

e In(UrbanRate )

e In(GDPperCap it)

o In(IndusShare it)

® Yeart

To capture latent nonlinear interactions, three interaction

terms are additionally constructed, as shown in Egs. (3)-(5):

Interactl;; = In(UrbanRate;;) X In(IndusShare;;) (3)
Interact2;; = In(GDPperCap;;) X In(IndusShare;;) (4)
Interact3;; = In(UrbanRate;;) X Year; (5)

These interactions allow the model to encode region-specific
elasticities that vary with structural characteristics such as
industrial intensity or urban development stage, which
would be infeasible under a linear framework.

The model was trained on data from 2005 to 2019 (N=90),
while the period 2020-2021 (N=12) was held out for out-of-
sample testing. This temporal hold-out approach follows
common protocols in machine learning with time-series
data (Chen & Guestrin, 2016), helping improve the model’s
generalisability. To strengthen robustness and reduce
overfitting, we implemented a five-fold cross-validation

procedure along with a comprehensive grid search over 108

hyperparameter combinations within the training set. This
tuning process entailed 540 training iterations in total,
aiming to minimise out-of-fold prediction error (Hutter et
al., 2019). Additional details regarding hyperparameter
tuning can be found in Appendix D. The final model
configuration was chosen to balance complexity and
predictive performance, taking advantage of XGBoost’s
inherent regularisation properties (Liang et al., 2021), and is
outlined below:
e [In_estimators = 700
o [Imax_depth =7
e [Jlearning_rate = 0.05
e [Jsubsample = 0.8
e [Jcolsample_bytree = 0.8

This configuration, which combines a moderate learning
rate and tree depth with a large number of estimators,
enables the model to gradually capture complex patterns,
thereby reducing the risk of overfitting often associated with
datasets (Molnar, The use of

small panel 2022).

subsampling  parameters-specifically subsample and

colsample_bytree-further improves generalisation by
introducing stochasticity into the training process, a

fundamental regularisation feature of the algorithm.

D. SHAP-Based Model Interpretation

To enhance the interpretability of the XGBoost model and
evaluate its alignment with the econometric findings, this
study employs SHAP (Shapley Additive Explanations)-a
model-agnostic interpretation method based on cooperative
game theory (Aas et al, 2021). SHAP decomposes
predictions into contributions from individual features by
calculating each feature’s average marginal contribution
across all possible subsets of features. This ensures both
local accuracy and global consistency, addressing the
transparency limitations of black-box models. Global SHAP
values represent average feature importance across the
dataset, while local values provide province-year-specific
explanations.

This dual-level attribution allows validation of theoretical
consistency by comparing SHAP rankings with STIRPAT
coefficients. It also reveals conditional -effects (e.g.,

nonlinear urbanisation-industry interactions) that linear

regressions cannot capture. The approach thus bridges
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accuracy and structure, reinforcing the coherence of the
hybrid model (Hyndman & Athanasopoulos, 2018). The
SHAP analysis was implemented using the Python shap
package (version 0.41) in combination with the
TreeExplainer module designed for tree-based models such
as XGBoost. This ensures compatibility between predictive

outputs and post-hoc interpretability layers.

E. Model Validation and Performance Evaluation

The model is trained on 2005-2019 data and validated on

2020-2021 to ensure temporal robustness. For
benchmarking, Ordinary Least Squares (OLS) and Auto
regressive Integrated Moving Average (ARIMA) (1,1,1)
models are fitted on 2005-2017 data and tested on 2018-
2019. This design reflects realistic forecasting conditions
and aligns with best practices in time-series learning
(International Energy Agency, 2022).

Forecast accuracy is evaluated using three standard metrics:
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE), as

shown in Egs. (6)-(8):

n
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These indicators collectively assess both absolute and
relative forecast deviation, enabling consistent comparison

across methods under limited-data constraints.

ITII. RESULT AND DISCUSSION

A. Results

1. STIRPAT Model: Structural Driver Analysis
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Figure 2. Coefficient estimates from the STIRPAT model for

provincial coal share (2005-2021).

The fixed-effects panel regression results reveal the
structural determinants of provincial coal consumption
patterns (Figure 2Figure 2). The model demonstrates strong
overall explanatory power with an adjusted R2 of 0.885 and
a highly significant F-statistic (F = 77.23, p < 0.001),
indicating that the selected structural variables jointly
explain the majority of variation in coal share across
provinces and time. Full regression results are available in
Appendix F.

The fixed-effects panel regression results identify
industrial structure as the primary driver of provincial coal
consumption patterns (Figure 2). The coefficient for
In(IndusShare) is 103.95 (p < 0.01), indicating a strong
positive relationship with coal share. It should be noted that
this elasticity estimate may be influenced by the bounded
nature of the CoalShare variable, particularly in provinces
where coal dependence approaches upper limits.

While the direction and significance of this relationship
are clear, the precise magnitude of the elasticity should be
interpreted with caution. The results confirm that provinces
with manufacturing-intensive economies maintain higher
coal consumption levels but also suggest that the
relationship may not be fully captured by a simple log-linear
specification.

The coefficients for urbanisation (-20.23) and per capita
income (-12.40) are negative but statistically insignificant,
indicating that their effects may be conditional or nonlinear.

The time trend -coefficient (2.40) is also statistically
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insignificant, suggesting no uniform temporal decline in coal
share after controlling for structural factors.

These findings highlight the need for more flexible
modelling approaches to capture the complex relationships
between structural factors and energy consumption
patterns, which we address through the XGBoost framework

in the following section.

2. XGBoost Model: Predictive Performance Assessment

Table 1. Forecasting performance of XGBoost, OLS, and
ARIMA models (2020-2021)

Variable Model MAE RMSE (%)E
XGBoost 1154.61  1403.33 5.26
CoalCons OLS 514.83 592.85 3.79
umption
ARIMA
(1.1,1) 810.71 958.58 3.79
XGBoost 980.47  1211.08 3.02
TotalEner
gyConsu OLS 579.06 601.35 2.61
mpren ARIMA 8 81.02 2.0
(1,1,1) 453.9 401. .07

The XGBoost forecasting model demonstrates competitive
performance across both target variables, with results
benchmarked against traditional statistical approaches
(Table 1). For coal consumption forecasting, XGBoost
achieves an MAE of 1154.61 (10,000 tonnes), RMSE of
1403.33, and MAPE of 5.26%. While OLS regression shows
lower MAE (514.83) and ARIMA demonstrates comparable
MAPE (3.79%), XGBoost provides superior handling of
structural nonlinearities and missing data patterns.

For total energy consumption, XGBoost records an MAE of
980.47, RMSE of 1211.08, and MAPE of 3.02%, representing
strong predictive accuracy. Traditional methods show mixed
performance: ARIMA achieves the lowest MAPE (2.07%) for
total energy consumption, while OLS demonstrates
intermediate accuracy levels.

Importantly, XGBoost's primary advantage lies not in raw
forecasting accuracy but in its capacity to incorporate
multiple structural features simultaneously while providing
interpretable output through SHAP analysis. The model
complex interactions between

successfully captures

urbanisation, economic development, and industrial

structure that linear approaches cannot accommodate.
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Figure 3. Observed and predicted coal share trajectories for

the six provinces (2005-2030).

Figure 3 illustrates the model's capability to reproduce
historical CoalShare trajectories and generate plausible
future projections through 2030. A vertical red line marks
the division between the training period (2005-2019) and
the forecast horizon (2020-2030). Predictions for 2020—
2021 align closely with observed values across all six
provinces, indicating reliable near-term forecasting
performance.

Provincial trends display clear divergence: Guangdong and
Jiangsu sustain consistently low coal shares with a gradual
decline, whereas Shaanxi maintains a high dependence on
coal with limited structural shift. Henan and Hubei show
intermediate levels of coal use, accompanied by moderate
fluctuations, consistent with their transitional energy mix

characteristics.

3. SHAP Analysis: Feature Importance and Structural
Consistency

SHAP Global Importance of Structural Drivers

In_GDPperCap

In_UrbanRate

In_IndusShare 17.23

00 25 50 75 100 125 150 175

Mean Absolute SHAP Value
Figure 4. Global SHAP feature importance for the coal

consumption prediction model.
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SHAP global importance analysis confirms the structural
insights derived from STIRPAT regression while revealing
the relative significance of each factor in the machine
learning  context  (Figure 4). Industrial share
(In_IndusShare) dominates feature importance with a mean
absolute SHAP value of 17.23, consistent with its statistical
significance in the econometric analysis.

Urbanisation (In_UrbanRate) is identified as the second
most influential factor, with a SHAP value of 10.87-notably
exceeding what its econometric significance would imply.
This divergence suggests that the impact of urbanisation
may involve strong nonlinear or interactive effects, which
machine learning methods are better suited to capture. In
comparison, the time trend (Year) and income level
(In_GDPperCap) show more modest contributions, with
SHAP values of 4.88 and 4.76, respectively.

The agreement between STIRPAT and SHAP results
regarding the role of industrial structure reinforces the
internal consistency of the hybrid framework. Conversely,
the discrepancies observed for other variables underscore
the benefit of integrating both linear and nonlinear
modelling approaches. Moreover, province-specific driver
rankings (Appendix B) and normalised contribution analysis
(Appendix E) point to substantial regional heterogeneity,

emphasising that factors such as urbanisation and industrial

structure exert differentiated influence across China.

4. SHAP-Based Interaction Effects

While global SHAP values provide insight into the average
contribution of each structural variable, they do not capture
how these effects vary under different contextual conditions.
To address this, SHAP interaction plots are generated to
examine how the marginal impact of one variable is
conditioned by another. These visualisations uncover
structural dependencies that are often masked in additive

models.
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Figure 5. SHAP interaction dependence plot: GDP per capita

and industrial share.

SHAP interaction plots reveal complex conditional

relationships that linear models cannot capture.

SHAP Interaction: GDP per Capita x Industrial Share
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Figure 5 demonstrates the interaction between GDP per
capita and industrial share, where the effect of income on
coal consumption varies substantially with industrial
intensity. In provinces characterised by lower industrial
shares (represented by yellow data points), elevated per
capita GDP correlates with a reduction in coal consumption.
Conversely, in regions with higher industrial intensity
(indicated by blue points), this relationship reverses and
turns positive. This suggests that economic affluence may in
fact reinforce coal dependency within manufacturing-

intensive regions, a nuance effectively captured by the

STIRPAT-model-informed analysis.
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SHAP Interaction: Urbanization x Industrial Share
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Figure 6. SHAP interaction dependence plot: urbanisation

rate and industrial share.

SHAP Interaction: Urbanization x Industrial Share
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Figure 6 illustrates how urbanisation effects depend on
industrial structure. When industrial share is low (blue
regions), urbanisation shows positive SHAP values,
potentially reflecting energy-intensive suburban expansion.
Conversely, in highly industrialised provinces (red regions),
urbanisation demonstrates negative or neutral effects,

indicating structural efficiency gains or service sector

transitions.
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Figure 7. Temporal SHAP value distribution for the

urbanisation rate variable (2005-2021).

Figure 7 illustrates the shifting influence of urbanisation
over time. In earlier years (depicted by purple points), its
impact was primarily positive, whereas in more recent
periods (shown in yellow), this effect has diminished or
reversed. This temporal pattern indicates a fundamental
shift in how urbanisation relates to coal consumption, likely
driven by policy changes, technological advances, or broader
economic restructuring.

These interactive dynamics highlight that the drivers of
coal consumption are not only interconnected but also
exhibit substantial variability over time and space,
the of flexible modelling

underscoring importance

frameworks capable of capturing such complexity.

5. Provincial Trajectory Analysis: Regional Heterogeneity
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Figure 8. Forecasted provincial coal share trajectories from

the hybrid framework (2022-2030).

The projected coal share trajectories up to 2030 reveal
starkly different patterns across provinces (Figure 8),
underscoring the regional heterogeneity in China's energy
D details the SHAP-derived

contributions of structural factors for each province. Based

transition. Appendix
on these projections, we categorise the six provinces into
three distinct groups:

Stable High-Coal Regions: Shaanxi’s coal share is
projected to remain high with little decline, indicating
strong structural inertia. Its flat trajectory and narrow
confidence intervals suggest limited capacity for
diversification, a common trait among resource-dependent
western provinces.

Rapid Transition Regions: Henan and Jiangsu show a
clear and accelerating decline in coal share, especially after
substantial structural

2025. This trend aligns with
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adjustments in these regions, likely driven by policy-led
industrial upgrading and diversification.
Plateau Regions: Sichuan, Hubei, and Guangdong exhibit
relatively stable trends with minor fluctuations. Guangdong
sustains a low coal share, consistent with its advanced
service economy, while Sichuan’s profile is shaped by a
balanced combination of hydroelectric and thermal power
generation.

These heterogeneous pathways highlight that China's
energy transition is far from uniform. Our findings stress the
necessity for province-specific strategies that account for

local economic structures and developmental stages.

B. Discussion

1. Methodological Contributions and Framework
Validation

This study proposes a practical and adaptable forecasting

framework that integrates econometric and machine

learning approaches to address subnational energy
forecasting under data scarcity. The framework combines
STIRPAT, XGBoost, and SHAP, leveraging their
complementary strengths: theoretical grounding through
elasticity analysis, flexible pattern recognition via tree-based
algorithms, and post-hoc interpretability based on game-
theoretic feature attribution.

The strong agreement between STIRPAT coefficients and
SHAP-derived feature importance confirms the internal
consistency of the framework, particularly in identifying
industrial structure as the primary driver of coal
consumption. At the same time, machine learning reveals
nuanced, context-dependent effects of urbanisation and
income-effects that traditional models often overlook. These
divergences do not reflect contradiction but rather
demonstrate SHAP’s capacity to uncover conditional
relationships that are masked in global regression estimates.
Beyond internal validation, the framework is designed for
transferability to other data-constrained settings, especially
in developing countries with fragmented or heterogeneous
energy systems. Unlike conventional econometric models
that require long time series, our approach remains robust
even with short panel data, enhancing its practicality in
regions with limited official statistics.

Benchmarking results indicate that while XGBoost does

not always outperform traditional models in sheer predictive

accuracy, it offers a superior ability to incorporate multiple
structural predictors while maintaining interpretability. This
aligns with the study’s focus on methodological
transparency and policy relevance, rather than optimization
alone. In contrast to black-box AI tools, the hybrid
framework emphasises clarity, traceability, and diagnostic

value for decision-making.

2. Policy Implications for Provincial Decarbonisation

Our empirical findings underscore the necessity of region-
specific strategies to steer China's coal transition. In eastern
provinces such as Guangdong and Jiangsu—where coal
shares are already low and declining—policy efforts should
focus on sustaining this momentum through market-based
renewable energy incentives, support for digital grid
modernisation, and electrification of transport and services.
Their diversified economic structures enable these regions
to pilot next-generation energy technologies without
compromising supply stability.

In contrast, central provinces like Henan and Hubei
exhibit steady but slower decarbonisation trajectories and
require targeted policy interventions to overcome structural
inertia. Although less coal-dependent than western
provinces, they often lack the fiscal and institutional
capacity to accelerate transitions independently. Measures
such as tiered electricity pricing, performance-linked
subsidies, and regional carbon trading pilots could improve
the cost-effectiveness and implementation feasibility of such
interventions. Coupling these with industrial upgrading
initiatives may produce more durable outcomes than
standardised policies.

Western provinces-particularly Shaanxi-remain
constrained by structural dependencies on coal-related
employment, infrastructure, and fiscal revenue. Here, rapid
coal substitution is impractical, necessitating longer-term
strategies. Central government support is crucial, both in
financing renewable energy infrastructure and promoting
economic diversification to reduce reliance on extractive
industries. Without dedicated investments and institutional
capacity-building, market-based reforms alone are unlikely
to spur substantial change (Wilson et al., 2012).

SHAP interaction analysis further reveals that the effects

of urbanisation and income are highly contextual, implying
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that uniform policies may lead to divergent provincial
outcomes. For example, income growth can reinforce fossil
energy use in industry-intensive provinces, while potentially
supporting efficiency gains in service-oriented regions.
These insights reinforce the importance of tailored strategies
that reflect local economic structures and development
stages. International experience, such as the state-level
energy transition paths in the United States and Germany's
regionally varied coal phase-out plans, further illustrates
that subnational differentiation is not only appropriate but

necessary for feasible decarbonisation (Steckel et al., 2013).

3. Limitations and Future Research Directions

Several limitations constrain the generalisability and scope
of these findings. The sample includes only six provinces,
potentially limiting representativeness across China's
diverse regional landscape. Future research should expand
coverage to include additional provinces and autonomous
regions, particularly those with unique economic structures
or energy endowments.

Furthermore, this study relies on official statistical
yearbooks, which, despite being the most comprehensive
source, may contain inherent data biases that could
influence the results. A significant concern is the systematic
under-reporting or misclassification of coal consumption,
particularly in regions with heavy reliance on small,
informal, or inefficient industrial boilers and furnaces,
which are often poorly monitored (Liu et al., 2015). Such
non-random measurement errors could lead to an
underestimation of the true coal share and attenuate the
measured strength of the relationship between industrial
structure  (In_IndusShare) and coal dependence.
Consequently, the SHAP-derived feature importance from
the XGBoost model might also be affected, potentially
altering the perceived ranking of key drivers. Future
research should aim to integrate alternative data sources,
such as remote sensing data for nighttime lights or
atmospheric pollutants, to cross-validate official statistics
and improve the accuracy of energy transition forecasts.

The analysis excludes several potentially important factors
such as technological innovation indicators, policy
enforcement strength, and renewable energy capacities due

to data availability constraints. Incorporating such variables,
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where measurable, could enhance both forecasting precision
and policy targeting.

Although the hybrid framework performs reliably within
the observed sample, several limitations remain. First, the
model does not account for external disruptions such as the
COVID-19 pandemic, volatile global energy prices, or
sudden shifts in regulatory policy. These shocks can
introduce structural breaks that are difficult to anticipate
using trend-based models alone. Incorporating scenario-
based simulations or variables that proxy such disruptions
would improve the model's adaptability under uncertainty.
Second, the current study period (2005-2021) predates
major developments under China's 14th Five-Year Plan and
the full-scale implementation of the dual carbon strategy. As
post-2022 data becomes available, re-estimating the model
will be important for capturing new dynamics, validating
projection accuracy, and refining long-term transition
trajectories.

Third, while this study focuses on forecasting coal share at
the provincial level, it does not encompass broader aspects
of energy system transformation. Key dimensions such as
electrification progress, renewable energy integration, and
power market reform are not yet reflected in the model
structure. Future research could expand this hybrid
approach to address multi-sector interactions or adopt a
whole-system modelling perspective, enabling a more
comprehensive assessment of China's energy transition

pathway.
4. Applicability and Sample Scope Considerations

Although this study covers only six provinces, the hybrid

STIRPAT-XGBoost-SHAP  framework is structurally

modular and adaptable, making it suitable for application in
other subnational contexts where similar energy and
socioeconomic indicators are available. The model
architecture is modular and can be retrained with minimal
modifications across different regions, assuming availability
of basic structural indicators such as industrial share,
urbanisation rate, and income level. This makes the
framework highly transferable to other emerging economies
or decentralised energy systems facing similar challenges in

coal share and structural heterogeneity.
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Nonetheless, the limited sample scope introduces

constraints on statistical generalisability and scenario
diversity. While the selected provinces span a range of
development stages and energy profiles, the framework may
(e.g., in highly

autonomous regions or special economic zones). To mitigate

not fully capture outlier dynamics

small-sample limitations, the study leverages panel fixed

effects, robust standard errors, and SHAP-based
disaggregation to ensure model stability and interpretability
under constrained data conditions. Future work will aim to
expand the provincial panel, incorporate more recent data,
and test cross-country applicability to validate external
robustness and policy relevance in broader engineering

applications.

IV. CONCLUSION

In response to the need for accurate and interpretable
subnational energy forecasting, this study has developed and
validated a hybrid STIRPAT-XGBoost-SHAP framework for
provincial coal consumption prediction in China. The
integration of econometric theory, machine learning

prediction, and interpretable attribution provides a
comprehensive approach to subnational energy forecasting
that balances structural understanding with predictive

capability.

Key findings include:

(1) Industrial structure emerges as the dominant driver of
provincial coal consumption patterns, confirmed across both
econometric and machine learning analyses;

(2) Urbanisation and income effects are highly nonlinear
and context-dependent, requiring flexible modelling
approaches to uncover their true influence;

(3) Forecasted coal transition trajectories display
significant heterogeneity across provinces, underscoring the
need for differentiated and locally grounded policy
responses;

(4) The hybrid framework demonstrates internal
consistency and practical feasibility for policy-oriented

energy modelling in data-constrained environments.
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The methodology contributes to the energy forecasting
literature by bridging traditional econometric frameworks
with modern machine learning techniques, while retaining
interpretability essential for policy formulation. Unlike
black-box models that emphasise predictive accuracy at the
expense of transparency, this study highlights the value of
structural interpretability for informing real-world decision-
making. The findings affirm that decarbonisation strategies
must be tailored to regional conditions to effectively support
China’s dual carbon goals, especially in light of pronounced
differences across provinces in industrial structure,
urbanisation pathways, and governance capabilities.

Integrating SHAP into the forecasting workflow enables
province-level diagnostic insights, revealing the relative
influence of key drivers and offering actionable guidance for
policymakers designing local energy transition roadmaps.
From an engineering standpoint, these insights help
infrastructure investments-such as

prioritise aligning

capacity expansion with regional demand patterns,
optimising the sequence of grid upgrades, and improving
system resilience amid uncertainty.

Future studies should extend the analysis to include more
provinces

with varying developmental backgrounds.

Incorporating additional indicators-such as renewable
energy adoption rates, regulatory effectiveness, or industrial
modernisation metrics-could strengthen the model’s policy
relevance and explanatory power. This hybrid framework
may also be extended to simulate system-wide transitions,
including  renewable integration, power  market
restructuring, and carbon pricing mechanisms.

In summary, this study provides a scalable and
transferable framework for subnational energy modelling
under data constraints. With improved data availability and
computational tools, the approach can serve as an effective
decision-support tool for devolving climate planning and
infrastructure strategies in other emerging economies

undergoing similar energy transitions.
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