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The side-sensitive synthetic chart has been shown to effectively detect changes in the coefficient of 

variation ( ) , though its reliance on fixed sampling intervals may reduce its efficiency when 

compared to adaptive strategies. This paper aims to improve the chart by incorporating the variable 

sampling interval (VSI) feature that varies the sampling interval based on the performance of the 

plotting statistic of the previous sample. Formulae for the average and standard deviation of the time 

to signal (ATS and SDTS) of the proposed chart are derived, and procedures that optimise the chart’s 

performance are given. Numerical comparisons reveal that the VSI feature enhances the 

performance of the side-sensitive synthetic 𝛾 chart by resulting in smaller out-of-control ATS values. 

Furthermore, an actual example is given to illustrate the effectiveness of the proposed chart in 

detecting out-of-control conditions in practical settings.  

Keywords:  Average time to signal coefficient of variation; side-sensitive; synthetic chart; variable 

sampling interval 

 

 

I. INTRODUCTION 

 
Control charts can detect changes in certain statistical 

parameters which indicates the presence of assignable causes 

that needs to be detected and removed as they frequently 

result in a deterioration in the quality of the products 

manufactured or the services provided.  

Numerous control charts have been proposed to reduce the 

number of samples required to detect the out-of-control 

condition. One such chart is the synthetic-type chart that was 

first proposed by Wu and Spedding (2000) for monitoring 

the process mean ( ) . This concept was later extended by 

Wu and Spedding (2001) for monitoring the fraction non-

conforming, by Calzada and Scariano (2013) for the 

coefficient of variation ( ) , by Rajmanya and Ghute (2014) 

for the process variability, and by Celano and Castagliola 

(2016) for monitoring the ratio between normal variables. 

This chart differs from other charts by requiring two 

successive samples to fall outside the control limits before 

signalling an out-of-control condition. For conventional 

charts that signals an out-of-control condition right after a 

sample falls outside the limits, narrow control limits will 

result in higher number false alarms, as it is more likely for 

an in-control sample to fall outside the limits; however, 

increasing the width of the control limits will result in a delay 

in the detection of the out-of-control assignable cause(s), as 

it is more likely for out-of-control samples to fall within the 

limits. By requiring two successive samples to fall outside the 
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control limits before signalling an out-of-control condition, 

the shortcomings in conventional charts can be reduced 

where narrower limits can be adopted to reduce the time 

required to detect the out-of-control assignable cause(s), 

without increasing the number of false alarms.       

To further improve the chart’s sensitivity, Yeong et al. 

(2021) proposed the side-sensitive version of the synthetic 

chart by Calzada and Scariano (2013), where successive 

samples falling outside the control limits need to be on the 

same side of the limits. This allows for stricter control limits 

without increasing its’ false alarm rate, thereby improving its’ 

performance. 

The chart by Yeong et al. (2021) adopts fixed sampling 

intervals (d), where sampling is done at regular intervals. 

This approach is not optimal as unnecessarily frequent 

sampling may be conducted even with little evidence of an 

out-of-control process, thereby increasing its’ sampling cost; 

on the other hand, sampling frequency is not increased when 

such evidence is present, resulting in a delay in the detection 

of the assignable cause(s). Hence, a better approach would be 

to vary d based on previous sample information, that is, by 

adopting a variable sampling interval (VSI) approach. 

Castagliola et al. (2013) was the first to adopt the VSI 

approach to monitor  , which was extended by Amdouni et 

al. (2017) for short production runs and Nguyen et al. (2019) 

for the multivariate  . The VSI approach was also 

incorporated into the exponentially weighted moving average 

(EWMA) chart, where Yeong et al. (2017) monitored the 

univariate   while Nguyen et al. (2021) and Ayyoub et al. 

(2022) monitored the multivariate  . In addition, the VSI 

feature was incorporated into the cumulative sum (CUSUM) 

chart (Tran & Heuchenne, 2021), and the run sum chart 

(Yeong et al., 2022). In all these charts, the VSI approach 

results in better performance. 

This paper proposes the VSI side-sensitive synthetic   

chart, which has yet to be investigated in the literature. The 

proposed chart will be illustrated in the following section and 

subsequently evaluated through numerical analysis in 

Section III. An analysis of the charting parameters that affects 

the chart’s performance is presented in this section as well. 

Subsequently, a comparison is made with the fixed sampling 

interval counterpart to highlight the appealing feature of 

adopting the VSI scheme. The VSI side-sensitive   chart is 

then applied to an actual manufacturing example in Section 

IV. Lastly, the concluding remarks are given.  

 

II. VSI SIDE-SENSITIVE SYNTHETIC  
  CHART 

 

Let  1 2, ,..., nX X X be a sample of size n where 
iX  is assumed 

to be independent and identically distributed normal 

variables with a mean of   and a standard deviation of  . 

The sample   ( )̂  is obtained as:  

                                       ˆ
S

X
 = ,                                                         (1) 

where X  and S are the sample mean and standard deviation, 
respectively, with  
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The ̂  is compared against the upper and lower control 

limits (UCL and LCL). If  ˆLCL UCL  , then this sample is 

conforming. The first ̂  that falls outside the limits is 

denoted as non-conforming, and the number of conforming 

samples until its’ occurrence is called the conforming run 

length (CRL). For instance, by referring to Figure 1, 2̂  falls 

above UCL, hence 1 2.CRL =  An out-of-control signal is 

generated if ,CRL L where L  is pre-determined.  

For the second ̂  onwards that is outside the limits, 

whether the sample is conforming or not depends on the most 

recent non-conforming sample. If the most recent non-

conforming sample is above the UCL (below the LCL), then 

only samples above the UCL (below the LCL) are considered 

as non-conforming samples. For example, by referring to 

Figure 1, although Sample 5 is below the LCL, the sample is 

conforming as the most recent non-conforming sample 

(Sample 2) is above the UCL. Only Sample 7 is non-

conforming. Hence, 2 5CRL = . Similarly, the CRL will be 

compared with L, producing an out-of-control signal when 

.CRL L  
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 Figure 1. Side-sensitive synthetic-   chart 

 

The LCL and UCL are computed as (Calzada & Scariano, 

2013):  

( ) ( )0 0ˆ ˆ ,LCL K   = −                           (4) 

and 

( ) ( )0 0ˆ ˆ ,UCL K   = +                           (5) 

where ( )0 ˆ   and ( )0 ˆ   can be approximated as (Reh & 

Scheffler, 1996): 
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To determine ( ),L K , a wide range of L values will be 

considered, for example  2,3,...,100L . For each of these L 

values, numerical methods, for example simplex search 

algorithms, will be adopted to obtain the value of K that 

minimises the time to detect assignable cause(s), while at the 

same time satisfying constraints in the number of false 

alarms. Subsequently, the ( ),L K  combination which shows 

the quickest detection of the out-of-control assignable 

cause(s) will be adopted.  

In the side-sensitive synthetic   chart by Yeong et al. 

(2021), sampling is done at regular intervals, i.e., the same d 

is adopted throughout the monitoring process. This can lead 

to inefficient use of sampling resources as the fixed sampling 

strategy does not consider the performance of the current 

plotting statistic ̂ when determining the sampling frequency 

for the next sample. This limitation serves as a motivation for 

this paper to incorporate the VSI feature. 

Figure 2 depicts the operation for the VSI side-sensitive 

synthetic   chart, where the region between LCL and UCL is 

separated into the central (0c) and warning (0w) conforming 

regions. If ̂  falls in 0c, the next sample is collected after a 

long interval ( )2d , whereas the next sample is collected after 

a short interval ( )1d  if ̂  falls in 0w or the non-conforming 

regions. The conforming region is separated into 0c and 0w 

through the LWL and UWL as shown in Figure 2. The LWL 

and UWL can be obtained from Equations (4) and (5) by 

replacing K with the warning limit coefficient (W), where 

W K . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The operation of the VSI side-sensitive synthetic 

𝛾 chart 

 

The performance of the VSI side-sensitive synthetic 𝛾 chart 

is evaluated through the average and standard deviation of 

the time to signal (ATS and SDTS). Saccucci et al. (1992) 

developed a Markov chain approach for the ATS and SDTS by 

forming different in-control transient states and a single out-

of-control absorbing state. Subsequently, the ATS and SDTS 

are obtained through the average and standard deviation of 
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the number of transitions until the Markov chain reaches the 

absorbing state, as follows: 

                                    ( )q Q I d
TATS = −                                     (8) 

and 

( ) ( )
2

2 ,q QB Q I d q Qd
T TSDTS = − −                  (9) 

where the notations are described in Table 1. Equations (8) 

and (9) are widely adopted in various charts with the VSI 

feature, for example by Nguyen et al. (2021), Xie et al. (2022), 

Yeong et al. (2024), Bai et al. (2024), Adsiz and Aytacoglu 

(2024), Hu et al. (2024), and many others.  

 

Table 1. Notations in Equations (8) and (9) 

Notations Description 

q  Initial probability vector 

Q  Transition probability 

matrix of the in-control 

states 

I  Identity matrix 

d  Vector of sampling 

intervals associated with 

its’ respective states  

B  Diagonal matrix with the ith 

diagonal being equivalent 

to the ith element of d  

 

To apply Equations (8) and (9) on the proposed chart, the 

states of the Markov chain are defined based on L consecutive 

̂ , as follows: 

 

State 1: 100... 00c  

State 2: 100... 00w  

State 3: 010... 00c  

State 4: 010... 00w  

                 ⋮ 

State 2L-3: 000... 10c  

State 2L-2: 000... 10w   

State 2L-1: 000…01 

State 2L: 000... 00c  

State 2L+1: 000... 00w 

State 2L+2: 00…001 

State 2L+3: 000...10c 

State 2L+4: 000... 10w 

  ⋮ 

State 4L-1: 100... 00c  

State 4L: 100... 00w 

State 4L+1: Signalling (absorbing) state 

 

For example, by letting ˆ
i  denote the ̂  of the ith sample,  

State 1 (100... 00c ) is the state where 1̂  falls in region 1, 2̂  

to 1
ˆ

L −  are conforming samples, while ˆ
L  falls in region 0c. 

Note that the sampling interval to be adopted only depends 

on the region for its’ most recent sample, hence only the 

ˆ
Lspecific conforming region for  needs to be specified, while 

for 1̂  to 1
ˆ

L − , as long as they fall in the conforming region, 

they are generalized as region 0. The differing positions for 1 

and 1 among the different states have an impact on the CRL 

following the occurrence of 1
ˆ

L + , which impacts the 

probability of transitioning to State 4L+1, the out-of-control 

absorbing state which occurs if .CRL L For example, if its’ 

Markov chain is currently in State 1, and 1
ˆ

L +  is in region 1, 

then the CRL = L and the Markov chain transitions to State 

4L+1. If 1
ˆ

L +  falls in the other regions, then the Markov chain 

will transition to the other in-control states since CRL L . 

The Q  matrix in Equations (8) and (9) can be obtained for 

the proposed chart from the transition probabilities among 

States 1 to 4L, i.e. the in-control states. The matrix Q  is 

obtained by combining Tables 2a to 2c, where Table 2a shows 

the transition probabilities to States 1 to 2L-2, Table 2b shows 

the probabilities to States 2L-1 to 2L+4 while Table 2c shows 

the probabilities to States 2L+5 to 4L. 

 

Table 2a. Transition probabilities to States 1 to 2L-2 

States 1 2 3 4 5 6   2 3L−  2 2L −  

1          

2          

3 A  B         

4 A  B         

5   A  B       

6   A  B       

          

2 1L −         A  B  

2L           

2 1L +           
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2 2L+           

2 3L+           

2 4L+           

          

4 1L −           

4L           

 

Table 2b. Transition probabilities to States 2L-1 to 2L+4 

States 2 1L −  2L  2 1L +  2 2L +  2 3L+  2 4L +  

1  A  B  C    

2  A  B  C    

3    C    

4    C    

5    C    

6    C    

       

2 1L −     C    

2L  D  A  B  C    

2 1L +  D  A  B  C    

2 2L+  D     A  B  

2 3L+  D       

2 4L+  D       

       

4 1L −  D  A  B     

4L  D  A  B     

 

Table 2c. Transition probabilities to States 2L+5 to 4L 

States 2 5L+  2 6L+    4 1L −  4L  

1      

2      

3      

4      

5      

6      

      

2 1L −       

2L       

2 1L +       

2 2L+       

2 3L+  A  B     

2 4L+  A  B     

      

4 1L −       

4L       

 

The empty entries in Tables 2a to 2c are 0, while A, B, C and 

D are the probabilities ̂  will fall in regions 0c, 0w, 1 and 1, 

respectively. To illustrate how the transition probabilities are 

obtained, we refer to Table 2a on the transition from States 3 

to 1. The transition probability is A since if the current state 

is State 3, i.e. 010... ̂ 00c, and the next  falls in region 0c, 

which happens with a probability of A, then the state will 

transition to 100... 00c which is State 1. Thus, 31p A= . The 

following shows how A, B, C and D are obtained: 

( ) ( )ˆ ˆA F UWL F LWL = −                                 (10) 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆB F LWL F LCL F UCL F UWL   = − + −       (11) 

( )ˆ1C F UCL= −                                     (12) 

and 

( )ˆ ,D F LCL=                                       (13) 

where ( )ˆ .F
 is the cumulative distribution function (cdf) of 

̂  which is computed as (Castagliola et al., 2011): 

( )ˆ 1 ,t

n
F x F

x


 
= −   

 
                            (14) 

where ( ).tF  is the cdf of the non-central t distribution with 

( )1n −  degrees of freedom and non-centrality parameter 

n


.  

Next, to obtain q , we assume that the process will start at 

State 2L+2, for a quick detection of early positive shifts.  

Hence, the (2L+2)th element of q  is one, with the other 

elements being 0. Positive shifts in  , i.e. where there is an 

increase in the in-control  ( )0 , is more critical to a process 

as it shows increased variability when the ratio of   over   

has increased. Hence, it is important that positive shifts can 

be detected quickly. 

To obtain d , the elements associated with the states where 

ˆ
L  falls in region 0c, for example States 1, 3, ...,  will be 

assigned  d2, while the other elements are assigned d1. 



ASM Science Journal, Volume 20(2), 2025  
 

  6  

By defining how Q , q  and d  are obtained, the ATS and 

SDTS can be obtained from Equations (8) and (9). The in-

control ATS and SDTS (ATS0 and SDTS0) lets 0 =  in 

Equations (10) to (13), while the out-of-control ATS and 

SDTS (ATS1 and SDTS1) lets 0 =  in Equations (10) to (13), 

where   is the shift in 0 . Note that the ATS0 and SDTS0 

evaluate the average and the standard deviation for the time 

until a chart signals a false alarm, i.e. where the chart gives an 

out-of-control signal but the process is actually in-control, 

whereas its’ ATS1 and SDTS1 evaluate the average and the 

standard deviation for the time until the out-of-control 

assignable cause(s) is detected. 

In the next section, the chart’s performance will be analysed 

through numerical examples and compared with its’ 

counterpart without the VSI feature.  

 

III. NUMERICAL ANALYSIS 
 

The performance of the VSI side-sensitive synthetic  chart will 

be evaluated through numerical examples. We consider the 

parameters of   1.1,1.2,1.5,2.0,2.5  ,  5,7,10,15n , 

 0 0.05,0.10,0.15,0.20   and ( )1 2,d d  

( ) ( ) ( ) 0.1,1.5 , 0.1,1.9 , 0.1,4.0 , which are consistent with those 

previously  adopted by Castagliola et al. (2013).  

The following procedure is adopted to obtain the optimal 

( ), , ,L W K  together with its’ corresponding 
1 1( , )ATS SDTS : 

1. Specify the values for 
0 1,  ,  ,  n d   and 

2d . 

2. Initialise 2L = . 

3. Numerical methods, for example simplex search 

algorithms, are applied to obtain the ( ),W K  combination 

that minimises the ATS1, while satisfying the constraint 

0 370.4ATS = . The ATS is computed from Equation (8). 

4. Increase L by 1. 

5. Repeat Steps 3 and 4 until 100L = . 

6. Among all the combinations of ( ), ,L W K , the optimal 

( ), ,L W K  is the combination with the smallest ATS1. With the 

optimal ( ), ,L W K , the SDTS1 is computed from Equation (9).  

Tables 3, 4, 5 and 6 show the optimal ( ), ,L W K  and the 

corresponding ATS1 and SDTS1 for 

0 0 00.05,  0.10,  0.15  = = =  and 0 0.20 = , respectively. For 

instance, from Table 3, for 0 0.05,  5,  1.1n = = =  and 

( ) ( )1 2, 0.1,1.5d d = , the optimal ( ), ,L W K = ( )42,0.93,2.65 , 

which results in 1 1( , )ATS SDTS = ( )60.88,80.96 . 

 

Table 3. Optimal ( ), ,L W K  and the corresponding 

1 1( , )ATS SDTS  for 0 0.05, =  5,7,10,15n  and ( )1 2,d d   

( ) ( ) ( ) 0.1,1.5 , 0.1,1.9 , 0.1,4.0  

  
n = 5 

( )0.1,1.5  ( )0.1,1.9  ( )0.1,4.0  

1.1 42, 0.93, 2.65 

60.88, 80.96 

42, 0.69, 2.65 

60.70, 80.85 

42, 0.30, 2.65 

60.52, 81.34 

1.2 23, 0.93, 2.52 

18.30, 24.43 

23, 0.69, 2.52 

18.14, 24.36 

23, 0.30, 2.52 

17.99, 24.85 

1.5 8, 0.93, 2.28 

2.45, 3.54 

8, 0.69, 2.28 

2.38, 3.57 

8, 0.30, 2.28 

2.32, 4.05 

2.0 4, 0.93, 2.11 

0.49, 1.00 

4, 0.69, 2.11 

0.47, 1.05 

4, 0.30, 2.11 

0.44, 1.34 

2.5 3, 0.93, 2.05 

0.18, 0.55 

3, 0.69, 2.05 

0.17, 0.58 

3, 0.30, 2.05 

0.16, 0.77 

  n = 7 

1.1 37, 0.93, 2.57 

48.39, 64.40 

37, 0.68, 2.57 

48.16, 64.24 

37, 0.30, 2.57 

47.95, 64.66 

1.2 19, 0.93, 2.43 

12.91, 17.27 

19, 0.68, 2.43 

12.17, 17.17 

19, 0.30, 2.43 

12.63, 17.63 

1.5 7, 0.93, 2.22 

1.44, 2.22 

7, 0.68, 2.22 

1.39, 2.25 

7, 0.30, 2.22 

1.33, 2.67 

2.0 3, 0.93, 2.03 

0.23, 0.62 

3, 0.68, 2.03 

0.21, 0.65 

3, 0.30, 2.03 

0.20, 0.85 

2.5 3, 0.93, 2.03 

0.07, 0.31 

3, 0.68, 2.03 

0.06, 0.32 

3, 0.30, 2.03 

0.06, 0.43 

  n = 10 

1.1 35, 0.93, 2.52 

37.61, 49.96 

35, 0.68, 2.52 

37.34, 49.75 

35, 0.30, 2.52 

37.09, 50.12 

1.2 16, 0.93, 2.37 

8.77, 11.77 

16, 0.68, 2.37 

8.59, 11.67 

16, 0.30, 2.37 

8.42, 12.11 

1.5 5, 0.93, 2.14 

0.78, 1.39 

5, 0.68, 2.14 

0.73, 1.41 

5, 0.30, 2.14 

0.69, 1.74 

2.0 3, 0.93, 2.03 

0.09, 0.35 

3, 0.68, 2.03 

0.08, 0.36 

3, 0.30, 2.03 

0.07, 0.47 

2.5 2, 0.93, 1.94 

0.02, 0.15 

2, 0.68, 1.94 

0.02, 0.15 

2, 0.30, 1.94 

0.01, 0.20 

  n = 15 
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1.1 31, 0.92, 2.48 

27.53, 36.51 

31, 0.68, 2.48 

27.24, 36.26 

31, 0.30, 2.48 

26.95, 36.58 

1.2 13, 0.92, 2.32 

5.39, 7.31 

13, 0.68, 2.32 

5.23, 7.23 

13, 0.30, 2.32 

5.06, 7.65 

1.5 4, 0.92, 2.09 

0.34, 0.78 

4, 0.68, 2.09 

0.31, 0.80 

4, 0.30, 2.09 

0.29, 1.02 

2.0 2, 0.92, 1.94 

0.02, 0.16 

2, 0.68, 1.94 

0.02, 0.16 

2, 0.30, 1.94 

0.02, 0.21 

2.5 2, 0.92, 1.94 

0.002, 0.05 

2, 0.68, 1.94 

0.002,0.05 

2, 0.30, 1.94 

0.001, 0.06 

 

Table 4. Optimal ( ), ,L W K  and the corresponding 

1 1( , )ATS SDTS  for 0 0.10, =  5,7,10,15n  and ( )1 2,d d  

( ) ( ) ( ) 0.1,1.5 , 0.1,1.9 , 0.1,4.0  

  
n = 5 

( )0.1,1.5  ( )0.1,1.9  ( )0.1,4.0  

1.1 42, 0.93, 2.67 

61.34, 81.58 

42, 0.69, 2.67 

61.17, 81.48 

42, 0.30, 2.67 

61.02, 81.99 

1.2 23, 0.93, 2.54 

18.52, 24.74 

23, 0.69, 2.54 

18.37, 24.67 

23, 0.30, 2.54 

18.23, 25.17 

1.5 8, 0.93, 2.29 

2.50, 3.61 

8, 0.69, 2.29 

2.43, 3.64 

8, 0.30, 2.29 

2.37, 4.12 

2.0 4, 0.93, 2.12 

0.50, 1.02 

4, 0.69, 2.12 

0.48, 1.07 

4, 0.30, 2.12 

0.46, 1.37 

2.5 3, 0.93, 2.05 

0.19, 0.56 

3, 0.69, 2.05 

0.18, 0.59 

3, 0.30, 2.05 

0.17, 0.79 

  n = 7 

1.1 36, 0.93, 2.58 

48.83, 65.01 

36, 0.68, 2.58 

48.61, 64.86 

36, 0.30, 2.58 

48.42, 65.31 

1.2 19, 0.93, 2.44 

13.08, 17.52 

19, 0.68, 2.44 

12.91, 17.43 

19, 0.30, 2.44 

12.75, 17.89 

1.5 7, 0.93, 2.23 

1.48, 2.27 

7, 0.68, 2.23 

1.42, 2.30 

7, 0.30, 2.23 

1.36, 2.72 

2.0 3, 0.93, 2.04 

0.24, 0.64 

3, 0.68, 2.04 

0.22, 0.66 

3, 0.30, 2.04 

0.21, 0.87 

2.5 3, 0.93, 2.04 

0.07, 0.32 

3, 0.68, 2.04 

0.07, 0.34 

3, 0.30, 2.04 

0.06, 0.45 

  n = 10 

1.1 35, 0.93, 2.53 

37.90, 50.36 

35, 0.68, 2.53 

37.64, 50.16 

35, 0.30, 2.53 

37.41, 50.55 

1.2 16, 0.93, 2.38 

8.90, 11.94 

16, 0.68, 2.38 

8.72, 11.85 

16, 0.30, 2.38 

8.56, 12.29 

1.5 5, 0.93, 2.14 

0.80, 1.42 

5, 0.68, 2.14 

0.76, 1.45 

5, 0.30, 2.14 

0.71, 1.77 

2.0 3, 0.93, 2.03 

0.09, 0.36 

3, 0.68, 2.03 

0.08, 0.37 

3, 0.30, 2.03 

0.07, 0.49 

2.5 2, 0.93, 1.94 

0.02, 0.16 

2, 0.68, 1.94 

0.02, 0.16 

2, 0.30, 1.94 

0.02, 0.21 

  n = 15 

1.1 31, 0.92, 2.49 

27.73, 36.78 

31, 0.68, 2.49 

27.44, 36.54 

31, 0.30, 2.49 

27.17, 36.88 

1.2 13, 0.92, 2.32 

5.48, 7.44 

13, 0.68, 2.32 

5.32, 7.35 

13, 0.30, 2.32 

5.16, 7.78 

1.5 4, 0.92, 2.09 

0.36, 0.81 

4, 0.68, 2.09 

0.33, 0.82 

4, 0.30, 2.09 

0.30, 1.04 

2.0 2, 0.92, 1.94 

0.02, 0.17 

2, 0.68, 1.94 

0.02, 0.17 

2, 0.30, 1.94 

0.02, 0.22 

2.5 2, 0.92, 1.94 

0.002, 0.05 

2, 0.68, 1.94 

0.002,0.05 

2, 0.30, 1.94 

0.002, 0.06 

 

Table 5. Optimal ( ), ,L W K  and the corresponding 

1 1( , )ATS SDTS  for 0 0.15, =  5,7,10,15n  and ( )1 2,d d   

( ) ( ) ( ) 0.1,1.5 , 0.1,1.9 , 0.1,4.0  

  
n = 5 

( )0.1,1.5  ( )0.1,1.9  ( )0.1,4.0  

1.1 42, 0.93, 2.70 

62.13, 82.62 

42, 0.68, 2.70 

61.98, 82.56 

42, 0.30, 2.70 

61.86, 83.10 

1.2 23, 0.93, 2.56 

18.90, 25.26 

23, 0.68, 2.56 

18.76, 25.20 

23, 0.30, 2.56 

18.63, 25.72 

1.5 8, 0.93, 2.31 

2.58, 3.72 

8, 0.68, 2.31 

2.52, 3.76 

8, 0.30, 2.31 

2.46, 4.24 

2.0 4, 0.93, 2.13 

0.53, 1.07 

4, 0.68, 2.13 

0.51, 1.11 

4, 0.30, 2.13 

0.49, 1.42 

2.5 3, 0.93, 2.06 

0.21, 0.59 

3, 0.68, 2.06 

0.20, 0.62 

3, 0.30, 2.06 

0.19, 0.83 

  n = 7 

1.1 36, 0.93, 2.60 

49.60, 66.06 

36, 0.68, 2.60 

49.41, 65.94 

36, 0.30, 2.60 

49.24, 66.40 

1.2 19, 0.93, 2.47 

13.40, 17.95 

19, 0.68, 2.47 

13.24, 17.87 

19, 0.30, 2.47 

13.09, 18.35 

1.5 7, 0.93, 2.24 

1.54, 2.35 

7, 0.68, 2.24 

1.48, 2.38 

7, 0.30, 2.24 

1.42, 2.81 

2.0 3, 0.93, 2.04 

0.26, 0.67 

3, 0.68, 2.04 

0.24, 0.69 

3, 0.30, 2.04 

0.22, 0.91 

2.5 3, 0.93, 2.04 

0.08, 0.34 

3, 0.68, 2.04 

0.07, 0.36 

3, 0.30, 2.04 

0.07, 0.48 

  n = 10 

1.1 34, 0.92, 2.55 34, 0.68, 2.55 34, 0.30, 2.55 
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38.44, 51.16 38.21, 50.98 37.99, 51.39 

1.2 16, 0.92, 2.39 

9.12, 12.25 

16, 0.68, 2.39 

8.95, 12.16 

16, 0.30, 2.39 

8.79, 12.61 

1.5 5, 0.92, 2.15 

0.84, 1.48 

5, 0.68, 2.15 

0.80, 1.50 

5, 0.30, 2.15 

0.75, 1.84 

2.0 3, 0.92, 2.04 

0.10, 0.38 

3, 0.68, 2.04 

0.09, 0.40 

3, 0.30, 2.04 

0.08, 0.52 

2.5 2, 0.92, 1.95 

0.02, 0.17 

2, 0.68, 1.95 

0.02, 0.18 

2, 0.30, 1.95 

0.02, 0.23 

  n = 15 

1.1 30, 0.92, 2.49 

28.10, 37.35 

30, 0.68, 2.49 

27.83, 37.13 

30, 0.30, 2.49 

27.57, 37.48 

1.2 13, 0.92, 2.33 

5.64, 7.65 

13, 0.68, 2.33 

5.48, 7.57 

13, 0.30, 2.33 

5.32, 8.00 

1.5 4, 0.92, 2.09 

0.38, 0.84 

4, 0.68, 2.09 

0.35, 0.86 

4, 0.30, 2.09 

0.32, 1.09 

2.0 2, 0.92, 1.94 

0.03, 0.18 

2, 0.68, 1.94 

0.02, 0.18 

2, 0.30, 1.94 

0.02, 0.23 

2.5 2, 0.92, 1.94 

0.003, 0.06 

2, 0.68, 1.94 

0.002,0.06 

2, 0.30, 1.94 

0.002, 0.07 

 

Table 6. Optimal ( ), ,L W K  and the corresponding 

1 1( , )ATS SDTS  for 0 0.20, =  5,7,10,15n  and ( )1 2,d d  

( ) ( ) ( ) 0.1,1.5 , 0.1,1.9 , 0.1,4.0  

  
n = 5 

( )0.1,1.5  ( )0.1,1.9  ( )0.1,4.0  

1.1 42, 0.92, 2.74 

63.27, 84.12 

42, 0.68, 2.74 

63.15, 84.10 

42, 0.30, 2.74 

63.06, 84.69 

1.2 24, 0.92, 2.61 

19.44, 25.94 

24, 0.68, 2.61 

19.32, 25.91 

24, 0.30, 2.61 

19.21, 26.45 

1.5 9, 0.92, 2.37 

2.70, 3.82 

9, 0.68, 2.37 

2.64, 3.87 

9, 0.30, 2.37 

2.58, 4.37 

2.0 4, 0.92, 2.15 

0.57, 1.12 

4, 0.68, 2.15 

0.55, 1.17 

4, 0.30, 2.15 

0.52, 1.49 

2.5 3, 0.92, 2.08 

0.23, 0.62 

3, 0.68, 2.08 

0.22, 0.66 

3, 0.30, 2.08 

0.21, 0.88 

  n = 7 

1.1 36, 0.92, 2.64 

50.75, 67.60 

36, 0.68, 2.64 

50.58, 67.51 

36, 0.30, 2.64 

50.44, 68.03 

1.2 19, 0.92, 2.49 

13.87, 18.60 

19, 0.68, 2.49 

13.72, 18.54 

19, 0.30, 2.49 

13.58, 19.03 

1.5 7, 0.92, 2.26 

1.62, 2.46 

7, 0.68, 2.26 

1.57, 2.50 

7, 0.30, 2.26 

1.51, 2.93 

2.0 3, 0.92, 2.05 3, 0.68, 2.05 3, 0.30, 2.05 

0.28, 0.71 0.26, 0.74 0.25, 0.96 

2.5 3, 0.92, 2.05 

0.09, 0.37 

3, 0.68, 2.05 

0.09, 0.39 

3, 0.30, 2.05 

0.08, 0.52 

  n = 10 

1.1 33, 0.92, 2.57 

39.32, 52.39 

33, 0.68, 2.57 

39.11, 52.24 

33, 0.30, 2.57 

38.92, 52.69 

1.2 16, 0.92, 2.41 

9.45, 12.71 

16, 0.68, 2.41 

9.29, 12.63 

16, 0.30, 2.41 

9.14, 13.10 

1.5 5, 0.92, 2.16 

0.90, 1.56 

5, 0.68, 2.16 

0.85, 1.58 

5, 0.30, 2.16 

0.81, 1.93 

2.0 3, 0.92, 2.04 

0.11, 0.41 

3, 0.68, 2.04 

0.10, 0.43 

3, 0.30, 2.04 

0.10, 0.56 

2.5 2, 0.92, 1.95 

0.03, 0.19 

2, 0.68, 1.95 

0.02, 0.20 

2, 0.30, 1.95 

0.02, 0.26 

  n = 15 

1.1 30, 0.92, 2.51 

28.70, 38.17 

30, 0.68, 2.51 

28.45, 37.98 

30, 0.30, 2.51 

28.21, 38.36 

1.2 13, 0.92, 2.34 

5.87, 7.97 

13, 0.68, 2.34 

5.71, 7.89 

13, 0.30, 2.34 

5.56, 8.33 

1.5 4, 0.92, 2.10 

0.41, 0.89 

4, 0.68, 2.10 

0.38, 0.91 

4, 0.30, 2.10 

0.35, 1.15 

2.0 2, 0.92, 1.95 

0.03, 0.20 

2, 0.68, 1.95 

0.03, 0.20 

2, 0.30, 1.95 

0.02, 0.26 

2.5 2, 0.92, 1.95 

0.004, 0.07 

2, 0.68, 1.95 

0.003,0.07 

2, 0.30, 1.95 

0.003, 0.09 

 

Several key observations are obtained from Tables 3 to 6. 

Firstly, both ATS1 and SDTS1 decrease as   and n increase. 

For instance, in Table 3, 1 1( , )ATS SDTS = ( )60.88,80.96  when

 = 1.1 is considered. In contrast, 1 1( , )ATS SDTS =

(0.18,0.55) when  = 2.5 is selected. This indicates that the 

VSI side-sensitive synthetic   chart becomes more effective 

at detecting larger shifts, as reflected by shorter detection 

times. Similarly, larger n enhances the detection power of the 

VSI side-sensitive synthetic   chart. For example, when n 

increases from 5 to 15 for  = 1.1 in Table 1, the ATS1 and 

SDTS1 decrease to 27.53 and 36.51, respectively. This shows 

a decrease in both the expected and variability in the time 

required to detect the shift, which is expected since larger   

represents a larger shift in 0  and thereby facilitating quicker 

detection as larger shifts tend to be detected more quickly.  

From Tables 3 to 6, there is a marginal decrease in the ATS1 

for larger gaps between 1d  and 2d . For example, from Table 
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3, when 5n =  and 1.1 =  are considered, the 1 60.88ATS =  

for ( ) ( )1 2, 0.1,1.5d d = , but decreases slightly to 60.52 when 

( ) ( )1 2, 0.1,4.0d d = . Furthermore, there is also a slight 

increase in the (𝐴𝑇𝑆1, 𝑆𝐷𝑇𝑆1)  for larger 0  . For example, 

when 5,  1.1n = =  and ( ) ( )1 2, 0.1,1.5d d =  are considered, the 

1 1( , )ATS SDTS = ( )60.88,80.96 for 0 0.05 =  (see Table 3), 

while the (𝐴𝑇𝑆1, 𝑆𝐷𝑇𝑆1) = (63.27 , 84.12) for 0 0.20 =  (see 

Table 6). 

For the choice of charting parameters, smaller L and K are 

adopted for larger   and n. For instance, from Table 3,  for 

0 0.05,  5,  1.1n = = =  and ( ) ( )1 2, 0.1,1.5 ,d d =  ( ),L K =

( )42,2.65 , but when 2.5 = , ( ) ( ), 3,2.05L K = . Similarly, for 

0 0.05, 15, 1.1n = = =  and ( ) ( )1 2, 0.1,1.5d d = , smaller L and K 

are adopted as compared to that of 5n = , with  

( ) ( ), 31,2.48L K = . The choice of L and K does not seem to be 

affected by ( )1 2, ,d d where for the same 0,  n  and  , the 

same ( ),L K  is adopted for all three combinations of ( )1 2,d d  

being considered. Marginally larger K is also adopted for 

larger 0 . For example, K = 2.65 for 0 0.05, 5n = =  and 

1.1 =  in Table 3, while K = 2.74 for 0 0.20, 5n = =  and 

1.1 =  in Table 5. 

For the choice of W, it can be observed that smaller values 

of W are adopted for larger gaps between 1d  and 2d . For 

example, for 0 0.05, 5, 1.1n = = =  and ( ) ( )1 2, 0.1,1.5d d =   in 

Table 3, W = 0.93, but for the same 0,n  and   but with 

( ) ( )1 2, 0.1,4.0d d = , W becomes 0.30. W does not seem to be 

affected by 0,n  and  , with the same or similar values 

being adopted. 

Next, the performance of the VSI side-sensitive synthetic   

chart will be compared with the side-sensitive synthetic   

chart without the VSI feature. Due to space constraints, the 

comparisons are made for only 0 0.05 = . Table 7 shows the 

optimal ( ),L K  and the corresponding ATS1 and SDTS1 for 

 1.1,1.2,1.5,2.0,2.5  ,  5,7,10,15n  and 

 0 0.05,0.10,0.15,0.20  . For example, for 0 0.05, 5n = =  

and 1.1 = , the optimal ( ),L K = ( )42,2.65 , which results in 

1 1( , )ATS SDTS = ( )64.74,84.69 . 

 

Table 7. Optimal ( ),L K  and the corresponding 

1 1( , )ATS SDTS  for 0 0.05 =  and  5,7,10,15n   

  5n =  7n =  

1.1 42, 2.65 

64.74, 84.69 

37, 2.57 

52.13, 67.97 

1.2 23, 2.52 

21.35, 27.11 

19, 2.43 

15.75, 19.66 

1.5 8, 2.28 

4.18, 4.44 

7, 2.22 

3.02, 2.89 

2.0 4, 2.11 

1.72, 1.27 

3, 2.03 

1.38, 0.82 

2.5 3, 2.05 

1.29, 0.67 

3, 2.03 

1.12, 0.38 

  10n =  15n =  

1.1 35, 2.52 

41.27, 53.44 

31, 2.48 

31.15, 39.93 

1.2 16, 2.37 

11.43, 13.91 

13, 2.32 

7.84, 9.14 

1.5 5, 2.14 

2.22, 1.91 

4, 2.09 

1.63, 1.13 

2.0 3, 2.03 

1.17, 0.47 

2, 1.94 

1.05, 0.24 

2.5 2, 1.94 

1.04, 0.20 

2, 1.94 

1.01, 0.07 

 

Note that for the traditional side-sensitive synthetic   

chart without the VSI feature, W is not one of the charting 

parameters as the charting regions are not separated into 

warning and central regions. Thus, the same sampling 

interval, i.e. d = 1, is always adopted in Table 7, unlike the VSI 

side-sensitive synthetic   chart which varies the sampling 

interval between d1 and d2. Hence, Table 7 is not separated 

into different d1 and d2 values. 

By comparing Tables 3 and 7, the VSI side-sensitive 

synthetic   chart gives lower ATS1 and SDTS1 compared to 

its fixed sampling interval counterpart, which indicates that 

the VSI feature enhances the detection capability of the side-

sensitive synthetic   chart. For example, for 

0 0.05,  5,  1.1n = = =  and ( ) ( )1 2, 0.1,1.5d d = , the ATS1 and 
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SDTS1 of the VSI side-sensitive synthetic   chart are 60.88 

and 80.96, respectively, while that of its counterpart without 

the VSI feature are 64.74 and 84.69, respectively. For the 

choice of charting parameters, they ( ),L K  are the same for 

both charts. 

 

IV. ILLUSTRATIVE EXAMPLE 
 

This section considers an actual example from Castagliola et 

al. (2013), where the weight of scrap zinc alloy to be removed 

between the moulding process and the continuous plating 

surface treatment is being monitored during the 

manufacturing of zinc alloy parts for the sanitary sector. 

Excessive scrap is a result of uncontrolled item solidification 

resulting from a change in the injection pressure of the zinc 

alloy into the die (Castagliola et al., 2013).  

Due to the constant proportionality between   and  , the 

  will be monitored. From 30 in-control samples of size 

5n = , Castagliola et al. (2013) has estimated 0  as 0.01. 

From Castagliola et al. (2013), a shift of 1.2 =  is an 

indication of uncontrolled item solidification and it is 

important for the manufacturer to be alerted of this condition. 

Furthermore, the manufacturer would prefer 

( ) ( )1 2, 0.3 hours,  1.7 hoursd d =  (Castagliola et al., 2013). 

Hence, by using the methodology presented in Section II, the 

optimal parameters (𝐿, 𝑊, 𝐾) = (23,0.69,2.52)  that give 

1 1( , )ATS SDTS = ( )18.57,24.82 are obtained, and the control 

limits are calculated as 0.00081,LCL = 0.0071LWL = , 

0.0094CL = , 0.012UWL =  and 0.018.UCL =   

The charting parameters in the preceding paragraph will be 

adopted to monitor 20 samples of size 5 following the 

occurrence of an out-of-control assignable cause. The first 10 

samples are out-of-control, while after the 10th sample, 

efforts are taken to remove the assignable cause.  Table 8 

shows the ̂  of these 20 samples, together with the 

cumulative time until the sample is collected. Note that for 

ˆ0.0071 0.012i  , 1 1.7id + = , while for other values of ˆ
i , 

1 0.3id + = . The sample is non-conforming when ˆ 0.018i   or 

ˆ 0.00081i  . The values in-bold are the non-conforming 

samples. For a graphical illustration, Figure 3 shows the ̂  

plotted against the warning and control limits. 

Table 8. Cumulative time and ̂  of 20 samples  

i Cumulative 

time (in hours) 

ˆ
i  

1 0.3 0.0053 

2 0.6 0.0025 

3 0.9 0.0036 

4 1.2 0.0057 

5 1.5 0.020 

6 1.8 0.014 

7 2.1 0.017 

8 2.4 0.023 

9 2.7 0.029 

10 3.0 0.020 

11 3.3 0.018 

12 3.6 0.015 

13 3.9 0.015 

14 4.2 0.014 

15 4.5 0.011 

16 6.2 0.010 

17 7.9 0.011 

18 9.6 0.011 

19 11.3 0.0038 

20 11.6 0.0106 

 

 

 

 

 

 

 

 

Figure 3. The VSI side-sensitive synthetic   chart 

monitoring the weight of scrap zinc alloy 

 

From Table 8 and Figure 3, the first non-conforming 

sample was observed at sample 5, 1.5 hours after process 

monitoring has started. This gives a CRL1 of 5, which is less 

than the L of 23. Hence, an out-of-control signal is generated. 

Subsequently, samples 8 to 11 are also non-conforming, with 

CRL less than L. Hence, out-of-control signals are also 

generated. Out-of-control signals are produced 1.5, 2.4, 2.7, 

3.0 and 3.3 hours after the commencement of process 

monitoring, showing quite frequent out-of-control signals. 
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After sample 11, the process starts to go back to an in-control 

condition, where d2 is adopted for samples 16 to 19.  

For the traditional side-sensitive synthetic   chart, the 

same optimal ( ),L K  as the VSI side-sensitive synthetic   

chart is obtained, i.e. the same 0.00081,LCL = 0.0094CL =  

and 0.018UCL =  is adopted, with the exception that the chart 

does not show a warning region. Figure 4 shows a graphical 

representation of the side-sensitive synthetic   chart. 

 

 

 

 

 

 

 

 

 

 

Figure 4. The side-sensitive synthetic   chart monitoring 

the weight of scrap zinc alloy 

 

From Figure 4, the same samples as the VSI side-sensitive 

synthetic   chart, i.e. samples 5, 8, 9, 10 and 11, are detected 

as non-conforming samples. Since the CRL is less than L for 

all these non-conforming samples, out-of-control signals are 

generated. However, all these samples are taken at regular 

intervals of 1 hour, hence the traditional side-sensitive 

synthetic   chart produces out-of-control signals only after 

5 , 8 , 9, 10 and 11 hours from the commencement of process 

monitoring , unlike the VSI  side-sensitive synthetic   chart 

which produces out-of-control signals 1.5, 2.4, 2.7, 3.0 and 

3.3 hours after commencement. This shows that 

incorporating the VSI feature increases the speed of detection. 

Furthermore, when the process is in-control, the sampling is 

more frequent than necessary for the traditional side-

sensitive synthetic   chart. Unlike the VSI  side-sensitive 

synthetic   chart which adopts d2 = 1.7 hours for samples 16 

to 19 (note that samples 16 to 19 comes from an in-control 

process), the side-sensitive synthetic   chart still carries out 

sampling at regular intervals of 1 hour, demonstrating that 

the sampling is carried out more frequent than necessary.  

 

V. CONCLUSION 

 
The VSI side-sensitive synthetic   chart is proposed, and its 

optimal charting parameters are illustrated through several 

numerical examples. From the numerical examples, larger   

and n result in better performance, at the same time it results 

in the choice of smaller L and K. Furthermore, the numerical 

examples show that smaller W are adopted for larger gaps 

between 1d  and 2d . From the performance comparison, the 

proposed chart outperforms its counterpart without the VSI 

feature. Implementation on an illustrative example shows 

that the proposed chart can quickly detect assignable cause(s), 

while showing less frequent sampling when in-control. Hence, 

it is advantageous to include the VSI feature for the side-

sensitive synthetic   chart. From the advantage of including 

the VSI feature, future research could explore the chart with 

variable sample size, as well as variable warning and control 

limits. The multivariate case could also be explored. 
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