ASM Sc. J., 20(2), 2025

https://doi.org/10.32802/asmscj.2025.1556

Review of Optimisation Models for Split Pickup and
Delivery Problem in Solid Waste Collection System

T.M. Sahib*2, R. Mohd-Mokhtar! and A. Mohd-Kassim3

ISchool of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus,

14300 Nibong Tebal, Pulau Pinang, Malaysia

’Dept. of Electrical Techniques, Kufa Technical Institute, Al-Furat Al-Awsat Technical University, 54003, Iraq

3School of Computer Science, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

Waste management typically involves technical, climatic, environmental, demographic, socio-economic,
and legislative parameters. Such complex nonlinear processes are challenging to model and optimise
using fundamental methods. This article reviews optimisation methods for municipal waste collection,
concentrating on the Split Pickup and Delivery Problems (SPDP). Throughout our review, a final list of
twenty-eight (28) related articles was extracted and investigated to generate new knowledge in the
domain of study, which examined several optimisation methods in terms of objectives and constraints
related to time, vehicles, and route services, with most variants employed. Based on the review, existing
studies have focused on single objective methods with a ratio of 75%, whereby only 25% focused on
solving multi-objective problems. Furthermore, the evaluation of optimisation methods to define the
knowledge gap, identify the challenges, and provide recommendations were presented by authors that
will aid the researchers and serve as a guide for their work. Overall, it is necessary to use real-world data
for a more realistic evaluation of SPDP and provide optimal estimation techniques of the uncertain
parameter, especially in symmetric and bounded random variables in demand.
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V. INTRODUCTION

effective waste collection strategy and protecting the

Municipal Waste Management (MWM) is a waste collection,
transportation, treatment, and disposal phase (Babaee
Tirkolaee et al., 2016; Abdel-Shafy & Mansour, 2018). The
priorities for these activities are outlined in the European
Union Waste Framework Directive 2008/98/EC (Bertanza et
al., 2018). Solid waste management is a great challenge for
most nations due to the rapidly increasing population and
flourishing industries (Al-Jubori & Gazder, 2012).

In addition, the generation of municipal waste would have
drastically grown from 1.3 to 2.2 billion metric tonnes per
year (Hoang & Louati, 2016). The waste collection service
costs higher expenditures, around 50 to 70% of municipal

service expenses (Boskovic et al., 2016). Therefore, finding an
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environment is necessary. In a study introduced by
Armington and Chen (2018), the waste collection challenge is
related to the traditional Vehicle Routing Problems (VRP)
and scheduling for urban-scale networks, which refers, in
turn, to combinatorial optimisation difficulties (Montoya-
Torres et al., 2015).

In recent years, Solid Waste Collection (SWC) has attracted
the attention of researchers worldwide. A comprehensive
review was carried out by Hannan et al. (2020b). Though
they defined the objective and limits of optimisation
approaches for efficient SWC in terms of economic,
environmental, and social considerations, this study did not

consider the mechanism for evaluating the performance of
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proposed optimisation methods. Sahib et al. (2022) assessed
distinct meta-heuristic methodologies employed for solving
VRPs with their aims, limitations, and most distinct versions
used in the municipal garbage collecting system. They
suggested assessing the constraints and objectives
analytically and highlighting most of the research gaps.

Meanwhile, Ramos et al. (2018) and Jatinkumar et al.
(2018) investigated the problem of vehicle routing, relying on
collecting real data that represents the level of solid waste in
containers and collecting data dynamically by employing
sensors inside the containers. The goal is to increase the
amount of waste collected and reduce transportation costs
periodically, which is worth noting. However, this hypothesis
was implemented in a simulated environment only.
Sulemana et al. (2018) reviewed several studies on
mathematical programming with a Geographic Information
System (GIS) approach for addressing SWC. This study
recommended future studies to optimise the fleet's routes by
considering information related to traffic conditions.

In Liang et al. (2021), the authors focused on the heuristic
and metaheuristic optimisation methods associated with the
SWC problem, and some approaches combined GIS with
heuristic methods. The results concentrated on the total
travelling distance and travel time as main constraints.
Likewise, Han and Cueto (2015) reviewed the optimisation
approaches with their waste type strategies, whether
residential, commercial, or industrial.

The classical Vehicle Routing Problems (VRP) can be
extended to Time Window (VRPTW) or add the capacitated
to the classical VRP to be (CVRP) whereby the volume and
weight capacity addressed by each vehicle per trip does not
exceed the capacity of vehicles (Francois et al., 2016; Akpinar,
2016; Babaee Tirkolaee et al., 2018; Guo et al., 2020).
Moreover, Periodic with VRPs (PVRP) can be incorporated
when waste collection problems are scheduled. Similarly, the
VRP could work with single or multiple depots (it is not
necessary to return the vehicle to the starting depot) and
Dynamic VRP (DVRP), in which routes can change
dynamically (Wongsinlatam & Thanasate-angkool, 2021).

Before going in-depthinto the details of the research
methodology, we must have an insight into the following

problems for more clarity. It is well known that the Pickup

and Delivery Problem (PDP) is one of the CVRPs, and the

Split Delivery VRP (SDVRP) is a certain vehicle that could
visit each node once or more than once. Furthermore, the
demands can be split, and every route starts and ends at the
depot (Ray et al., 2014; Silva et al., 2015). Our review focused
on the Split Pickup and Delivery Problem (SPDP), which
differs from the existing review problems in delivering waste
to transfer stations. The review of this perspective is the main
contribution of this paper as, to our knowledge, it is yet
available in the literature, and the review on this topic is
significant concerning multi-objectives and variants involved.
VRP variants with the highlighted part of the SPDP are

illustrated in Figure 1.
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Figure 1. Comparison study between (a) PDP and (b)
SPDP

For more explanation about SPDP, the vehicle does not
empty its garbage into the same depot where it originated
(Huang et al., 2015; Wongsinlatam et al., 2021), as evidenced
by comparing the PDP and SPDP in Figure 2.

PDP involves a sequence of collection points (CPs) and arcs
linked together, whereas each vehicle departs the depot with
no load to service the bins and back to the same depot, as
shown in Figure 2(a). Meanwhile, Figure 2(b) highlights
SPDP, which comprises a sequence of CPs, arcs for linking
CPs, a waste transfer station, a treatment plant, and a landfill
area. In this scenario, the vehicles leave the depot empty
toward the transfer stations (Yadav et al., 2016; Jia et al.,
2022) or multiple transfer stations (Son & Louati, 2016). Next,
consider a suitable location for unloading their waste (waste
dumping in large yards to turn it into larger vehicles) or

directly delivering it to the landfill (Przydatek & Kanownik,
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2019). Finally, some cases go to the treatment plant, and

eventually, the vehicles return to the same depot.
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Figure 2. Variants of the VRP (Montoya-Torres et al., 2015)

This paper aims to review the optimisation methods for
solving the Split Pickup and Delivery Problems (SPDP) in
SWC tasks, including variant models and the characteristics
of optimisation algorithms in terms of exact, heuristic,
metaheuristics, and hybridisation, as well as the evaluation
methods with existing benchmark datasets provided by
researchers. Moreover, it illustrates the criteria that affect
optimisation methods' results and discusses research gaps in
previous studies. Eventually, it highlights the crucial future
directions and some recommendations that benefit
researchers. Consequently, the contributions of our research
are summarised in the four steps follows:

1. Present a Literature Review (LR) on a framework
with a classification of optimisation algorithms and
their constraints for addressing SPDP in the SWC
system.

2. Provide simplified practical processes and theories
for conducting LR studies to equip other waste
collecting and transportation industry researchers
with sufficient knowledge for writing LR.

3. Present a table of simplified mathematics of previous
research for the most variants linked to the study's
scope.

4. Clear description and analysis of the benchmark

instances with comparison-related methodologies.

VI. REVIEW METHODOLOGY

This paper introduced a literature review (LR) to identify the
most relevant studies on the Vehicle Routing Problems (VRP)
with Split Pickup and Delivery Problem (SPDP) in Solid
Waste Collection (SWC) with both single-objective and multi-
functions  of methods. The

objective optimisation

methodology has been divided into two steps:

A. Source of Articles

The results of an exhaustive search of five databases
characterised by originality and reputation included Scopus,
ScienceDirect, IEEE Xplore, Taylor & Francis, and Web of
Science. These databases enable the discovery of published
materials in journals, conference proceedings, grey literature,
and book chapters. In addition, each article's full text was
reviewed to eliminate studies irrelevant to the SPDP. Hence,
based on this analysis, twenty-eight (28) relevant articles were

selected for analysis, as illustrated in Figure 3.
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Figure 3. Distribution of the publications (2012-2022)

B. Search Process

The databases allow authors to research journal articles,
conference proceedings, and book chapters. Their reliability
and dependability led us to choose them as a resource for our
research. Based on the keyword search features, the keywords
related to the field of study were chosen: "heuristic method"
OR "heuristic algorithm" AND "waste collection" OR "garbage
collection" OR "rubbish collection". Following a search of
relevant publications, 128 papers were found in various
databases. The documents were divided as follows: 93 from
ScienceDirect, 13 from Taylor & Francis, 8 from Scopus, 8
from Web of Science, and 6 from IEEE Xplore. We narrowed

the research scope to 28 papers that were analysed for
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classification. The LR method was implemented based on
guidelines published in computer science and software

engineering research adopted by Alyasiri et al. (2022).

ITII. RELEVANT OPTIMISATION METHODS

In recent decades, waste collection in several countries was
implemented without considering optimisations, leaving the
selection of optimal routes to the drivers. Therefore, the
increase in the urban population will impact the collection
system's effectiveness. Consequently, there should be a
method for maximising a solution's general acceptance. It is
worth noting that there are numerous methods have been
developed, each focusing on a different objective function,
such as cost, number of collection vehicles, and route length
(Han et al., 2015). The objective function will either be a
single objective or multiple objectives for solving
optimisation methods (Mat et al., 2017; Han & Cueto, 2015).
Each optimisation method is classified according to its

objective function in the following subsections.

A. Single Objective Methods

In this section, the Split Pickup and Delivery Problems
(SPDP)-related research articles listed in Table 1 are divided
into two main headings, including the constraints and
approach of an optimisation method regarding exact,

heuristic, metaheuristic, and hybrid methods.

1. Exact

Recent studies focused on solving SPDP using well-known
mathematical models, which was 14%, less than the number
of studies that focused on employing heuristic algorithms.
Meanwhile, other studies were concerned with finding the
optimal path and implementation time to reduce
transportation costs (Monzambe et al., 2021). Typically, the
mathematical models involve Integer Linear Programming
(ILP) and Mixed Integer Linear Programming (MILP).

In the literature, a study used the exact method reported by
Ozceylan et al. (2020). They formulated MILP for resolving
SPDP, which considers the constraint of time with one
exception related to the constraints of the vehicle in terms of
speed and the distance covered; both were never used. On the

other hand, Jia et al. (2022) proposed a model for the

selection and adjustment of existing transfer stations for the
minimum cost of total distance, which includes the sum of
distances from the collection points (CPs) to the candidate
transfer station and from the latter to the waste treatment
plant (WTP) concerning the vehicle capacity, transfer station

capacity, and waste treatment plant capacity.

2. Heuristic

This section briefly describes some of the most significant
works on the SPDP problem. The rate of the heuristic method
is 10%, used together with other optimisation techniques to
solve problems. Historically, the heuristic method was
proposed to determine the optimal routes within a set of
systematic rules by designers (Belien et al.,, 2014). Most
variants in the literature applied to heuristic algorithms have
been discussed.

Based on the homogeneous vehicle fleet and the route
service constraints presented by Mat et al. (2017), the waste
collection and disposal are separated using the Nearest
Greedy (NG) algorithm as a heuristic approach to construct
the initial solution. The results have proved that NG gives the
optimal vehicle routes with a reduction rate of 11.07% of the
current total distance routes. Similarly, a study proposed by
Mat et al. (2018) implemented the constraint of a
homogeneous vehicle fleet and the route service constraints.
This study also reduced the travel distance of vehicles by 12%
as well. Through investigating multiple heuristic algorithms
derived from previous research to solve the waste collection
problem, such as NG, savings approach, sweep algorithm,
and different initial customer (DIC), the results of the
computations demonstrate that the DIC outperforms other

heuristic algorithms.

3. Metaheuristic

For other NP-hard combinatorial optimisation problems,
numerous studies have utilised metaheuristic approaches
effectively for solving SPDP, and the rate of these studies
reached 61% from other approaches. Other than that, the
constraints related to the vehicle in terms of homogenous
fleet and route service constraints in split delivery are
observed. A study carried out by Buhrkal et al. (2012)
proposed an Adaptive Large Neighbourhood Search
Algorithm (ALNSA) for attempting to solve the Waste
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Collection VRP with Time Window (WCVRPTW). Two data The study constructed and improved the optimal routes using
sets have been used to evaluate the collection system. Another the Genetic Algorithm (GA) and Nearest Neighbor Algorithm
study attributed to Assaf and Saleh (2017) reduced the total (NNA), respectively. The proposed algorithms used the
cost and travel distance to reach CPs by considering the time vehicle's speed to determine the arrival time at the CPs.

constraints, homogenous vehicle fleet, and vehicle capacity.

Table 1. Reviewed papers focusing on the single objective SPDP in the SWC system

Constraints
Ref. Capacitated Constraints related to vehicles Routes service constraints
TC based on
Bin Vehicle Homogenous Speed Distance Split Periodic Undirect
covered delivery waste graph
collection
Exact methods
(Hannan et al., 2020b) X Vv Vv Vv X X v X v
(Ozceylan et al. , 2020) v X v Vv x x X X vV
(Jia et al., 2022) X X X X X x v v x
Heuristic methods
(Mat et al., 2017) x x v v x x Y X x
(Mat et al., 2018) X X v Vv x x v X X
Metaheuristic methods

(Buhrkal et al., 2012) v X v Vv x x v v X
(Wy et al., 2013) v X X x X X v X x
(Akhtar et al., 2017) X v v v x x x v x
(Assaf & Saleh, 2017) v x v Vv v x v v x
(Gajpal et al., 2017) x x v x x x X X x
(Anagnostopoulou et al., v x v x x x v v x
2017)

(Hannan et al., 2018) v v v v X X X v x
(Adedokun et al. , 2018) X v Vv v X X X X x
(Raflesia & Pamosoaji, 2019) v v X x v X X X x
(Markovié et al., 2019) v x v v v X v X x
(Fermani et al., 2021) v x v v X x - X x
(Rossit et al., 2021) x x v v x x - x X
(Seckiner et al., 2021) X X Vv v X X v X v

Hybrid methods

(Kuo et al., 2012) v x v x - X X v x
(Jorge et al., 2022) v v v v v x X v v
(Babaee Tirkolaee et al., v x v x v x x v x
2018)

Y studies 52% 24% 86% 62% 24% 0% 48% 43% 19%

V constraints covered by study; x constraint not covered; TC: Time constraints

Most metaheuristic algorithms also utilised simulated maintain a clean environment while minimising labour costs.
annealing algorithms in the studies (Fermani et al,, 2021; In contrast, Raflesia and Pamosoaji (2019) focused on
Rossit et al., 2021). Other studies focused on the Ant Colony designing a dynamic system with a novel ant colony system to
System (ACS), as proposed by Gajpal et al. (2017) and predict when a vehicle will arrive at a disposal site within a

Seckiner et al. (2021). Daily distance is decreased by 28% to given schedule to avoid vehicle accidents. A similar approach
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suggested by Hannan et al. (2018) applied the dynamic
system. The authors employed a modified Particle Swarm
Optimisation (PSO) to measure the level of bins in real-time
data by the Threshold Waste Level (TWL) technique. The
objective is to reduce the vehicle's distance to save economic
and social sustainability.

The same technique was utilised by Akhtar et al. (2017), in
which the objective of the modified Backtracking Search
Algorithms (BSA) for CVRP is to minimise the number of bins
to be emptied by identifying the optimal range and thereby
reducing the distance. The computational results indicated a
36.80% reduction in route distance for 91.40% of the total
waste collection on four days, which increased the average
waste collection efficiency by 36.78% and decreased fuel
consumption, fuel cost, and CO: emissions by 50%, 47.77%,
and 44.68%, respectively. In addition, the proposed
algorithm was compared against Hybrid Discrete Particle
Swarm Optimization (HDPSO) and PSO.

In addition, Adedokun et al. (2018) focused on a
homogenous fleet's vehicle and bin capacities. The authors
proposed the Firefly Algorithm (FFA) for optimising the route
using the dynamic data collection from CPs. The route
distance constraint has been considered (all vehicles must not
exceed the total distance travelled). The comparison was
made between Unified Hybrid Genetic Search (UHGS),
Tterated Local Search with Set Partitioning (ILS-SP), and
Branch and Cut Price (BCP), in addition to comparing the
standard FFA with PSO (Uchoa et al., 2017; Hannan et al.,
2018).

A study by Anagnostopoulou et al. (2017) has decreased the
total distance travelled by waste vehicles, energy
consumption, and CO- emissions by 8.4%, 9%, and 8.66%,
respectively, when employing a metaheuristic algorithm
referred to as Tabu Search (TS). The technique is enhanced
by relocating the edge-exchange neighbourhood structures to
discover the search space iteratively in terms of construction
solutions and improvement. Similarly, Wy et al. (2013)
employed a strategy of iterative heuristics for collecting a
large amount of waste from commercial and industrial sites
using large containers. They proposed Large Neighborhood
Search (LNS) construction methods with an improved

algorithm. The data collection is based on a real case study.

Subsequently, a study introduced by Markovié et al. (2019)
considered a homogenous fleet of vehicles to minimise the
total distance travelled and reduce the total working with
heuristic and metaheuristic algorithms, employing a saving
algorithm (Clarke & Wright algorithm) for the construction of
the initial solution, and improve the solution in two ways:
first by applying local search heuristic iteratively. Meanwhile,
a metaheuristic algorithm called the Improved Harmony
Search Algorithm (IHSA) implemented the stochastic
demands for expectation and variants for estimating the
normal distribution of waste amount under time constraints.
Concerning the periodic SPDP, a few studies demonstrated a
metaheuristic algorithm as can be referred for example, in
Buhrkal et al. (2012), Akhtar et al. (2017), Assaf et al. (2017),

Hannan et al. (2018) and Anagnostopoulou et al. (2017).

4. Hybrid

Typically, hybrid metaheuristics are widely used to solve VRP,
such as the Capacitated VRP (CVRP), the VRP with Time
(VRPTW), the Multi-depot MDVRP,
VRP (HVRP), the VRP with

Windows the

Heterogeneous and
Simultaneous Pickup and Delivery (VRPSPD). Combining
swarm algorithms with the local search heuristic algorithm
(Abdulkader et al., 2015) or combining a different algorithm
from the same swarm-inspired method are common ways to
hybridise artificial intelligence (AI) algorithms (Jorge et al.,
2022).

From other studies, only 14% dedicated to improving SPDP
efficiency in applying a waste collection system were hybrid
studies. Some researchers, like Kuo et al. (2012), used the
Hybridized Particle Swarm Optimization Genetic Algorithm
(HPSOGA). The authors combined the mutation and
crossover of GA with the best solution of the one particle to
ensure the proposed algorithm always generated a new
solution. The proposed method was evaluated by comparing
the results with Discrete Particle Swarm Optimization
(DPSO0), GA, and Simulated Annealing (SA).

Another hybridised study by Jorge et al. (2022) combined
the Simulated Annealing with Neighborhood Search (SANS)
algorithms to maximise the profitable routes per collection
day for the capacity constraints of vehicles and bins. Besides
that, the proposed system is subject to the periodic Solid
Waste Collection (SWC) problem. A similar study combines
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the SA algorithm with a constructive heuristic algorithm to
generate the initial solution for developing a MILP model that
considers crew working time and driver availability. The
objective is to minimise the number of vehicles which employ
Periodic Capacitated Arc VRP (PCARP) (Babaee Tirkolaee et

al., 2018).

B. Multiple Objective Methods

Real-world enterprise logistics problems are distinguished
because decision-makers must frequently balance multiple
objectives simultaneously. These objectives are sometimes
inconsistent (e.g., minimising the number of vehicles and
maximising service level). The literature on the SPDP
contains a few papers that consider multiple objectives:
approximately 25% of the papers reviewed here. This
proportion corresponds to seven papers reviewed in this
article, as shown in Table 2.

Regarding time constraints, several studies have modelled
two evolutionary algorithms for implementing cases with
multiple objectives. The work of Hashemi (2021) formulated
a multi-objective case with a comparative study of the Non-
dominated Sorting Genetic Algorithm (NSGA-II) and the Bee
Colony Algorithm (BCO). The motivation for using NSGA-II
was to achieve good resolution and spacing metric time,
whereas using BCO was to explore and extract the area to find
a near-optimal solution. The results are compared based on
self-generation.

A comparative study by Huang and Lin (2015) presented an
Ant Colony Optimization (ACO) algorithm for the multi-trip
Split Delivery and Pickup VRP in the context of periodic and
time constraints. The goal is to decrease the number of
vehicles and total distance travelled to serve particular CPs.
This study eliminates the constraints of visiting each node
only once. Likewise, a study proposed by Farrokhi-Asl et al.
(2017) modelled an NSGA-II with different evolutionary
objectives named Multi-Objective  Particle = Swarm
Optimization (MOPSO). In this case, a heterogeneous
vehicles fleet with multi-compartment capacity will start
servicing the CP from the depot after the load capacity moves

directly to disposal centres to unload its waste and then

return to the same depot. However, the vehicle with a single-
compartment system outperformed the others in reducing
the number of routes based on a study by Zbib and Wohlk
(2019).

Alternatively, Wongsinlatam and Thanasate-angkool (2021)
proposed two meta-heuristic algorithms: first by combining
the Intelligence Hybrid Harmony Search Algorithm (IHHS)
and second by the Standard Harmony Search Algorithm
(SHS). In this study, the execution time for algorithm
efficiency was not considered. Other than that, Babaee
Tirkolaee et al. (2019) carried out a design for solving the
Capacitated Arc VRP (CARP). The objective is to minimise
the long distance of the vehicle's route and the total cost. The
important factor is to find the longest allowable route for the
vehicle. Correspondingly, the authors developed a Multi-
Objective Invasive Weed Optimization (MOIWO) algorithm
for solving this problem under uncertain demands and used
the ¢ constraints method in the General Algebraic Modeling
System (GAMS) software, which is a high-level modelling
system for mathematical optimisation with small-sized and
medium-sized problems.

On the other hand, Blazquez and Paredes-Belmar (2020)
considered the average speed of vehicles beside bins capacity
with a homogenous fleet of vehicles to service the bin in the
network. This study employed the Large Neighborhood
Search (LNS) algorithm for large-scale problems and MILP
models for small-scale problems to minimise the total travel
distance and the cost of bin location at the chosen collection
site. In addition, Delgado-Antequera et al. (2020) also
concentrated on the SPDP time constraints by calculating the
constraints of vehicle speed and capacity. The study aims to
minimise distance and duration differences between long and
short routes. The proposed algorithm is Iterated Greedy—
Variable Neighbourhood Search (IG-VNS), which has been
compared to NSGA-II and Strength Pareto evolutionary
algorithm 2 (SPEA2). According to studies on the periodic
SPDP, few works with a multi-objective algorithm as the
solution approach appear in the literature. We have identified
only those works by Farrokhi-Asl et al. (2017), Wongsinlatam

et al. (2021) and Blazquez and Paredes-Belmar (2020).
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Table 2. Reviewed papers focusing on the multi-objective SPDP in the SWC system

Constraints
Ref. Capacitated Constraints related to vehicles Routes service constraints
TC based on
Bin Vehicle Homogenous Speed Distance Split Periodic Undirect
covered delivery waste graph
collection
Exact methods
(Blazquez & Paredes- Vv v v v v v v v X
Belmar, 2020)
Heuristic methods
(Delgado-antequera v x v x v x v x x
et al., 2020)
Metaheuristic methods
(Huang & Lin, 2015) Vv X v x Vv v v
(Farrokhi-Asl et al., Vv x v X X v v x x
2017)
(Babaee Tirkolaee et Vv x v x x v v X x
al., 2019)
(Hashemi, 2021) Vv X Vv Vv Vv X v X X
Hybrid methods
(Wongsinlatam & X x v Vv X x v vV Y
Thanasate-angkool,
2021)
# studies 86% 14% 100% 57% 57% 43% 100% 43% 29%

V constraints covered by study; x constraint not covered; TC: Time constraints

IV. VARIANTS IN SPDP

Vehicle Routing Problems (VRP) have several variants for
each original constraint, such as fuzzy service time windows,
longest route, hard, soft, pickup and delivery, and more
(Montoya-Torres et al., 2015). For more diving into the
variant of time, time constraints of VRPs include vehicle
arrival time at collection points (CPs), service time at CPs,
lunchtime, fuel time, and more (Refer to Table 4, Appendix
A). This section will discuss variants in mathematical models
to time constraints and the vast majority of other constraints
used in Split Pickup and Delivery Problems (SPDP) literature.
Typically, most variants consist of vehicle capacity, trash
transfer station capacity, treatment facility capacity, and
container capacity. A study conducted by Fermani et al. (2021)
indicated that the waste collected should not exceed the
waste capacity of the vehicle (Equation 1), and vehicles were
assigned one-time service for each container based on
Equation 2. In a close study presented by Huang et al. (2015),
the frequency of vehicles collecting waste from each container
should be calculated based on Equation 3. Alternatively,
Hashemi (2021) confirmed that the vehicle's capacity, weight,
and volumetric capacity are not exceeded when waste is
collected from CPs (Equation 4 and Equation 5). Here, all
strategies are subjected to periodic constraints (Equation 6).
Regarding bin capacity, Hannan et al. (2020a) proposed

that the bin's fill level cannot exceed the Threshold Waste

Level (TWL) for variable route optimisation according to
Equation 7. Similarly, Blazquez and Paredes-Belmar (2020)
recommended that the number of bins should be less than or
equal to collection sites by keeping a minimum distance
between the collection points as a fixed characteristic of the
collection site (Equation 8). Additionally, Jia et al. (2022)
state that the waste received from transfer stations should not
exceed the treatment plate's capacity (Equation 9) and
gradually descend with the same approach related to the
capacity of the transfer station, which must not be violated by
vehicles that unload the waste inside it (Equation 10).
Adedokun et al. (2018) adopted a total travel distance,
whereas all waste vehicles are prohibited from exceeding the
limit (Equation 11). Furthermore, Huang et al. (2015)
confirmed that maximum working time (Equation 12) and
average speed play significant roles in the efficacy of waste
collection systems (Equation 13). Nevertheless, Hannan et al.
(2020a) believe it is necessary to eliminate sub-tours when
resolving the routing problem in the waste collection system;
doing so will reduce route service costs (Equation 14).
Furthermore, a few studies have eliminated sub-tours.
Therefore, comparing waste collecting systems with and
without a sub-tour approach is necessary. In regards to the
time constraints mentioned by Babaee Tirkolaee et al. (2018)
and Armington and Chen (2018), they confirmed that the
total travel time should not exceed the time window based on

(Equation 15).
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V. EVALUATION OF PERFORMANCE

METHODS

It has been observed in related research that the optimisation
methods depend on several objective functions, which we
outline in the next steps: 1) minimising the error rate, 2)
maximising the solution's precision, and 3) improving the
time efficiency of optimisation techniques to produce high-
performance results. It is worth noting that some criteria
influence the solution quality, including the number of
iterations, population size, criteria for stopping algorithms,
and algorithm parameter tuning.

Hence, several methods exist for evaluating algorithms'
performance in adaptation, modification, and hybridisation
cases. In this review, we concentrate on two methods: 1)
Evaluate the performance of the proposed method relative to
the fundamental method. 2) Evaluate the performance of the
proposed method relative to other optimisation techniques.
Both methods depend on a specific benchmark dataset and
may have dataset classes. In Table 3, we evaluate the

performance of improvement methods, including a
maximum number of iterations with populations set in each
solution method, comparing current methods with proposed
methods, objectives, evaluation method, criteria for stopping
the algorithms, and eventually, the columns of advantages
and disadvantages.

Some authors evaluated the proposed methods based on
real data and compared them to other studies, such as a study
conducted by Buhrkal et al. (2012). The proposed method
used two datasets and compared the results of the Adaptive
Large Neighborhood Search algorithm (ALNS) algorithm
with Variable Neighbourhood Search (VNS) and Tabu Search
(TS) algorithms. The experiment results show larger
improvements starting from 30% to 45% if the time windows
vary in 2, 4, and 8. Instead, Kuo et al. (2012) proposed a
method that used nine different dataset classes. In addition,
the authors utilised a Particle Swarm Optimization with a
Genetic Algorithm (HPSOGA). The purpose behind this
modification is to generate a possible solution. Although
HPSOGA obtained better solutions in different iterations and
faster convergence, it still suffers from a feasible solution.
Above employing 100 nodes, the proposed method compared
with Discrete Particle Swarm Optimization-Simulated

Annealing (DPSO-SA) and Genetic Algorithm (GA). The

study did not consider the travel time and the time window
variants.

Among several simulation studies published, a study
carried out by Akhtar et al. (2017) was on a modified
Backtracking Search Algorithm (BSA) that evaluated the
performance of the basic BSA with local search algorithms on
six datasets. All the simulation datasets used to test the
algorithm be
org/SYMPHONY /branchandcut/VRP/data). There is no best

can found at (http://www.coin-or.
solution value with an increase in the number of nodes, and
the gap between the fundamental BSA value and the best-
known value increases. For more credibility, the proposed
algorithm has been compared with other published
optimisation algorithms, such as the Hybrid Discrete Particle
Swarm Optimization (HDPSO) algorithm and the standard
Particle Swarm Optimisation (PSO) algorithm in different
dataset classes.

A similar simulation study by Hannan et al. (2018) followed
the same approach but did not compare the proposed
algorithms (PSO) with the fundamental PSO. Instead, it
compared only Hybrid Particle Swarm Optimization (HPSO)
and HPSOGA, as referred to by Kuo et al. (2012) and Akhtar
et al. (2017). In contrast, some researchers evaluated the
proposed methods based on real data but did not compare
them to other studies. In a study conducted by Wy et al.
(2013), they used a Large Neighborhood Search (LNS)
algorithm approach that comprises the construction
algorithm and several improvement algorithms with 32
benchmarks of real data cited from
(http://logistics.postech.ac.kr/RRVRPTWbenchmark.html).
Still, the computation time of the proposed method was not
addressed to evaluate the efficiency of the proposed
algorithm. Assaf & Saleh (2017) used GA and Nearest
Neighborhood Algorithm (NNA) to get a good starting point
for the GA, thereby saving computational time and reducing
the number of iterations required to find a solution, using
from ArcGIS software

data collected

(https://www.arcgis.com). In this article, there is only one

drawback: the lack of validation of the proposed algorithm's
efficiency. Anagnostopoulou et al. (2017) considered the
Local Search Heuristic (LSH) and TS. The solution approach
proposed two stages: the construction stage using the

insertion algorithm for the initial feasible solution and the


http://logistics.postech.ac.kr/RRVRPTWbenchmark.html
https://www.arcgis.com/
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improvement stages using relocated edge-exchange

neighbourhood structures. Note that experiments
demonstrated the competitiveness of the proposed solution
approach based on the current municipality case city of
Piraeus.

Subsequently, a study by Mat et al. (2017) utilised a
constructive heuristic algorithm and a comparison to the
existing vehicle routes in northern Malaysia to configure the
initial solutions for the VRP referred to as a Nearest Greedy
(NG) that provided a significant reduction in travel time.
Other than that, Markovié et al. (2019) proposed the Saving
Heuristic Algorithm (SHA) for constructing the initial
solution, along with two algorithms for improving solutions:
the Improved Harmony Search Algorithm (IHSA) and the 2-
opt local search heuristic. Although the results of the study
succeeded in reducing 10% vehicle fuel costs, this study needs
to consider the computation time of the proposed algorithm
to evaluate its efficiency since the fuel costs directly depend
on reducing the distance travelled to collect containers

(Ferrer & Alba, 2019; Vu et al. 2020).

A. Criteria of Algorithm Efficiency

The stopping criteria or termination criteria of the proposed
algorithms are divided into Maximum Iteration Number
(MIN), Maximum Run Time (MRT), and Maximum Iteration
After Global Solution (MIAGS). Note that the Maximum
iteration without improvement (MIWI) and Maximum
Operating Time (o) is a number greater than 1, with N being
the population size (MOT). Buhrkal et al. (2012) suggested
limiting the number of iterations (e.g., number of generations)
to 200 for repetition-run ALNS that should work after finding
a global solution MIAGS. Another study by Anagnostopoulou
et al. (2017) proposed a method that defined the MIN as
between 20 and 40 if there is no improvement (MIWTI). The
stopping case impacts the computational effort of the
proposed solution, and values less than 100 give good
compromise for large-size problems.

On the other hand, Assaf and Saleh (2017) advised that the
algorithm has been subjected to a limited computation time
(10 minutes), which would stop if it converged to a solution
before a limited time. All studies considered the criteria MIN
(Kuo et al., 2012; Akhtar et al., 2017; Hannan et al., 2018;

Adedokun et al., 2018; Wy et al., 2013; Markovié et al., 2019).
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Meanwhile, other studies such as (Anagnostopoulou et al.,
2017; Babaee Tirkolaee et al., 2018; Fermani et al., 2021;
Rossit et al., 2021; Jorge et al., 2022; Delgado-Antequera et
al., 2020) used MIWI. Regarding MOT, only one study by
Markovi¢ et al. (2019) depends mainly on the population size
and operating time. Therefore, choosing the appropriate
criteria for stopping the algorithm will impact the efficiency

of global solution methods.

VI. ANALYSIS OF LITERATURE AND THE
KNOWLEDGE GAPS

This section analyses previous literature related to the field of
study. As a result, research gaps are identified, highlighting
the importance and applicability of waste collection and
transportation issues. According to our findings, the first
study was conducted in 2012 and witnessed the largest
increase in 2017, and again increased by five studies in 2021,
as illustrated in Figure 1. Most studies have focused largely on
single objective methods, and its ratio was 75%. Only a few
studies focused on solving multi-objective problems with a
ratio of 25%.

Figure 4(a) shows the distribution of the objective function.
This research gap can be filled through efficient problem-
solving techniques and streamlined methodologies for multi-
objective approaches. The pie scheme in Figure 4(b)
demonstrates the research results on both single and multiple
objectives methods and techniques utilised by the majority of
researchers have been reviewed. Take note that exact
algorithms (mathematical programming) were utilised in 14%
of the reviewed articles, and these methods are utilised
specifically to solve small problems (Ozceylan et al., 2020; Jia
et al., 2022).

In addition, the rate of heuristic methods was 11%, the
lowest value among the studies. Hybrid methods contributed
to 14% of the studies, sharing a similar percentage as the exact
methods. Meta-heuristic methods (61%) represent more than
half of the other studies. Our conclusion leads to the priority
of intensifying the number of studies that hybridise the
heuristic methods with meta-heuristic methods, improving
the algorithms proposed in terms of exploration and
exploitation stages, which will increase the efficiency of the

waste collection system.
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Table 3. Evaluation of the performance of the optimisation methods

Ref. - g 5 _g P Objective Evaluation 3 Comments
i 3, C ;
g "g." = '§ g ‘E’ Advantage Disadvantages
k=] =5
5 TET =% S
8 W SEE @ £
= o &8 g )
% . Z £T 9 g 2
Son 385 z S
=z OE®T & 7
(Buhrkal et al, MI=200 TS, ALN Minimise total Two MIAG Global optimisation. Small improvement
2012) PN=NA VNS. SA cost and travel  benchmark toward an optimal solution
distance. dataset (low solution quality).
(Kuo et al., 2012) MiI=50, DPSO- HPS Minimise 9 benchmark MIN Mutation operators HPSOGA cannot get a
300,2500 SA, GA. travel timeand  datasets prevent the algorithm Dbetter solution with more
IP=10, 50 OGA  {ravel costs. from getting trapped in  than 100 nodes.
local minima.
(Akhtar etal.,2017) PN=50 HDPSO BSA Minimise total 6 datasets MIN Generated waste is There is no feasibility
MI=120 s travel distance. collected  before it study to measure the cost
PSO. reaches the overflowing.  of the dynamic system.
(Hannan et al, PN=50 HPSO, PSO Minimise total 6 datasets MIN Generated waste is There is no feasibility
2018) MI=120 HDPSO travel distance. collected  before it study to measure the cost
, reaches the overflowing.  of the dynamic system.
BSA,
HPSOG
(Wy et al., 2013) MI= NA LNS Minimise the 34 benchmark MIN Provide feasible The constraint of Error
30,000 number of datasets MRT solutions in a short time =~ Rate does not always
PN=NA vehicles MIWI guarantee better solutions.
required and
their total
route time.
(Assaf & Saleh., MI=500 NA GA, Minimise total  Real data MRT GAwithNNA canfinda  Static solution is
2017) PN=1000 NNA  cost and travel near-optimal solution in  unsuitable for emergency
distance. a short computation status (damaged car or
time. driver absence).
(Anagnostopoulou ~ MI=NA NA TS, Minimise the Realdata MIWI High-quality solutions The waste collection
et al., 2017) IP=NA LSH total distance in less computation system has a complex
travelled and time. design.
pollutant
emissions.
(Mat et al., 2017) MI=NA NA NG Minimise total Real data NA Simple to implement. No time constraints are
IP=NA cost and travel considered.
distance.
(Markovi¢ et al, MI=103, NA SHA, Minimise the Realdata MIN 1-Local searchability. Not parameter tuning.
2019) 10° IHSA  total travel MOT 2-Heuristic to get an
IP=NA , distance and optimal solution in an
2- working time. efficient time.
OPT

MIN: Maximum iteration number; MRT: Maximum run time; MIAGS: Maximum iteration after global solution; MIWI: Maximum iteration without improvement;
MOT: Maximum Operating Time. « is a number greater than 1, N is the population size; VNS: variable neighbourhood search algorithm; SA: simulated annealing
algorithm; ILS-SP: iterated local search with set partitioning; UHGS: Unified Hybrid Genetic Search; BCP: branch and cut price; ALNSA: Adaptive large
neighbourhood search algorithm; DPSO-SA: Discrete Particle swarm optimisation with simulated annealing; HPSOGA: Hybrid particle swarm optimisation with
genetic algorithm; BSA: backtracking search algorithm; PCO: particle swarm optimisation; FFA: Firefly algorithm; LNS: Large neighbourhood search; GA: Genetic
Algorithm; NNA: Nearest neighbourhood algorithm; TS: Tabu Search; LSH: Local Search Heuristic; NG: Nearest greedy; SHA: saving heuristic algorithm; IHSA:
improved harmony search algorithm.
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Even though the number of studies that solved a single
objective problem is high, some constraints still need to be
studied more intensively, such as the average speed and the
rate of distance allowed to be covered by vehicles. In addition
to the routes service constraints such as the studies related to
undirect graphs (symmetric matrices), the rate was 19% out
of studies in single-objective problems according to (Hannan
et al., 2020a; Ozceylan et al., 2020; Seckiner et al., 2021;
Jorge et al., 2022). By referring to the undirected graph
constraints in the single-objective problem and the multi-
objective problem, the ratio was 19% and 29%, respectively,
which still needs more attention from the researchers, as

illustrated in Table 2 and Table 3.

VII. CHALLENGES AND FUTURE
DIRECTION

Waste collection and transportation systems are one of the
applications of service systems provided to citizens. They are
regarded as crucial systems that maintain economic,
environmental, and social sustainability. It is important to
note in this paper, which reviews various scenarios in the
literature regarding the Split Pickup and Delivery Problems
(SPDP) in the waste collection context, that pickup is the
process of collecting waste from collection points (CPs).
Meanwhile, delivery is the unloading of waste at disposal
stations that are either fixed or mobile (same depot that the
vehicle started from, waste transfer stations, recycling
stations, landfills or incineration locations).

For further clarification, previous waste disposal scenarios
stipulate that the depot of vehicle starting is the same as a
waste disposal station. Hence, the present study reviews
previous studies that focused on unloading waste at disposal
stations completely separated from the depot site, as well as
studies that circle it, comparing the methods to solve those
problems and improvement techniques and the most
significant variants a waste disposal scenario may have. Note
that the purpose of evaluating waste collection systems based
on comparing proposed methods with fundamental and other
methods is to identify significant evaluation-related steps.

Nevertheless, the classification in terms of solution
methods and restrictions is one of the basic contributions
considered within the scope of the study, which indicates the

restrictions related to vehicles and road service restrictions.
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According to this matter, one of the innovative methods used
in this research is the comparative way to review the
evaluation of the proposed solution methods in each study in
terms of its biggest advantages and disadvantages.
Subsequently, compare the effect of different stopping
criteria on the algorithm to determine the optimal solution.
In conclusion, the recommendation forms can provide new
test data by focusing on the steps as follows:

a) The contextual analysis of the benchmark datasets is a
crucial factor. Using the same method with a different
number of classes will result in varying degrees of
precision.

b) To maintain a perfect optimising model, the following
procedures should be followed:

1. Hybrid different meta-heuristic algorithms.

2. Compare different meta-heuristics methods.

3. Parameter tuning reduces the dispersion of the

objective functions as much as possible. It is

preferable to analyse the test using one of the

Taguchi design-referenced methods (e.g., standard

analysis of variance or signal-to-noise ratio (s/n)

(Babaee Tirkolaee et al., 2019).

Evaluation metrics (accuracy, time complexity, and

error rate) in the visualisation graph.

To this end, several key points for future models are
presented as future work accordingly. Other than that, it is
necessary to use real-world data for a more realistic
evaluation of SPDP and best techniques estimation of the
uncertain parameter-based symmetric and bounded random
variable of demand, which has become the greatest challenge
in this problem (e.g. waste amount) (Akhtar et al., 2017;
Hannan et al., 2018; Babaee Tirkolaee et al., 2018; Markovi¢
etal., 2019; Huang & Lin, 2015; Babaee Tirkolaee et al., 2019)
or based on fuzzy logic (Hashemi, 2021; Kuo et al., 2012).
Another challenge is operating the Solid Waste Collection
(SWCQ) in varying environmental conditions, which must be
sustainable in the real world, for instance, using the direct

graph for vehicle travel on one-way roads (Liang et al. 2021).
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VIII. CONCLUSION

This article reviews an optimisation method for municipal
waste collection, concentrating on the split pickup and
delivery problems. The review examined the objectives and
constraints of time, vehicles, and route services, with most
variants employed. Based on the review, existing studies
focused on single objective methods with a ratio of 75%,
whereby only 25% focused on solving multi-objective
problems. The optimisation methods were also analysed to
define the knowledge gap, highlight the challenges, and

recommend further research. It is necessary to use real-world
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Appendix A
Table 4. Most variants used between pickup and delivery problems in solid waste collection
Ref. Focused Mathematical description Equations | Decision variable
Variants
(Fermani et al., 2021) Vehicle capacity (Q) G=uw=QViEeC (1) xij =1 if a vehicle uses the path from
qi: Amount of waste collected in the container. container i ta containerj, v (i, j)Ec
uj: non-negative auxiliary variable for subtour elimination indexed via else xij =0
collection points (i€ C) & (je C) C: Set of collection points
Containers service | YjeC xi,j=1,Vi€ C; wherei# j (2
© YjeCxj,i=1,VieC;
subset € = C U co, where 0 is the depot
(Huang & Lin, 2015) zé‘;ehicle capacity | x{ (3 z,-;:? =1 if k collects the point i within
Kt + S
2-counting  vehicle Z Z Qif zl!:f- =q. VkeK tel”, £t trip ieN.feZ™¥,
frequ?nmes for | f=LieN keKf=1..x}
containers. x}: optimal frequency of collection
at point i to service the neighborhood
(Hashemi, 2021) 1—Vehi'cle capacity. T (rE o xw) = Qi ym.p k.t @ ter = L If the vehicle kth move from
2-Vehicle weight r- ®) the customer 1 to the collection and recove
3-vehicle e (x50 X vol) = QW% wm,p.k.t " Y
volumetric capacity ’ center m within period (t) else ¥fpz = @
W, &thproduct weight
vols: sth product volume
QW : k  vehicle weight capacity
@V, k® vehicle volumetric capacity
x ;;fp %+*The amount of waste s sent by the kth vehicle from the collection
and recovery centre m to the recycling centre p in period
Period of waste ;. (6)
service Yimi =1 wit
m ok
M: Index of a collection of potential points for collection and
rehabilitation centers m € M
K: Index of vehicles k € K
N: Index of potential points for a landfill and demolition centers n € N
T: Period index t € T; waste producer: 1 € L;
S: Waste collection index s £ S
(Hannan et al., 20202) | Bin capacity % € {01}, j=0, 1e/f; = F3 % @) ¥} =1, if vehicle k goes from bin i to bin j
else Xy =0.
(Blazquez & Paredes- | Characteristic  of BT = Quoyip W €1 (8) Z,. = 1 if waste produce point assigned o
Belmar, 2020) collection site ey = Lo J.ih' il ! . . . .
ieC:dijsn FEE the collection site (container)j else
Z; =0,
i: Waste generation point, where (j, i) £ C 4
C: Set of waste generation points
d; i Minimum distance between a waste generator points i and a
collection site j
1: Maximum walking distance between a waste generator point i and a
collection site j
;2 Volume of waste generation point i;
k: Type of bin (small and large capacities), k € K
K: Set of bin types;
Qu: Bin capacity of bin type k
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ik : Number of waste collection bin type k required at the site j; I: Set
of candidate collection sites

(Jia et al., 2022) Capacity of plant ©) Xjn: Binary variable takes 1 if all waste from
the treatment plate. Bin Xjn = Qn : vneN transfer station j is shipped to treatment
il plant n, 0 otherwise
N: Set of waste treatment plants, indexed byn,n =1, 2,--, |N|;
ejn: Continuous variable, the amount of waste transported from transfer
station j to treatment plant n.
plant .
Q n : Capacity of the treatment plate.
X jn: distance between transfer station j and treatment plate n (km)
(Blazquez & Paredes- | Characteristic  of R T < Qpvi V) €I 8) Z i§j= 1 if waste produce point assigned to
Belmar, 2020) collection site ey = ke Ve VI th lecti ite (container)j el
iel: d[js n =R e collecion site container)) else
Z..=10.
i: Waste generation point, where (j, 1) £ C 4
C: Set of waste generation points
d ij : Minimum distance between a waste generator points i and a
collection site j
1: Maximum walking distance between a waste generator point i and a
collection site j
h i+ Volume of waste generation point i;
k: Type of bin (small and large capacities), k € K
K: Set of bin types;
Qx: Bin capacity of bin type k
¥jx * Number of waste collection bin type k required at the site j; I: Set
of candidate collection sites
(Jia et al., 2022) Capacity of niant ) Xjn: Binary variable takes 1 if all waste from
the treatment plate. Bin X jn = Qn d vnelN transfer station j is shipped to treatment
jel plant n, o otherwise
N: Set of waste treatment plants, indexed by n,n =1, 2,--, |N|;
ejn: Continuous variable, the amount of waste transported from transfer
station j to treatment plant n.
plant .
Q n : Capacity of the treatment plate.
Xjn: distance between transfer station j and treatment plate n (km)
(Jiaetal., 2022) Capacity of the X (10) xij: Binary variable takes 1 if all waste from
transfer station Wy Xif =z ik QPJJ wie] collection point i is shipped to transfer
el station j, 0 otherwise
wi: Average daily amount of waste collected at waste collection point i (t)
Qn: Capacity of transfer station of level h (t) h: Set of levels of waste
transfer stations after planning, indexed by h, h =1, 2,---, |H|;
(Ad;()lokun et al, Co;s;raint " of | N N (11) P,:‘ = 1 ifvehicle travels from customerito
201 vehicle istance dipt = p. Kk=12...K .
allowed. ZZ o= T S jelse Fif = 0.
i=0 j=0
d |"j': vehicle travel distance from node i to node j (Km)
I, t total travel distance (Km).
(Huang & Lin, 2015) 1-Maximum KT rprkt ] e ke (12) K -
working time per J|J-”f(H|; + s+ dgfv - H,‘,f] < o, ¥ijpgt = 1, if arc (i, j) belongs to the
day (W) VeeK teZ¥, WieN, vjeN f=1l..x.f =1.| 3 collection truck k, on its tth trip for the ft
2-Average  travel it collection at point i and f'h collection at
Hf +s5,+d;;/vr= kt
speed of trucks (v) iF ts+ |_.fr = w, point j, Else)‘f}ff =0
VkeK VieNufol vjeNuld tez* f=1/
i+, LjeEN |, teZ*,f=1l..x.f=1..x f
f' € Z%.¥k € K; s;: Time duration of waste collection at point i for
each collection; H, ,":.-T: the time at which collection truck k on its tt trip
starts serving point i for the fth collection,
HE z0vieNU{D.dhVkeKt €2t fF=1...a}
(Hannan et al., 2020a) Eliminate sub- tour n (14) Tij=, if vehicle k goes from bin i to bin j
xiex=|5—-1 5€{l..n 5|22 k=1....m
D x| {(l.n} IsI= e 0
i.jels
n: indicates the bins,
m: total number of vehilce
(Babaee Tirkolaee et | Constraints of dis ij (15) NA
. o .0 2
al., 2018) vehicle cost. K e T Lwiiy vt = Tmax -
JK

(LJJEE pE @ (Lj1EERy wE D
disy: distance over the edge(i,j); velik: speed of ki vehicle for travelling

over the edge (i,j); Lw,-j‘;_- : the loading time of waste for kth vehicle over
the edge (i,j); Tingx: the max available time for vehicles the period;

j‘,-_? xt - vehicle travel through the edges in with serviced; * f_‘i-;_.r: vehicle

travel through the edges without service.
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