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The spread of infectious diseases poses a threat to the interaction between prey and predator
species. This research aims to understand how these diseases significantly influence both
populations. By investigating the stability of the prey-predator system, the impact of varying the
conversion rate is analysed through one-parameter bifurcation analysis. The conversion rate is
specifically chosen as the bifurcation parameter, revealing the occurrence of transcritical
bifurcation points. Visual representations, including bifurcation diagrams, phase planes, and time
series plots, are generated using mathematical computing software such as XPPAUT, Maple, and
MATLAB. The results demonstrate that variations in the conversion rate can induce shifts in
stability, transitioning between stable and unstable states. This research emphasises the
significance of considering the conversion rate when investigating the effects of disease on prey-
predator populations. It can be useful for understanding the complex interactions between prey

and predator species and for developing strategies to prevent the spread of infectious diseases

among these populations.
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I. INTRODUCTION

Interactions between two species and their impact on one
another make up the prey-predator relationship. Both the
prey and the predator engage in hunting and attacking
behaviours. Predators hunt other creatures, while the prey
are those whom other animal’s attack. The predator's
surroundings include prey, and the predator will die if it
does not catch its prey, as the predator is entirely reliant on
prey for survival. The prey-predator relationship maintains
the earth's ecological balance because if predators are not
present, the prey population increases, causing overgrazing
and thus directly affecting the natural plant life cycle. If the
prey population in an environment increases, predator
numbers will increase to meet the increased food supply.
The food supply will eventually be depleted to the point that
the predator population will not be able to support itself.

Disease can be spread among predators, leading to a strong
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Allee effect and cooperation (Hilker et al., 2017). The disease
prevalence in the prey population affects the prey-predator
relationship since infected individuals become more
vulnerable to predation (Banerjee et al., 2017; Jang & Wei,
2020; Silva, 2017). Therefore, there has been a surge of
interest in studying disease effects in prey-predator systems
in recent decades.

II. LITERATURE REVIEW

Several recent studies have focused on prey-predator
systems whereby an infection spreads amongst predator
populations (Rihan & Rajivganthi, 2020; Huang et al., 2019;
Shaikh et al., 2018). In a study conducted by Juneja and
Agnihotri (2018), they investigated a prey-predator system
where the predator species was afflicted with the disease.
They concluded that diseased predators have a lower

predation rate than healthy predators because they are less
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mobile. As a result, the lower predation rate of the diseased
predator contributes to the system's disease-free condition.
Banerjee et al. (2017), in contrast, investigated the prey-
predator system with disease in prey, in which predators
feed on both healthy and infected prey indiscriminately.
Jang and Wei (2020) also analysed two prey-predator
systems in which the disease in the prey population has no
effect on population growth. More research on disease in
prey populations can be found here (Wuhaib & Abd, 2020;
Lu et al., 2018; Saha & Samanta, 2020).

Recent research has focused on investigating various prey-
predator systems where disease transmission occurs within
both the prey and predator populations (Das, 2016; Kant &
Kumar, 2017; Mandal et al., 2018; Ghasemabadi & Rahmani
Doust, 2021). Kant and Kumar (2017) conducted a study
that considered a prey-predator system involving migrating
prey and disease infection in both populations. Building
upon the findings of Mandal et al. (2018), they further
examined a predator-prey model featuring an infectious
disease capable of spreading among both predators and
prey, but not between them. Considering the fact that many
diseases are not vertically transmitted, they assumed that
the disease in the predator population was not genetic in
nature. Additionally, Bera et al. (2015) explored the dynamic
effects of a prey-predator species where disease impacts
both the prey and predator populations.

The utilisation of bifurcation analysis in studying
population interactions and infectious rates has been
observed in various research studies (Manaf & Mohd, 2019;
Manaf & Mohd, 2021; Kadhim & Majeed, 2022; Santra et
al., 2021; Suryanto et al., 2018). However, the conversion
rate of the prey-predator model has rarely been studied. The
conversion rate parameters for both populations are
therefore selected for investigation in this study to
understand the influence of shifting predator populations on
prey with infectious diseases. In conclusion, there is a
growing interest in studying the prey-predator model with
infectious disease to improve its reliability. Nevertheless,
previous models have had limitations, and new research is
being conducted to improve upon them. The impact of the
conversion rate of prey and predator populations on disease

spread is an area that requires further investigation.

III. METHODOLOGY

This section discusses mathematical modelling formulation
and stability analysis. Bera et al. (2015) presented a prey-
predator system with four differential equations, where both
prey and predators are impacted by diseases. However, our
research mainly focuses on the impact of diseases on prey
populations, so we reduced the system from four to three
differential equations by excluding the density of infected

predators. The system is then represented as follows:
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S, I, and X represent the densities of susceptible prey,

infected prey, and susceptible predators at time 7T ,

respectively. All the parameters r,X,a,,b,,c,,d,,f,,g, and

3, are considered as positive constants. The parameters r is
the susceptible prey’s growth rate; X is the carrying

capacity of susceptible prey; a, is the infection rate of
susceptible prey; b, is the rate of predation of susceptible
prey by susceptible predators; d, is the disease-induced
death which affects the infected prey; f; is the predation
rates of infected prey by susceptible predators; c, is the

conversion rate of susceptible prey to infected preys; g, is
the conversion rate of infected prey to susceptible predators
and o, is the predator’s death rate.

The analysis of the prey-predator system (1) is complicated
due to the presence of multiple parameters. To simplify the
analysis, a technique called non-dimensionalisation is
employed. In this technique, the parameters are
transformed into dimensionless variables to effectively
reduce the total number of parameters involved. By reducing
the complexity of the system through this process, it

becomes more manageable to study and analyse the stability
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of the prey-predator dynamics. Therefore, the non-

dimensionalised system followed the scalar.

Thus, the prey-predator system (1) forms the following;:

ﬁ:5(1—5—1')—.2151'—175){
dt
di
a_ asi —di — fxi (2)
dt
dx .
— =csx + gix —dx
dt
where,
a:alK'b:blK’C:ClK‘d:dlK’f:flK’g:glK,stlK.
r r r r r r r

To calculate the steady states, the prey-predator system (2)
is set equal to zero. Therefore, this prey-predator system can

have a maximum of six steady states:

(i) The trivial steady state: £,= (0,0,0) . The steady state
represents the scenario where susceptible prey, infected prey,
and susceptible predators all go extinct.

(ii) The susceptible-prey-free steady state: £, =(0,8,—dj.

g

This steady state indicates the extinction of susceptible prey.

(iii) The disease-free steady state: Ez—[g,O,Cb_Sj. This
c c
steady state implies that there is no disease in the

population.

(iv) The axial steady state: £, :(1,0,0). This steady state

indicates that susceptible prey survives in the absence of

both disease and predators.

d -d
(v) The predator-free steady state: £,=|—, a 01 .
a a(a+1)

This steady state describes prey survival and the absence

of predators.

The interior state:

(vi)

.

This

steady
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steady state demonstrates the existence of all
species.

Subsequently, each of these steady states needs to be
classified by applying the stability analysis, and the results
will be presented in the upcoming section. By using the
Maple software, the Jacobian matrix is then formed and

used to analyse the stability of these six steady states:

1-2s—i—ai-bx 5(—1—3) —bs
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In this research, the stability analysis of the system heavily
relies on the Jacobian matrix. Its role is vital in determining
the stability characteristics of the system. The stability
assessment involves substituting the steady states of the
system into the Jacobian matrix, which then calculates the
eigenvalues associated with each steady state. The signs of
these eigenvalues serve as indicators of the stability of the
system. If all the eigenvalues are negative or less than zero,
the system is considered to be asymptotically stable,
meaning that small perturbations will eventually die out and
the system will tend towards a particular state. On the other
hand, if there is at least one positive eigenvalue, the system
is deemed unstable, meaning that small perturbations will
grow over time and the system will not tend towards a
particular state. This analytical approach provides valuable
understanding of the system's long-term dynamics and
assists

in predicting the stability of prey-predator

populations when disease is present.
IV. RESULT AND DISCUSSION

This section illustrates the results of stability and numerical

analysis for prey-predator system (2).

A. Stability Analysis

The stability analysis of the prey-predator system (2) is

analysed in this section. Stability analysis is a crucial tool in
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studying dynamical systems, allowing us to understand how
small disturbances affect the long-term behaviour of a
system. An asymptotically stable node is an equilibrium
point where trajectories converge towards it over time,
indicating a predictable and robust behaviour. This occurs
when the eigenvalues of the Jacobian matrix have negative
real parts. On the other hand, an unstable node is an
equilibrium point where trajectories move away from it over
time, showing sensitivity to initial conditions. This happens
the have real

when eigenvalues

the

positive parts.

Understanding stability properties of different
equilibrium points, such as asymptotically stable nodes and
unstable nodes, is crucial for predicting and analysing the
behaviour of dynamical systems.

Table 1 lists the parameter values used in the system. The

parameter values were mostly taken from Bera et al. (2015),
except for one specific parameter d which represents the
rate of disease-induced death in infected prey. To determine
a suitable value for this parameter, a technique called

parameter variation was employed using the numerical

system will not remain at a constant state, but will continue
to change over time. On the other hand, steady state £, is

asymptotically stable because all of its eigenvalues are
negative real distinct roots. This means that the system will
tend towards this steady state over time, and that any small

fluctuations away from the steady state will eventually decay
back towards it. Steady states £, , £, and £, , however,

have negative populations, which are not considered
biologically meaningful. This is because, to ensure biological
accuracy, a minimum population size of zero was
established for each species, meaning that steady states with
negative populations are disregarded. In conclusion, the
stability analysis results presented in Table 2 provide
valuable insights into the behaviour of a system over time
and help to determine which steady states are biologically

meaningful and can be used to make predictions about the

system's behaviour in the future.

Table 2. The Summary of Stability Analysis

bifurcation software called XPPAUT. Through this process, a Steady states Ligenvalues %esilts] 3
EOZ(O,O,O) ?..1=1 nstable node
value of d=0.3 was selected. This particular value allows for hy=—2
. . . . - . 7;=-03
the tracking of bifurcation points and facilitates numerical
E, =(o,1.3333, —1.5] 2, =02449 Not
bifurcation analysis in the next section. ., =0.6333 Ellgorlsglc‘:‘r{?
2y =-0.2449
. - . E,=(2,0-1) 2, =07 Not
Table 1. The Parameter Value Used in The Stability Analysis z biologically
Ay =—2.0954 significant
Parameter | Definition Value Source 74 =0.0954
a Infection rate of prey 0.4
b Predation rate of susceptible 1.0 LA =(1,0,0) 2 =-01 Unstable node
prey by susceptible predators (Bera et al., 2015) 2,=01
< Conversion rate of susceptible 0.1
prey to susceptible predators 2y=-1
d Disease-induced death in 0.3 Assumed E :(O 75 0.1786 O) % =—0.0982 Asymptotically
infected prey 4 R ! 1 stable node
f Predation rate of infected prey 0.2 2,=-0.1188
by susceptible predators 2, =—0.6311
g Conversion rate of infected prey 0.15
to susceptible predators (Bera et al., 2015) F,=(0.3064,1.129,-0.8871) | ,=0.1057 Not
5 The natural death rate of 0.2 A = 02061403717 biologically
predator 2 ) ) signiﬁcant
?‘ug =-0.2061+0.3717

The stability analysis results shown in Table 2 provide
information about the behaviour of a system over time. The
table lists six different steady states, each with its own set of
eigenvalues. The eigenvalues, which are mathematical
representations of how a system changes over time, are

essential in determining the stability of a steady state.
Steady states £, and £, , are considered unstable because

their eigenvalues have conflicting signs, meaning that the

The phase plane for the stable steady state E, was plotted

using MATLAB with five different initial values:
(4,0.3,03),(4,0.6,06),(4,09,09),(4,12,1.2) and (4,15,15).
As illustrated in Figure 1, the plot shows that all the solution
trajectories converge towards the steady state £, . This

finding indicates that, in this steady state, the prey species
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are able to exist, but the predator species have become

extinct.
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Figure 1. 3-D Phase Plane for Prey-Predator System (2)

B. Numerical Bifurcation Analysis

This section delves into the impact of converting infected

into susceptible predators. The one-parameter

prey
bifurcation is the focus of this analysis, which employs the
parameter variation technique with the assistance of the

XPPAUT numerical tools. The conversion rate, g was

selected as the bifurcation parameter to investigate the
presence of transcritical bifurcation. The aim of this study is
to understand the dynamics of the system and how it
changes with the conversion rate, which could potentially
provide valuable insights for future research in this field.
According to Strogatz (2018), a transcritical bifurcation
occurs when one steady state "crosses" another, leading to a

shift in the stability of the system. Figure 2 demonstrates the
presence of transcritical bifurcation, where the @, steady

state branches interchange with each other after crossing the
bifurcation point at g=0.7 . This is a result of a slight
change in the conversion rate parameter of infected prey to
susceptible predators, which impacted the stability and
equilibrium of the system. As shown in the figure, the steady

state ¢, was originally an asymptotically stable node, but

after the transcritical bifurcation event, it became an
unstable node. The summary of stability and bifurcation
analysis provided in Table 3 further supports the findings
and helps to illustrate the dynamics of the system.

The phase plane provides a clear understanding of the

behaviour of the dynamic. The diagrams illustrate the

system's motion direction and the stability of the steady
states. The direction field is represented by arrows, with the
direction of the arrow indicating the direction of motion for
the system. The representation of each value of the
bifurcation parameter in the phase plane is presented in
Figure 3. The different colours in the phase plane diagrams
represent different initial values used in the analysis. In the

case of an asymptotically stable node, as shown in Figure 3
(a), the direction field moves towards the steady state @, ,

indicating that the system is converging towards that point.

Conversely, for an unstable node, as depicted in Figure 3 (b),
the direction field diverges from the steady state Q, ,

implying that the system is drifting away from that

particular point.
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Table 3. Summary of Stability and Bifurcation Analysis

Parameter | Critical Points Eigenvalues Results
values
#, =—0.0089
_ _ _ Asymptotically
2=065 @ =(0.750.1786,0) | »,=-0.1188 | SSTHPIOCC
7\.3 =-0.6312
£=0.70 Transcritical bifurcation point
2, =0.0007
£-075 | @ =(0750.1786,0) | A,—-0.1183 | Unstablenode
?\.3 =-0.6312
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Figure 3: 3-D phase plane for system (2) with different

bifurcation parameters, g

C. Dynamics of Prey-predator Interactions

This section examines the system's dynamic behaviour over
time by analysing the time-series graph created using
MATLAB software. Figure 4 illustrates the interplay between
the populations of susceptible prey, infected prey, and
The

susceptible predators. initial conditions for the

population are (4,0.05,0.05) and the conversion rate

parameter, g , is set at 0.65 . As time progresses and

reaches 1000 days, the susceptible prey population stabilises
at a steady state value, while the infected prey population
experiences a slight increase before also reaching a stable
state. Conversely, the susceptible predator population
gradually decreases and becomes extinct. This behaviour is a
result of the increasing disease rates among the susceptible
prey population, which has a profound effect on the
predator population. As the predator species share the same
ecosystem with the infected prey, their numbers decline
severely, highlighting the significant impact that infected
prey can have on predator populations. Hence, the purpose
of conducting this time series analysis is to investigate how
the conversion rate influences the populations of prey and
predators. By doing so, valuable insights into the dynamics
of the system and its potential reactions to parameter

variations can be obtained.
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Figure 4: Time series graph of system (2) with conversion

rate parameter g =0.65

V. CONCLUSION

This research aimed to comprehensively investigate a prey-
predator interactions considering the existence of disease
within the prey population. The primary objective was to
gain insights into the effects of conversion rates, specifically
those involving susceptible predators and the transmission
of disease among the prey, on the coexistence dynamics of

both species. To achieve this objective, a one-parameter
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bifurcation analysis was employed, which is a mathematical
tool used to study the effects of parameter changes on the
behaviour of a system.

The findings revealed that different conversion rates have
a meaningful influence on the behaviour of both species. The
stability of the steady states changed as the bifurcation
parameter crossed the transcritical bifurcation point.

Moreover, it is found that as the bifurcation parameter g

varied, the predators faced extinction as the prey
populations struggled with the spread of disease. The
density of susceptible predator species decreased
dramatically, indicating the significant impact of infected
prey on the predator population. This occurs as the infected
preys cannot grow due to a lack of energy, which is essential
for growth and survival.

The information gathered from this research can be used
to better understand the behaviour of similar dynamic
systems and how they may be influenced by changes in
conversion rates. It could also provide valuable insights for
future research in the field of transcritical bifurcations and

their impact on dynamic systems. This study highlights the
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