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The spread of infectious diseases poses a threat to the interaction between prey and predator 

species. This research aims to understand how these diseases significantly influence both 

populations. By investigating the stability of the prey-predator system, the impact of varying the 

conversion rate is analysed through one-parameter bifurcation analysis. The conversion rate is 

specifically chosen as the bifurcation parameter, revealing the occurrence of transcritical 

bifurcation points. Visual representations, including bifurcation diagrams, phase planes, and time 

series plots, are generated using mathematical computing software such as XPPAUT, Maple, and 

MATLAB. The results demonstrate that variations in the conversion rate can induce shifts in 

stability, transitioning between stable and unstable states. This research emphasises the 

significance of considering the conversion rate when investigating the effects of disease on prey -

predator populations. It can be useful for understanding the complex interactions between prey 

and predator species and for developing strategies to prevent the spread of infectious diseases 

among these populations. 
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I. INTRODUCTION 

 
Interactions between two species and their impact on one 

another make up the prey-predator relationship. Both the 

prey and the predator engage in hunting and attacking 

behaviours. Predators hunt other creatures, while the prey 

are those whom other animal’s attack. The predator's 

surroundings include prey, and the predator will die if it 

does not catch its prey, as the predator is entirely reliant on 

prey for survival. The prey-predator relationship maintains 

the earth's ecological balance because if predators are not 

present, the prey population increases, causing overgrazing 

and thus directly affecting the natural plant life cycle. If the 

prey population in an environment increases, predator 

numbers will increase to meet the increased food supply. 

The food supply will eventually be depleted to the point that 

the predator population will not be able to support itself. 

Disease can be spread among predators, leading to a strong 

Allee effect and cooperation (Hilker et al., 2017). The disease 

prevalence in the prey population affects the prey-predator 

relationship since infected individuals become more 

vulnerable to predation (Banerjee et al., 2017; Jang & Wei, 

2020; Silva, 2017). Therefore, there has been a surge of 

interest in studying disease effects in prey-predator systems 

in recent decades. 

 

II. LITERATURE REVIEW 

 
Several recent studies have focused on prey-predator 

systems whereby an infection spreads amongst predator 

populations (Rihan & Rajivganthi, 2020; Huang et al., 2019; 

Shaikh et al., 2018). In a study conducted by Juneja and 

Agnihotri (2018), they investigated a prey-predator system 

where the predator species was afflicted with the disease. 

They concluded that diseased predators have a lower 

predation rate than healthy predators because they are less 
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mobile. As a result, the lower predation rate of the diseased 

predator contributes to the system's disease-free condition. 

Banerjee et al. (2017), in contrast, investigated the prey-

predator system with disease in prey, in which predators 

feed on both healthy and infected prey indiscriminately. 

Jang and Wei (2020) also analysed two prey-predator 

systems in which the disease in the prey population has no 

effect on population growth. More research on disease in 

prey populations can be found here (Wuhaib & Abd, 2020; 

Lu et al., 2018; Saha & Samanta, 2020). 

Recent research has focused on investigating various prey-

predator systems where disease transmission occurs within 

both the prey and predator populations (Das, 2016; Kant & 

Kumar, 2017; Mandal et al., 2018; Ghasemabadi & Rahmani 

Doust, 2021). Kant and Kumar (2017) conducted a study 

that considered a prey-predator system involving migrating 

prey and disease infection in both populations. Building 

upon the findings of Mandal et al. (2018), they further 

examined a predator-prey model featuring an infectious 

disease capable of spreading among both predators and 

prey, but not between them. Considering the fact that many 

diseases are not vertically transmitted, they assumed that 

the disease in the predator population was not genetic in 

nature. Additionally, Bera et al. (2015) explored the dynamic 

effects of a prey-predator species where disease impacts 

both the prey and predator populations. 

The utilisation of bifurcation analysis in studying 

population interactions and infectious rates has been 

observed in various research studies (Manaf & Mohd, 2019; 

Manaf & Mohd, 2021; Kadhim & Majeed, 2022; Santra et 

al., 2021; Suryanto et al., 2018). However, the conversion 

rate of the prey-predator model has rarely been studied. The 

conversion rate parameters for both populations are 

therefore selected for investigation in this study to 

understand the influence of shifting predator populations on 

prey with infectious diseases. In conclusion, there is a 

growing interest in studying the prey-predator model with 

infectious disease to improve its reliability. Nevertheless, 

previous models have had limitations, and new research is 

being conducted to improve upon them. The impact of the 

conversion rate of prey and predator populations on disease 

spread is an area that requires further investigation.  

 

III. METHODOLOGY 
 

This section discusses mathematical modelling formulation 

and stability analysis. Bera et al. (2015) presented a prey-

predator system with four differential equations, where both 

prey and predators are impacted by diseases. However, our 

research mainly focuses on the impact of diseases on prey 

populations, so we reduced the system from four to three 

differential equations by excluding the density of infected 

predators.  The system is then represented as follows: 

 

 

 +
= − − − 

 

= − − −

= + −

1 1

1 1 1

1 1 1

1

.

dS S I
rS a SI b SX

dT K

dI
a SI d I f IX

dT

dX
c SX g IX X

dT

   (1) 

 

S , I , and X  represent the densities of susceptible prey, 

infected prey, and susceptible predators at time T , 

respectively. All the parameters 1 1 1 1 1 1
, , , , , , ,r K a b c d f g  and 


1 are considered as positive constants. The parameters r  is 

the susceptible prey’s growth rate; K  is the carrying 

capacity of susceptible prey; 1
a  is the infection rate of 

susceptible prey; 1
b  is the rate of predation of susceptible 

prey by susceptible predators; 1
d  is the disease-induced 

death which affects the infected prey; 1
f  is the predation 

rates of infected prey by susceptible predators; 1
c  is the 

conversion rate of susceptible prey to infected preys; 1
g  is 

the conversion rate of infected prey to susceptible predators 

and 1  is the predator’s death rate.  

The analysis of the prey-predator system (1) is complicated 

due to the presence of multiple parameters. To simplify the 

analysis, a technique called non-dimensionalisation is 

employed. In this technique, the parameters are 

transformed into dimensionless variables to effectively 

reduce the total number of parameters involved. By reducing 

the complexity of the system through this process, it 

becomes more manageable to study and analyse the stability 
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of the prey-predator dynamics. Therefore, the non-

dimensionalised system followed the scalar. 

 

= = = =, , , .
S I X

s i x t rT
K K K

 

 

Thus, the prey-predator system (1) forms the following:  

 

= − − − −

= − −
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ds
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where, 

 


= = = = = =  =1 1 1 1 1 1 1, , , , , , .
a K b K c K d K f K g K K

a b c d f g
r r r r r r r

 

 

To calculate the steady states, the prey-predator system (2) 

is set equal to zero. Therefore, this prey-predator system can 

have a maximum of six steady states:  

(i) The trivial steady state: ( )=
0

0,0,0E . The steady state 

represents the scenario where susceptible prey, infected prey, 

and susceptible predators all go extinct. 

(ii) The susceptible-prey-free steady state: 
 

= − 
 

1
0, ,

d
E

g f
. 

This steady state indicates the extinction of susceptible prey. 

(iii) The disease-free steady state: 
  −

=  
 

2
,0,
c

E
c bc

. This 

steady state implies that there is no  disease in the 

population. 

(iv) The axial steady state: ( )=
3

1,0,0E . This steady state 

indicates that susceptible prey survives in the absence of 

both disease and predators. 

(v) The predator-free steady state: 
( )

 −
 =
 +
 

4
, ,0

1

d a d
E

a a a
. 

This steady state describes prey survival and the absence 

of predators.  

(vi) The interior steady state: 

 − − +  − − +  − − − +
= − 
 − − + − − + − − + 

2

5
, ,

af bdg fg f ab bcd cf f a acd ag cd dg
E

abg acf cf fg abg acf cf fg abg acf cf fg
. 

This steady state demonstrates the existence of all 

species.  

Subsequently, each of these steady states needs to be 

classified by applying the stability analysis, and the results 

will be presented in the upcoming section. By using the 

Maple software, the Jacobian matrix is then formed and 

used to analyse the stability of these six steady states: 

( )
( , , )

1 2 1

s i x

s i ai bx s a bs

J ai as d fx fi

cx gx cs gi h

 
 
 − − − − − − −
 

= − − − 
 + −
 
 
  

. 

 

In this research, the stability analysis of the system heavily 

relies on the Jacobian matrix. Its role is vital in determining 

the stability characteristics of the system. The stability 

assessment involves substituting the steady states of the 

system into the Jacobian matrix, which then calculates the 

eigenvalues associated with each steady state. The signs of 

these eigenvalues serve as indicators of the stability of the 

system. If all the eigenvalues are negative or less than zero, 

the system is considered to be asymptotically stable, 

meaning that small perturbations will eventually die out and 

the system will tend towards a particular state. On the other 

hand, if there is at least one positive eigenvalue, the system 

is deemed unstable, meaning that small perturbations will 

grow over time and the system will not tend towards a 

particular state. This analytical approach provides valuable 

understanding of the system's long-term dynamics and 

assists in predicting the stability of prey-predator 

populations when disease is present. 

 

IV. RESULT AND DISCUSSION 

 
This section illustrates the results of stability and numerical 

analysis for prey-predator system (2). 

 

A. Stability Analysis 

 
The stability analysis of the prey-predator system (2) is 

analysed in this section. Stability analysis is a crucial tool in 
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studying dynamical systems, allowing us to understand how 

small disturbances affect the long-term behaviour of a 

system. An asymptotically stable node is an equilibrium 

point where trajectories converge towards it over time, 

indicating a predictable and robust behaviour. This occurs 

when the eigenvalues of the Jacobian matrix have negative 

real parts. On the other hand, an unstable node is an 

equilibrium point where trajectories move away from it over 

time, showing sensitivity to initial conditions. This happens 

when the eigenvalues have positive real parts. 

Understanding the stability properties of different 

equilibrium points, such as asymptotically stable nodes and 

unstable nodes, is crucial for predicting and analysing the 

behaviour of dynamical systems. 

Table 1 lists the parameter values used in the system. The 

parameter values were mostly taken from Bera et al. (2015), 

except for one specific parameter d  which represents the 

rate of disease-induced death in infected prey. To determine 

a suitable value for this parameter, a technique called 

parameter variation was employed using the numerical 

bifurcation software called XPPAUT. Through this process, a 

value of =0.3d  was selected. This particular value allows for 

the tracking of bifurcation points and facilitates numerical 

bifurcation analysis in the next section. 

 

Table 1. The Parameter Value Used in The Stability Analysis 

 

 

The stability analysis results shown in Table 2 provide 

information about the behaviour of a system over time. The 

table lists six different steady states, each with its own set of 

eigenvalues. The eigenvalues, which are mathematical 

representations of how a system changes over time, are 

essential in determining the stability of a steady state. 

Steady states 0
E  and 3

E , are considered unstable because 

their eigenvalues have conflicting signs, meaning that the 

system will not remain at a constant state, but will continue 

to change over time. On the other hand, steady state 4
E  is 

asymptotically stable because all of its eigenvalues are 

negative real distinct roots. This means that the system will 

tend towards this steady state over time, and that any small 

fluctuations away from the steady state will eventually decay 

back towards it. Steady states 1
E , 2

E  and 5
E , however, 

have negative populations, which are not considered 

biologically meaningful. This is because, to ensure biological 

accuracy, a minimum population size of zero was 

established for each species, meaning that steady states with 

negative populations are disregarded. In conclusion, the 

stability analysis results presented in Table 2 provide 

valuable insights into the behaviour of a system over time 

and help to determine which steady states are biologically 

meaningful and can be used to make predictions about the 

system's behaviour in the future. 

 

Table 2. The Summary of Stability Analysis 

 

 

The phase plane for the stable steady state 4E  was plotted 

using MATLAB with five different initial values: 

( ) ( ) ( ) ( )4,0.3,0.3 , 4,0.6,0.6 , 4,0.9,0.9 , 4,1.2,1.2  and ( )4,1.5,1.5 . 

As illustrated in Figure 1, the plot shows that all the solution 

trajectories converge towards the steady state 4
E . This 

finding indicates that, in this steady state, the prey species 
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are able to exist, but the predator species have become 

extinct. 

 

Figure 1. 3-D Phase Plane for Prey-Predator System (2)  

 

B. Numerical Bifurcation Analysis 
 

This section delves into the impact of converting infected 

prey into susceptible predators. The one-parameter 

bifurcation is the focus of this analysis, which employs the 

parameter variation technique with the assistance of the 

XPPAUT numerical tools. The conversion rate, g  was 

selected as the bifurcation parameter to investigate the 

presence of transcritical bifurcation. The aim of this study is 

to understand the dynamics of the system and how it 

changes with the conversion rate, which could potentially 

provide valuable insights for future research in this field. 

According to Strogatz (2018), a transcritical bifurcation 

occurs when one steady state "crosses" another, leading to a 

shift in the stability of the system. Figure 2 demonstrates the 

presence of transcritical bifurcation, where the 1
Q  steady 

state branches interchange with each other after crossing the 

bifurcation point at =0.7g . This is a result of a slight 

change in the conversion rate parameter of infected prey to 

susceptible predators, which impacted the stability and 

equilibrium of the system. As shown in the figure, the steady 

state 1
Q  was originally an asymptotically stable node, but 

after the transcritical bifurcation event, it became an 

unstable node. The summary of stability and bifurcation 

analysis provided in Table 3 further supports the findings 

and helps to illustrate the dynamics of the system. 

The phase plane provides a clear understanding of the 

behaviour of the dynamic. The diagrams illustrate the 

system's motion direction and the stability of the steady 

states. The direction field is represented by arrows, with the 

direction of the arrow indicating the direction of motion for 

the system. The representation of each value of the 

bifurcation parameter in the phase plane is presented in 

Figure 3. The different colours in the phase plane diagrams 

represent different initial values used in the analysis. In the 

case of an asymptotically stable node, as shown in Figure 3 

(a), the direction field moves towards the steady state 1
Q , 

indicating that the system is converging towards that point. 

Conversely, for an unstable node, as depicted in Figure 3 (b), 

the direction field diverges from the steady state 1
Q , 

implying that the system is drifting away from that 

particular point. 

 

 

 

Figure 2. The slicing bifurcation diagram for bifurcation 

parameter, g  
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Table 3. Summary of Stability and Bifurcation Analysis 

 

 

 

 

Figure 3: 3-D phase plane for system (2) with different 

bifurcation parameters, g  

 
C. Dynamics of Prey-predator Interactions 

 

This section examines the system's dynamic behaviour over 

time by analysing the time-series graph created using 

MATLAB software. Figure 4 illustrates the interplay between 

the populations of susceptible prey, infected prey, and 

susceptible predators. The initial conditions for the 

population are (4,0.05,0.05)  and the conversion rate 

parameter, g , is set at 0.65 . As time progresses and 

reaches 1000 days, the susceptible prey population stabilises 

at a steady state value, while the infected prey population 

experiences a slight increase before also reaching a stable 

state. Conversely, the susceptible predator population 

gradually decreases and becomes extinct. This behaviour is a 

result of the increasing disease rates among the susceptible 

prey population, which has a profound effect on the 

predator population. As the predator species share the same 

ecosystem with the infected prey, their numbers decline 

severely, highlighting the significant impact that infected 

prey can have on predator populations. Hence, the purpose 

of conducting this time series analysis is to investigate how 

the conversion rate influences the populations of prey and 

predators. By doing so, valuable insights into the dynamics 

of the system and its potential reactions to parameter 

variations can be obtained. 

 

 

Figure 4: Time series graph of system (2) with conversion 

rate parameter =0.65g  

 

V. CONCLUSION 

 
This research aimed to comprehensively investigate a prey-

predator interactions considering the existence of disease 

within the prey population. The primary objective was to 

gain insights into the effects of conversion rates, specifically 

those involving susceptible predators and the transmission 

of disease among the prey, on the coexistence dynamics of 

both species. To achieve this objective, a one-parameter 
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bifurcation analysis was employed, which is a mathematical 

tool used to study the effects of parameter changes on the 

behaviour of a system. 

The findings revealed that different conversion rates have 

a meaningful influence on the behaviour of both species. The 

stability of the steady states changed as the bifurcation 

parameter crossed the transcritical bifurcation point. 

Moreover, it is found that as the bifurcation parameter g  

varied, the predators faced extinction as the prey 

populations struggled with the spread of disease. The 

density of susceptible predator species decreased 

dramatically, indicating the significant impact of infected 

prey on the predator population. This occurs as the infected 

preys cannot grow due to a lack of energy, which is essential 

for growth and survival. 

The information gathered from this research can be used 

to better understand the behaviour of similar dynamic 

systems and how they may be influenced by changes in 

conversion rates. It could also provide valuable insights for 

future research in the field of transcritical bifurcations and 

their impact on dynamic systems. This study highlights the 

importance of conducting bifurcation analysis as a tool for 

understanding the behaviour of dynamic systems and their 

response to changes in parameters. 

It is worth mentioning that the model presented in this 

study is limited to exploring the conversion rate's impact on 

where disease affects only the prey. Consequently, it is 

essential to conduct additional research on how conversion 

rates impact a prey-predator system where disease affects 

the predator population. Furthermore, future investigations 

should consider studying the prey-predator system 

incorporating disease in both populations to gain a more 

comprehensive understanding of how the disease influences 

the coexistence of both species. 
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