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This paper aims to introduce and study the concept ⋆𝑠−  fuzzy subsemiring of a semiring. Given the 

idea of fuzzy subsemiring, we obtain the nature of the fundamental property ⋆𝑠− fuzzy subsemiring 

and the property that states that every fuzzy subsemiring is ⋆𝑠− fuzzy subsemiring, also we obtain 

the property that guarantees the existence of ⋆𝑠− fuzzy subsemiring so that it can always be formed. 

In addition, we obtain the properties of two (more) intersections ⋆𝑠− fuzzy subsemiring, and based 

on these intersection properties, we obtain a subsemiring generated by ⋆𝑠− fuzzy subsemiring. 
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I. INTRODUCTION 

 
Semiring is one of the generalisations of rings by eliminating 

the inverse axiom in the addition operation. Conditions for 

semirings that are not as stringent as rings are fascinating to 

study. It can be seen from the researchers who conducted 

research on semiring structures, including (Grillet, 1971; 

Goguadze, 2003; Bhuniya & Mondal, 2015; Vechtomov, 

Mikhalev, & Sidorov, 2019; Deldar, Ghalandarzadeh, & 

Namdari, 2022; Ganesh & Selvan, 2022; Vechtomov, 2022). 

In addition, semiring research has been combined with 

other concepts, including the fuzzy set introduced by (Zadeh, 

1965). The researchers who did this among them are (Kim & 

Park, 1996; Ghosh, 1998; Neggers, Jun & Kim, 1999; Akram 

& Dudek, 2008; Ahsan, Mordeson & Shabir, 2012a; Jagatap, 

2014; Kar, Purkait & Shum, 2015; Massa’deh & Fellatah, 2019; 

Sardar, Goswami & Jun, 2019; Abdurrahman, 2020b, 2020a, 

2021, 2023; Abdurrahman, Hira & Hanif Arif, 2022). 

Based on the research facts above, we are motivated to 

research fuzzy semiring structures. In this research, we 

introduce a ⋆𝒔− fuzzy subsemiring of a 𝒦  semiring. In this 

research, we construct the definition and properties of the 

⋆𝑠− fuzzy subsemiring of the 𝒦 semiring. The properties we 

studied included the properties associated with a subset of 

the semiring 𝒦, which we associated with the membership 

value of the neutral element 0𝒦. 

In addition, in this study, we will examine the 

characteristics of the slices of two (more) ⋆𝑠−  fuzzy 

subsemiring of the 𝒦 semiring and a subset of 𝒦 built from 

the results of these slices. Furthermore, the results of this 

study can be used as a basis for future researchers to carry out 

further research on the ideal fuzzy semiring of two (more) 

⋆𝑠− fuzzy subsemiring 𝒦 associated with a homomorphism 

in the semiring 𝒦. 

 

II. MATERIALS AND METHOD 

 
The research we did was a theoretical study. We studied the 

concepts of semirings, subsemirings, and fuzzy sets in the 

early stages. These concepts support understanding the idea 

of fuzzy semiring and fuzzy subsemiring. Furthermore, we 

define a ⋆𝑠−  fuzzy subsemiring. Next, we determine the 

assumptions in constructing the lemma or theorem so that a 

new lemma or theorem is formed. In the final step, using 

interrelated assumptions, we prove the lemma or theorem of 

the ⋆𝑠− fuzzy subsemiring. 

Here, we present the concepts that will support the 

discussion section, taken from (Zadeh, 1965; Dale, 1976; 
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Golan, 1999, 2003; Guterman, 2009; Ahsan, Mordeson & 

Shabir, 2012a). 

Definition 2.1. A non-empty set 𝒦  with two binary 

operations, addition " + " and multiplication " ∙ ", such that 

it satisfies the condition: 

1. (𝓚, +) is an abelian semigroup with a neutral element 

of 𝟎𝓚. 

2. (𝓚,∙) is a semigroup with an identity element 𝟏𝓚. 

3. The multiplication operation over the addition 

operation is left and right distributive. 

4. 𝒂 ∙ 𝟎𝓚 = 𝟎𝓚 ∙ 𝒂 = 𝟎𝓚 For any 𝒂 ∈ 𝓚. 

 

Next, a fuzzy subset is defined, an extension of the classical 

set concept. 

Definition 2.2. A fuzzy subset of a non-empty set 𝒜  is a 

function 𝜌: 𝒜 ⟶ [0,1].  

Definition 2.3. Let 𝜌 be a fuzzy subset of semiring 𝒦. Then 

𝜌 is a fuzzy subsemiring of 𝒦 if and only if 

𝜌(𝑎 + 𝑧) ≥ 𝜌(𝑎) ∧ 𝜌(𝑧) dan 𝜌(𝑎 ⋅ 𝑧) ≥ 𝜌(𝑎) ∧ 𝜌(𝑧) 

For any 𝑎, 𝑧 ∈ 𝒦. 

 

III. RESULT AND DISCUSSION 

 
Let 𝜌 be a fuzzy subset of semiring 𝒦 and 𝑠 ∈ [0,1]. We define 

the 𝜌⋆𝑠  the fuzzy subset of 𝒦 such that  

𝜌⋆𝑠(𝑐) ≝ (𝜌(𝑐) + 𝑠 − 1) ∨ 0 

for any 𝑐 ∈ 𝒦 . Furthermore, the 𝜌  fuzzy subset of 𝒦  is an    

⋆𝑠− fuzzy subsemiring of  𝒦 if and only if 𝜌⋆𝑠   It is a fuzzy 

subset of 𝒦. 

The following gives the properties of the ⋆𝑠−  fuzzy 

subsemiring of the 𝒦 semiring, induced from (Ghosh, 1998; 

Neggers, Jun & Kim, 1999; Ahsan, Mordeson & Shabir, 2012b; 

Abdurrahman, 2020b; 2020a; 2021; Abdurrahman, Hira & 

Hanif Arif, 2022). 

Teorema 3.1. Let 𝜌 be a ⋆𝑠− fuzzy subsemiring of semiring 

𝒦. If 𝜌⋆𝑠(0𝒦) ≥ 𝜌⋆𝑠(𝑐) for any 𝑐 ∈ 𝒦, then   

𝒦𝜌⋆𝑠 ≝ {𝑤 ∈ 𝒦 | 𝜌⋆𝑠(𝑤) = 𝜌⋆𝑠(0𝒦)} 

It is a subsemiring of 𝒦. 

Proof: 

Based on the characteristics of membership 𝒦𝜌⋆𝑠 , fulfilled 

𝒦𝜌⋆𝑠 ⊆ 𝒦 . Since 0𝒦 ∈ 𝒦 , so 𝜌⋆𝑠(0𝒦) = 𝜌⋆𝑠(0𝒦) . Thus           

0𝒦 ∈ 𝒦𝜌⋆𝑠 . In other words, 𝒦𝜌⋆𝑠 ≠ ∅. Let 𝑎, 𝑐 ∈ 𝒦𝜌⋆𝑠 . Means 

𝜌⋆𝑠(𝑎) = 𝜌⋆𝑠(0𝒦)  and 𝜌⋆𝑠(𝑐) = 𝜌⋆𝑠(0𝒦) . Because of 𝜌⋆𝑠  is a 

fuzzy subsemiring of 𝒦, then  

𝜌⋆𝑠(𝑐 + 𝑑) ≥ 𝜌⋆𝑠(𝑐) ∧ 𝜌⋆𝑠(𝑑) ≥ 𝜌⋆𝑠(0𝒦) ∧ 𝜌⋆𝑠(0𝒦) = 𝜌⋆𝑠(0𝒦) 

and 

𝜌⋆𝑠(𝑐𝑑) ≥ 𝜌⋆𝑠(𝑐) ∧ 𝜌⋆𝑠(𝑑) ≥ 𝜌⋆𝑠(0𝒦) ∧ 𝜌⋆𝑠(0𝒦) = 𝜌⋆𝑠(0𝒦). 

Thus,  

𝑐 + 𝑑 ∈ 𝒦𝜌⋆𝑠  and 𝑐𝑑 ∈ 𝒦𝜌⋆𝑠 . 

So, 𝒦𝜌⋆𝑠  It is a subsemiring of 𝒦. ■ 

Furthermore, the ⋆𝑠−  fuzzy 𝜌  subsemiring of the 𝒦 

semiring referred to in this paper always fulfills the condition 

𝜌⋆𝑠(0𝒦) ≥ 𝜌⋆𝑠(𝑐) For any 𝑐 ∈ 𝒦. 

Theorem 3.2. Let 𝜌  and 𝛿  are ⋆𝑠−  fuzzy subsemiring of 

semiring 𝒦 . If 𝜌⋆𝑠 ⊆ 𝛿⋆𝑠  and 𝜌⋆𝑠(0𝒦) = 𝛿⋆𝑠(0𝒦)  then       

𝒦𝜌⋆𝑠 ⊆ 𝒦𝛿⋆𝑠 . 

Proof: 

Let 𝜌 and 𝛿  are ⋆𝑠− fuzzy subsemiring of semiring 𝒦  where 

𝜌⋆𝑠 ⊆ 𝛿⋆𝑠  and 𝜌⋆𝑠(0𝒦) = 𝛿⋆𝑠(0𝒦) . Let 𝑐 ∈ 𝒦𝜌⋆𝑠 , we have 

𝜌⋆𝑠(𝑐) = 𝜌⋆𝑠(0𝒦). Thus  

𝛿⋆𝑠(𝑐) ≥ 𝜌⋆𝑠(𝑐) = 𝜌⋆𝑠(0𝒦) = 𝛿⋆𝑠(0𝒦). 

Therefore 𝑐 ∈ 𝒦𝛿⋆𝑠  such that 𝒦𝜌⋆𝑠 ⊆ 𝒦𝛿⋆𝑠 . ■ 

Theorem 3.3 Let H be a non-empty subset in the semiring 

𝒦 and 𝜌𝐻⋆𝑠  Is a fuzzy subset of 𝒦 defined by  

𝜌𝐻⋆𝑠(𝑐) ≝ {
𝑟, 𝑐 ∈ 𝐻
𝑝, 𝑐 ∈ 𝒦 − 𝐻

 

for any 𝑐 ∈ 𝒦  and 𝑟 > 𝑝 . Fuzzy Subset 𝜌𝐻  is a  ⋆𝑠−  fuzzy 

subsemiring of 𝒦  if and only if  H is subsemiring of 𝒦 . 

Moreover  𝒦𝜌𝐻⋆𝑠  = 𝐻. 

Proof: 

Let 𝜌𝐻  is a ⋆𝑠− fuzzy subsemiring of semiring 𝒦. Then, for 

any 𝑐, 𝑑 ∈ 𝐻 holds: 

𝜌𝐻⋆𝑠 (𝑐 + 𝑑) ≥ 𝜌𝐻⋆𝑠 (𝑐) ∧ 𝜌𝐻⋆𝑠 (𝑑) = 𝑟 

and 

𝜌𝐻⋆𝑠 (𝑐𝑑) ≥ 𝜌𝐻⋆𝑠 (𝑐) ∧ 𝜌𝐻⋆𝑠 (𝑑) = 𝑟. 

Since 𝐼𝑚 𝜌𝐻⋆𝑠 = {𝑟, 𝑝} dan 𝑟 > 𝑝. Then  

𝜌𝐻⋆𝑠 (𝑐 + 𝑑) = 𝑟 and 𝜌𝐻⋆𝑠(𝑐𝑑) = 𝑟. 

Thus,  

𝑐 + 𝑑 ∈ 𝐻 and 𝑐𝑑 ∈ 𝐻. 

Therefore 𝐻 is a subsemiring of 𝒦. Conversely, assume that 

H is a subsemiring of 𝒦 . Let 𝑎, 𝑐 ∈ 𝒦 . If 𝑎, 𝑐 ∈ 𝐻,  then              

𝑎 + 𝑐 ∈ 𝐻 and 𝑎𝑐 ∈ 𝐻. We have  

𝜌𝐻⋆𝑠(𝑎 + 𝑐) = 𝑟 = 𝑟 ∧ 𝑟 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐) 

and 

𝜌𝐻⋆𝑠(𝑎𝑐) = 𝑟 = 𝑟 ∧ 𝑟 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐). 

If 𝑎, 𝑐 ∉ 𝐻 then  

𝜌𝐻⋆𝑠(𝑎 + 𝑐) ≥ 𝑝 = 𝑝 ∧ 𝑝 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐) 

and 

𝜌𝐻⋆𝑠(𝑎𝑐) ≥ 𝑝 = 𝑝 ∧ 𝑝 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐). 



ASM Science Journal, Volume 20(2), 2025  
 

3 

If 𝑎 ∈ 𝐻 or 𝑐 ∉ 𝐻 then  

𝜌𝐻⋆𝑠(𝑎 + 𝑐) ≥ 𝑝 = 𝑟 ∧ 𝑝 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐) 

and 

𝜌𝐻⋆𝑠(𝑎𝑐) ≥ 𝑝 = 𝑟 ∧ 𝑝 = 𝜌𝐻⋆𝑠(𝑎) ∧ 𝜌𝐻⋆𝑠(𝑐). 

Hence, based on the result of the analysis above, it is found 

that 𝜌𝐻⋆𝑠 It is a fuzzy subsemiring of 𝒦. In other word, 𝜌𝐻 is 

a ⋆𝑠−  fuzzy subsemiring of 𝒦 . Furthermore, since 𝐻  is a 

subsemiring of 𝒦  then 𝐻  is a  semiring such that 0𝒦 ∈ 𝐻 . 

Thus, 𝜌𝐻⋆𝑠 (0𝒦) = 1. Moreover, 

𝒦𝜌𝐻
⋆𝑠   = {𝑐 ∈ 𝒦 | 𝜌𝐻⋆𝑠 (𝑐) = 𝜌𝐻⋆𝑠 (0𝒦)} 

  = {𝑐 ∈ 𝒦 | 𝜌𝐻⋆𝑠 (𝑐) = 𝑟} 

  = 𝐻. ■ 

Corollary 3.4. Let 𝜌𝐻  Be a characteristic function of the 

non-empty subset 𝐻 of the semiring 𝒦. The function 𝜌𝐻 is a 

⋆𝑠− fuzzy subsemiring of 𝒦 if and only if 𝐻 is a subsemiring 

of 𝒦. 

Theorem 3.5 Every fuzzy subsemiring of a semiring 𝒦 is a  

⋆𝑠− fuzzy subsemiring of K. 

Proof: 

Suppose 𝜌 is a fuzzy subsemiring of 𝒦 and let 𝑎, 𝑐 ∈ 𝒦. Then  

𝜌⋆𝑠(𝑎 + 𝑐)  = (𝜌(𝑎 + 𝑐) + 𝑠 − 1) ∨ 0 

 ≥ ((𝜌(𝑎) ∧ 𝜌(𝑐)) + 𝑠 − 1) ∨ 0 

 = ((𝜌(𝑎) + 𝑠 − 1) ∧ (𝜌(𝑐) + 𝑠 − 1)) ∨ 0 

 = ((𝜌(𝑎) + 𝑠 − 1) ∨ 0) ∧ ((𝜌(𝑐) + 𝑠 − 1) ∨ 0) 

 = 𝜌⋆𝑠(𝑎) ∧ 𝜌⋆𝑠(𝑐) 

and 

  𝜌⋆𝑠(𝑎𝑐)  = (𝜌(𝑎𝑐) + 𝑠 − 1) ∨ 0 

≥ ((𝜌(𝑎) ∧ 𝜌(𝑐)) + 𝑠 − 1) ∨ 0 

= ((𝜌(𝑎) + 𝑠 − 1) ∧ (𝜌(𝑐) + 𝑠 − 1)) ∨ 0 

 = ((𝜌(𝑎) + 𝑠 − 1) ∨ 0) ∧ ((𝜌(𝑐) + 𝑠 − 1) ∨ 0) 

 = 𝜌⋆𝑠(𝑎) ∧ 𝜌⋆𝑠(𝑐). 

 

Hence 𝜌⋆𝑠  Is fuzzy subsemiring of 𝒦 and so 𝜌 is a ⋆𝑠− fuzzy 

subsemiring of K. ■ 

The converse of theorem 3.5 is not always true. As an 

illustration, suppose (𝒦 = ℕ⋃{0ℤ}, +, ∙) is semiring. Suppose 

𝜌 is a fuzzy subset of 𝒦  where 𝜌(2𝑎) = 0,2 and 𝜌(2𝑎 + 1) =

0,8  for each 𝑎 ∈ 𝒦 . Since there are 5,7 ∈ 𝒦  such that the 

terms of Definition 2.3 are not filled by 𝜌, i.e.: 

𝜌(5 + 7) = 𝜌(12) = 0,2 < 0,8 = 𝜌(5) ∧ 𝜌(7). 

Therefore, the fuzzy subset 𝜌 is not a fuzzy subsemiring of 𝒦. 

Furthermore, taking 𝑠 = 0,1, then for every 𝑎 ∈ 𝒦, we have 

𝑎 = 2𝑛  or 𝑎 = 2𝑛 + 1 for some 𝑛 ∈ 𝒦. Therefore, 

𝜌⋆0,1(𝑎 = 2𝑛) = (0,2 + 0,1 − 1) ∨ 0 = 0 

or 

𝜌⋆0,1(𝑎 = 2𝑛 + 1) = (0,8 + 0,1 − 1) ∨ 0 = 0 

As a result, for every 𝑎, 𝑐 ∈ 𝒦  the following condition is 

obtained: 

𝜌⋆0,1(𝑎 + 𝑐)  = 0 = 0 ∧ 0 = 𝜌⋆0,1(𝑎) ∧ 𝜌⋆0,1(𝑐) 

and 

𝜌⋆0,1(𝑎𝑐)  = 0 = 0 ∧ 0 = 𝜌⋆0,1(𝑎) ∧ 𝜌⋆0,1(𝑐). 

Thus, 𝜌⋆𝑠 It is a fuzzy subsemiring of 𝒦. In other words, 𝜌 is a 

⋆𝑠− fuzzy subsemiring of 𝒦. 

Furthermore, chosen 𝑠 = 0,9  the following condition is 

obtained: 

𝜌⋆0,9(𝑎 = 2𝑛) = (0,2 + 0,9 − 1) ∨ 0 = 0,1 

or  

𝜌⋆0,9(𝑎 = 2𝑛 + 1) = (0,8 + 0,9 − 1) ∨ 0 = 0,7. 

Note that for 5,7 ∈ 𝒦 the following conditions are obtained: 

𝜌⋆0,9(5 + 7) = 𝜌⋆0,9(12) = 0,1 < 0,7 = 𝜌⋆0,9(5) ∧ 𝜌⋆0,6(7). 

Therefore, 𝜌⋆𝑠  It is not a fuzzy subsemiring of 𝒦 . In other 

words, 𝜌 is not a ⋆𝑠− fuzzy subsemiring of 𝒦. 

Based on the illustration of the above example, a theorem is 

obtained that guarantees the existence of 𝜌 is always a ⋆𝑠− 

fuzzy subsemiring of 𝒦, even though the condition 𝜌 is only a 

fuzzy subset of 𝒦. 

Theorem 3.6 Let 𝜌 be a  fuzzy subset of semiring 𝒦  and   

𝑠 ∈ [0, 1] . If 0 ≤ 𝜌(𝑐) + 𝑠 ≤ 1  for any 𝑐 ∈ 𝒦  then 𝜌  is a         

⋆𝑠− fuzzy subsemiring of 𝒦. 

Proof: 

Since 𝜌 is a fuzzy subset of semiring 𝒦  and 𝑠 ∈ [0, 1] where 

0 ≤ 𝜌(𝑐) + 𝑠 ≤ 1 for any 𝑐 ∈ 𝒦. Based on this condition, for 

every 𝑐 ∈ 𝒦, we have the following condition: 

𝜌⋆𝑠(𝑐) = (𝜌(𝑎) + 𝑠 − 1) ∨ 0 = 0. 

Therefore, for each 𝑎, 𝑐 ∈ 𝒦: 

𝜌⋆𝑠(𝑎 + 𝑐) = 0 = 𝜌⋆𝑠(𝑎) ∧ 𝜌⋆𝑠(𝑐)  

and 

𝜌⋆𝑠(𝑎𝑐) = 0 = 𝜌⋆𝑠(𝑎) ∧ 𝜌⋆𝑠(𝑐). 

Thus, 𝜌⋆𝑠 It is a fuzzy subsemiring of 𝒦. In other word, 𝜌 is a  

⋆𝑠− fuzzy subsemiring of 𝒦.■ 

Theorem 3.7 The intersection of two ⋆𝑠−  fuzzy 

subsemirings of the semiring of 𝒦   is a ⋆𝑠−  fuzzy 

subsemiring of 𝒦. 

Proof: 

Since 𝜎 and 𝜉 are ⋆𝑠− fuzzy subsemiring of 𝒦, it means that 

for any 𝑎, 𝑐 ∈ 𝒦, we have the following condition: 

(𝜎⋂𝜉 )⋆𝑠(𝑎 + 𝑐) = (𝜎⋂𝜉(𝑎 + 𝑐) + 𝑠 − 1) ∨ 0 

= ((𝜎(𝑎 + 𝑐) ∧ 𝜉(𝑎 + 𝑐)) + 𝑠 − 1) ∨ 0 

= ((𝜎(𝑎 + 𝑐) + 𝑠 − 1) ∧ (𝜉(𝑎 + 𝑐) + 𝑠 − 1)) ∨ 0 
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= (((𝜎(𝑎 + 𝑐) + 𝑠 − 1) ∨ 0) ∧ ((𝜉(𝑎 + 𝑐) + 𝑠 − 1) ∨ 0)) 

= 𝜎⋆𝑠(𝑎 + 𝑐) ∧ 𝜉⋆𝑠(𝑎 + 𝑐) 

≥ (𝜎⋆𝑠(𝑎) ∧ 𝜎⋆𝑠(𝑐)) ∧ (𝜉⋆𝑠(𝑎) ∧ 𝜉⋆𝑠(𝑐)) 

= (𝜎⋆𝑠(𝑎) ∧ 𝜉⋆𝑠(𝑎)) ∧ (𝜎⋆𝑠(𝑐) ∧ 𝜉⋆𝑠(𝑐)) 

= (𝜎⋂𝜉 )⋆𝑠(𝑎) ∧ (𝜎⋂𝜉 )⋆𝑠(𝑐)    

and 

(𝜎⋂𝜉 )⋆𝑠(𝑎𝑐) = (𝜎⋂𝜉(𝑎𝑐) + 𝑠 − 1) ∨ 0 

= ((𝜎(𝑎𝑐) ∧ 𝜉(𝑎𝑐)) + 𝑠 − 1) ∨ 0 

= ((𝜎(𝑎𝑐) + 𝑠 − 1) ∧ (𝜉(𝑎𝑐) + 𝑠 − 1)) ∨ 0 

= (((𝜎(𝑎𝑐) + 𝑠 − 1) ∨ 0) ∧ ((𝜉(𝑎𝑐) + 𝑠 − 1) ∨ 0)) 

= 𝜎⋆𝑠(𝑎𝑐) ∧ 𝜉⋆𝑠(𝑎𝑐) 

≥ (𝜎⋆𝑠(𝑎) ∧ 𝜎⋆𝑠(𝑐)) ∧ (𝜉⋆𝑠(𝑎) ∧ 𝜉⋆𝑠(𝑐)) 

= (𝜎⋆𝑠(𝑎) ∧ 𝜉⋆𝑠(𝑎)) ∧ (𝜎⋆𝑠(𝑐) ∧ 𝜉⋆𝑠(𝑐)) 

= (𝜎⋂𝜉 )⋆𝑠(𝑎) ∧ (𝜎⋂𝜉 )⋆𝑠(𝑐). 

Therefore, (𝜎⋂𝜉 )⋆𝑠  It is a fuzzy subsemiring of 𝒦 . In the 

other word, 𝜎⋂𝜉 is  ⋆𝑠− fuzzy subsemiring  of 𝒦.■ 

Based on the conditions of Theorem 3.1 and Theorem 3.7, it 

is obtained that the set 𝒦(𝜎⋂𝜉 )⋆𝑠  It is a subsemiring of 𝒦, as 

presented in the following theorem. 

Corollary 3.8 Let  𝜎 and 𝜉 are  ⋆𝑠− fuzzy subsemirings of 

the semiring 𝒦. Then 𝒦(𝜎⋂𝜉 )⋆𝑠   It is a subsemiring of 𝒦. 

Based on the conditions of Theorem 3.7, the intersection 

property of the finite ⋆𝑠− fuzzy subsemiring of the semiring 

𝒦 is the ⋆𝑠− fuzzy subsemiring of 𝒦. 

Corollary 3.9 Let  𝜎1 , 𝜎2 , ⋯ , 𝜎𝑛  and 𝜎𝑛  are  ⋆𝑠−  fuzzy 

semiring subsemiring of 𝒦 . Then 𝜎1⋂𝜎2⋂ ⋯ ⋂𝜎𝑛  is ⋆𝑠− 

fuzzy semiring of 𝒦. 

Analog to Corollary 3.8, we have that 𝒦(𝜎1⋂𝜎2⋂⋯⋂𝜎𝑛 )⋆𝑠  It is 

a subsemiring of 𝒦.  

Corollary 3.10. Let 𝜎1 , 𝜎2 , ⋯ ,and 𝜎𝑛  are ⋆𝑠−  fuzzy 

subsemiring of semiring 𝒦 . Then 𝒦(𝜎1⋂𝜎2⋂⋯⋂𝜎𝑛 )⋆𝑠  It is a 

subsemiring of 𝒦. 

 

IV. CONCLUSION 

 
Based on the results and discussion, it is obtained that the 

existence of 𝜌  is a ⋆𝑠−  fuzzy subsemiring of semiring 𝒦 

determined by the condition of 𝜌 , i.e.: (1) 𝜌  is a fuzzy 

subsemiring of 𝒦 , or (2) 𝜌  is a fuzzy subset where the 

condition 0 ≤ 𝜌(𝑐) ≤ 1  for every 𝑐 ∈ 𝒦 . Furthermore, the 

intersection of ⋆𝑠− fuzzy subsemiring 𝜎1 , 𝜎2 , ⋯, and 𝜎𝑛  Of 

the semiring, 𝒦 is the ⋆𝑠− fuzzy subsemiring of 𝒦 such that 

𝒦(𝜎1⋂𝜎2⋂⋯⋂𝜎𝑛 )⋆𝑠  It is a subsemiring of 𝒦. 
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