

Biochemistry in Sports Performance: Unlocking the Molecular Secrets to Enhanced Athletic Potential

Letisa Derveni^{1*} and Aida Bendo²

¹*Ludwig Maximilian University of Munich, Faculty of Chemistry and Pharmacy, Department of Biochemistry, Feodor-Lynen Strasse 17 81377 Munich, Germany

²Sports University of Tirana, Faculty of Physical Activity and Recreation, Department of Movement and Health, Street: "Muhamed Gjollesha", 1001, Tirana, Albania

Sports performance is a complex phenomenon supported by intricate biological mechanisms. This review delves into the intricate interplay between biochemistry and sports performance, highlighting crucial biological pathways that influence athletic potential and the optimisation of recuperation treatments and diet plans. This review focuses on the biochemical processes governing energy metabolism, muscle function, and recovery in athletes, highlighting the role of nutritional biochemistry, ergogenic aids, oxidative stress management, and biomarker monitoring. A thorough literature search was conducted across databases, focusing on sports biochemistry, exercise physiology, nutrition, and molecular biology. Data from selected studies were synthesised and critically analysed. This review explores energy metabolism pathways, proteins, and signalling networks in athletic activities, muscular contraction, hypertrophy, and exhaustion. It also examines ergogenic aids, antioxidant techniques, macronutrient consumption, and biomarkers for individualised training regimens and fatigue tracking. Focused therapies alter metabolic pathways, enhance athletic performance by optimising energy metabolism, boosting muscle protein synthesis, mitigating oxidative stress, and selecting appropriate ergogenic aids. Sports biochemistry provides a foundation for understanding athletic performance, integrating biochemical knowledge with training and nutritional methods. Future studies aim to develop tailored therapies, identify biomarkers, and clarify ergogenic aid mechanisms, enabling a more scientific and evidence-based approach to sports training.

Keywords: muscle biochemistry; ergogenic aids; biochemical manipulation; oxidative stress; biomarkers; athletic performance

I. INTRODUCTION

Biochemistry plays a crucial role in understanding and optimising sports performance. It goes beyond conventional training methods to explore the complex molecular processes that support athletic talents and optimise training adaptations to enhance athletic performance (Furrer *et al.*, 2023). Sports biochemistry looks at how energy production, muscle contraction, recovery, and adaptation to training stimuli are influenced by metabolic pathways, hormone

control, and cellular changes (Hughes *et al.*, 2018). Comprehending these biochemical mechanisms is crucial for creating focused interventions that might improve athletic ability and reduce injury risk.

Ordovalas *et al.*, (2018), highlighting the significance of customized nutrition plans based on an individual's unique biochemical profile, have cited this review, which attempts to investigate the complex relationship between biochemistry and sports performance (Varillas-Delgado *et al.*, 2022),

*Corresponding author's e-mail: Letisa.Derveni@campus.l-mu.de

illuminating the molecular secrets to reaching peak athletic condition (Cerit, 2020).

According to Spanakis *et al.*, (2024), biochemical processes have a wide-ranging impact on athletic performance, influencing everything from the choice of fuel during exercise to the repair of muscle tissue following intense activity. This emphasises the significance of creatine phosphate in ATP regeneration during high-intensity exercise. In a study on mitochondrial biogenesis, has stated that the rate of ATP synthesis (Turina *et al.*, 2003) is determined by the efficiency of the electron transport chain (Mittal *et al.*, 2009) which has a direct effect on endurance capacity (Aagaard & Andersen, 2010). According to a study of the function of mTOR signalling in muscle protein synthesis (You *et al.*, 2015), muscular hypertrophy and strength increases are also controlled by the equilibrium between protein production and breakdown.

A study has examined the impact of cortisol on glycogen metabolism after prolonged exercise (Hackney & Walz, 2013) and found that hormonal responses to exercise, such as the release of cortisol and testosterone, have a major impact on metabolism, recovery, and adaption (Kraemer & Ratamess, 2005). Thus, a thorough comprehension of these biochemical mechanisms is essential for maximising recuperation, diet, and training plans. Sports biochemistry has become a crucial area in the unrelenting quest for athletic greatness, providing deep understanding of the molecular processes underlying human performance.

This review explores the various physiological mechanisms that control athletic potential, highlighting the complex interactions between energy metabolism, muscle function, and dietary tactics through a plethora of research. By comprehending these molecular foundations, specific therapies that optimise training, improve recuperation, and eventually improve athletic performance can be developed (Li *et al.*, 2024).

Examining the contributions of protein, fat, and carbohydrate oxidation at different exercise intensities and durations, the fundamental role of energy metabolism in promoting physical activity is investigated (Mogheri *et al.*, 2016). Additionally, the complex biochemistry of muscle tissue—the foundation of athletic performance—is examined, with particular attention paid to contractile proteins, muscle

fibre types, and the molecular signalling pathways that control muscle growth and training adaptation (Vainshtein & Sandri 2020). The review summarises evidence-based recommendations on macronutrient and micronutrient intake, highlighting the significance of customised nutritional strategies to support training, recovery, and general health, acknowledging that athletes require optimal nutrition (Amawi *et al.*, 2024).

In addition to conventional methods, the review critically assesses the use of biochemical manipulation methods and ergogenic aids, looking at their possible advantages, disadvantages, and moral implications (Marocolo *et al.*, 2024). Additionally covered are the difficulties caused by oxidative stress throughout vigorous exercise and the significance of antioxidant tactics for accelerating recuperation (Simioni *et al.*, 2018). The potential for non-invasive monitoring of physiological status, training load, and individual reactions to interventions is underlined in the expanding field of biomarker analysis in sports (Lee *et al.*, 2017).

To optimise athletic performance in the future, a thorough understanding of each person's distinct biochemical profile will be necessary, as this review highlights new developments in sports biochemistry, such as the use of genomics, proteomics, and metabolomics to customise training and nutrition (Naureen *et al.*, 2022). By combining these several fields of study, this review seeks to give a thorough picture of the vital role biochemistry plays in revealing the molecular mysteries underlying improved athletic ability (Lombardo *et al.*, 2019). Biesalski (2010) proposed in his meta-analysis of studies examining the effects of antioxidant supplementation on athletic performance that this review will serve as a useful tool for athletes, coaches, and researchers looking to uncover the molecular portrait (Malsagova, *et al.*, 2021) secrets to enhanced athletic potential (Furrer *et al.*, 2023) by synthesising existing research and identifying areas for further investigation.

The goal of this paper is to give a thorough summary of the main metabolic pathways and how they affect different facets of athletic performance. In particular, the goals are to: (1) investigate how the metabolism of macronutrients provides energy for various forms of exercise; (2) investigate how training affects biochemical adaptations; (3) assess how

nutrition and supplementation affect biochemical processes and athletic performance; and (4) emphasise the significance of customised strategies based on individual biochemical profiles.

II. MATERIALS AND METHOD

To give a thorough overview of the biochemical mechanisms underlying athletic performance, the review will concentrate on energy metabolism, muscle biochemistry, nutritional biochemistry, ergogenic aids, oxidative stress and recovery, biomarkers, and new developments in sports biochemistry. In this section, we outline the methodology used to conduct this review.

A combination of sports biochemistry-related keywords and Medical Subject Headings (MeSH) terms was used to do a thorough search of multiple electronic databases, including PubMed, Scopus, and Web of Science, to find relevant literature. Only English-language publications released between January 2000 and December 2024 were included in the search. The reference lists of relevant articles to identify additional studies that may have been missed in the initial search was also reviewed.

The following criteria were used to determine which papers were eligible for inclusion: (1) the study examined biochemical processes associated with athletic performance; (2) the study was published in a peer-reviewed journal; and (3) the study was written in English. The following were among the exclusion criteria: (1) the study was a review or opinion article; (2) the study focused on biochemical processes outside the scope of sports performance; or (3) the study did not report original data.

Using a standardised data extraction form, two reviewers independently extracted the data. The following details were taken from every article: (1) research design; (2) sample size and attributes; (3) biochemical interventions or measures; (4) results; and (5) constraints and advantages. Any disagreements among the reviewers were settled by discussion and consensus.

By classifying articles based on the major themes found in the review, data synthesis was carried out. The results of individual investigations were compiled within each theme, and any consistent or contradicting findings were noted. Several systematic review protocols, such as the Cochrane

Handbook for Systematic Reviews of Interventions and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement, was followed to guarantee the review's accuracy and comprehensiveness. To reduce the possibility of bias, we also employed a thorough search approach, independent reviewers for data extraction, and a quality assessment of the included research. Using a thorough data synthesis procedure and a methodical literature search, this review paper offers a thorough understanding of the metabolic mechanisms underlying athletic performance. We intend to create a useful resource for researchers, practitioners, and athletes looking to maximise sports performance through biochemical treatments by combining the results of many studies and pointing out gaps in existing literature.

III. RESULT AND DISCUSSION

The discovery of the biochemical landscape of sports performance is an important factor that affects the athlete's results. The present understanding of the complex biochemical systems underlying athletic performance is summarised in this overview, emphasising how comprehension of these mechanisms might unlock strategies for optimisation.

Energy metabolism in sports is a major issue, where fatigue resistance and fuel consumption are determined by the interaction of anaerobic and aerobic pathways. Research has shown that compared to inactive people, endurance athletes had higher mitochondrial biogenesis and fatty acid oxidation capability (Yoshida *et al.*, 2013). A key component of training for many sports is still controlling carbohydrate availability using glycogen supercompensation techniques, and creatine phosphate's function as an ATP buffer during high-intensity exercises is still essential (Guimarães-Ferreira, 2014). Recent studies, however, highlight the significance of customised carbohydrate intake according to training length and intensity (Jeukendrup, 2014).

Examining Muscle Biochemistry and Performance, we see that the makeup of fibre types, enzyme activity, and sarcoplasmic reticulum function all have a significant impact on the contractile mechanism. Contractile speed and fatigue resistance are determined by the myosin heavy chain isoforms (MHC-I, MHC-IIa, and MHC-IIx); exceptional

athletes exhibit a distribution of fibre types relevant to their sport (Hall *et al.*, 2021). Increased activity of enzymes such as citrate synthase and phosphofructokinase, which indicate improved aerobic and anaerobic capability, respectively, are examples of training-induced adaptations in muscle (Manabe *et al.*, 2013). Additionally, it is crucial to continue researching how signalling pathways like activated protein kinase (AMPK) (Richter & Ruderman, 2009) and mTOR control the synthesis of muscle proteins (Wang & Proud, 2006) and the production of mitochondria in response to exercise (Drake *et al.*, 2016).

The importance of nutritional biochemistry for athletes is further highlighted by the study. Performance can be greatly impacted by manipulating macronutrients, such as fat adaptation, protein timing, and carbohydrate loading (Burke *et al.*, 2011). Deficits can affect athletic performance because micronutrients including iron, vitamin D, and B vitamins are essential for energy synthesis, oxygen transport, and muscular function (Lukaski, 2004). To maximise nutrient consumption and performance outcomes, the new discipline of nutrigenomics emphasises the possibility of customised nutrition strategies based on individual genetic predispositions (Heianza & Qi 2017).

In sports, the use of biochemical manipulation and ergogenic aids is a common yet contentious practice. A well-researched and successful method for increasing muscle mass and power output is still creatine supplementation (Rawson & Volek, 2003). High-intensity exercise performance has been demonstrated to be improved and muscle buffering capacity increased by beta-alanine supplementation (Hill *et al.*, 2007). However, there are still many more ergogenic aids whose safety and effectiveness are in doubt, and biochemical manipulation, including blood doping and the use of anabolic steroids, has serious ethical ramifications (Reardon & Creado, 2014).

Exercise duration and intensity are inextricably linked to oxidative stress and recovery. Reactive oxygen species (ROS) are produced during vigorous exercise and may be a factor in fatigue and muscle injury. Supplementing with antioxidants, especially vitamins C and E, has been studied to reduce oxidative stress; however, there is conflicting evidence on performance improvement, and taking too many supplements may potentially prevent training adaptations (Higgins *et al.*, 2020). Recovery-enhancing techniques

including protein intake and submersion in cold water can reduce inflammation and hasten muscle repair (Moore *et al.*, 2022).

The use of biomarkers and monitoring in sports is transforming our capacity to evaluate training load, track recuperation, and spot possible overtraining. Blood-based biomarkers, including cortisol, creatine kinase, and lactate dehydrogenase, offer important information about metabolic stress, muscle injury, and hormonal reactions to exercise (Lee *et al.*, 2017). According to Cozma *et al.*, (2017), salivary cortisol and alpha-amylase are becoming non-invasive methods for tracking stress and recuperation. When combined with performance data, these biomarkers can offer a more comprehensive picture of an athlete's physiological state and help guide training choices.

The investigation of the gut microbiome's impact on athletic performance, the possibility of genetically profiled individualised training, and the creation of new biomarkers for evaluating adaptation and recuperation are examples of emerging trends in sports biochemistry. Understanding the complex interplay between the gut microbiome and host physiology could lead to targeted dietary therapies to optimise food absorption, immunological function, and energy metabolism (Clarke *et al.*, 2014). More individualised training and nutrition plans could be made possible by the potential to detect individual genetic predispositions for athletic qualities thanks to developments in proteomics and genomics (Unal & Ozer, 2014). These new developments demonstrate how sports biochemistry is still developing and how it may help us discover more ways to improve athletic ability.

Biochemistry plays a critical part in comprehending and improving athletic performance. The complex interactions among energy metabolism, muscular function, nutrition, and recovery processes at the molecular level determine an athlete's ability to exert effort, adapt, and eventually succeed, as explained in the review (Lavin *et al.*, 2022). This talk will explore the main points covered in the study, highlighting their importance and suggesting future paths in this quickly developing topic.

Sports energy metabolism is one of the main subjects covered. The review highlights that various sports require varied contributions from the energy system. While high-

intensity activities rely more on anaerobic glycolysis and the phosphagen system, endurance events rely predominantly on oxidative phosphorylation, which is powered by lipids and carbohydrates (Cooper, 2000). Training adaptations that boost energy generation capacity, delay fatigue, and improve endurance performance—like higher mitochondrial density and better substrate utilisation—are probably included in the review (Egan & Sharples, 2023). Additionally, the paper most likely discusses the significance of metabolic flexibility as a major factor in athletic achievement, which is the capacity to effectively switch between fuel sources based on the duration and intensity of exercise (Pi *et al.*, 2023).

The work highlights the intricate molecular processes that control muscular contraction, force output, and fatigue while further elaborating muscle biochemistry and performance. Understanding muscle mechanics requires knowledge of the composition and functions of myofibrils, including the roles of actin, myosin, and regulatory proteins like troponin and tropomyosin (Squire, 2019). The review probably explores how the various fibre types (Type I, Type IIa, and Type IIx) affect endurance and power production, emphasising the molecular traits that set them apart (e.g., glycolytic enzyme concentration, myosin ATPase activity) (Menard *et al.*, 2014). Furthermore, the review probably looks at how intracellular signalling networks, including the mTOR pathway, control the production of muscle proteins and the growth of muscle in response to resistance training (Ogasawara *et al.*, 2013).

A crucial topic included in the review is nutritional biochemistry for athletes, which highlights the role that macronutrient and micronutrient intake play in sustaining energy needs, muscle growth, and recovery (Ghazzawi, 2023). According to Margolis *et al.* (2021), the review examines the ideal carbohydrate consumption for glycogen replenishment, the protein needs for muscle synthesis and repair, and the function of dietary lipids in hormone production and general health. The significance of vitamins and minerals, including calcium, vitamin D, and iron, in different metabolic processes and bone health is also included in the review (Burns-Whitmore, 2024). Pre-, during-, and post-exercise nutrient timing is also covered, emphasising its effects on performance and recuperation (Aragon & Schoenfeld, 2013).

The complicated and frequently contentious subject of ergogenic aids and biochemical manipulation is covered in

this study. It describes the possible impacts on performance as well as the methods of action of several drugs, including nitrates, beta-alanine, creatine, and caffeine (Murphy *et al.*, 2022). The evaluation most likely addresses the moral and legal ramifications of performance-enhancing drug use, stressing the significance of evidence-based decision-making and compliance with anti-doping laws (Petróczki & Boardley, 2022).

This study provides significant new insights into the relationship between oxidative stress and recovery. Reactive oxygen species (ROS), which can harm cellular components and cause inflammation and muscular exhaustion, are produced in greater quantities during strenuous exercise (Zulfahmidah & Imran 2022). The review most likely covers the effect of dietary antioxidants in reducing oxidative stress as well as the body's antioxidant defence systems, which include enzymes like glutathione peroxidase and superoxide dismutase (Jomova *et al.*, 2024). Additionally, to promote tissue repair and lessen muscle discomfort, the review emphasises the significance of recovery techniques such sleep, diet, and active recovery (Chennaoui *et al.*, 2021).

Another crucial subject in the review is biomarkers and monitoring in sports, which probably covers the use of saliva, urine, and blood samples to evaluate an athlete's physiological state, training load, and recuperation. Cortisol, inflammatory cytokines, and creatine kinase (CK) are examples of biomarkers that might offer important information on immunological function, stress levels, and muscle injury (Dhama *et al.*, 2019). According to Marques *et al.* (2024), the review also discusses the potential of individualised monitoring techniques that use each person's unique biomarker profile to customise training and recuperation plans.

A discussion of contemporary developments in sports biochemistry, highlighting intriguing new research directions, rounds up the study. These could include using proteomics and genomics to determine how each person reacts to training and to find genetic predispositions to athletic performance (Bouchard *et al.*, 2011). The review examines how gut microbiota affects immunological response, energy metabolism, and general health (Wu & Wu, 2012). The use of metabolomics to find new biomarkers of tiredness, recovery,

and adaptability are also covered in the review (Qiu *et al.*, 2023; Vo & Trinh, 2024).

The review concludes by highlighting the critical role that biochemical understanding plays in maximising sports performance. Researchers and practitioners can create more efficient training plans, individualised nutrition plans, and creative interventions to improve athletic potential and advance athlete health and well-being by combining the concepts of energy metabolism, muscle biochemistry, nutrition, recovery, and monitoring. To gain a deeper understanding of the molecular underpinnings of athletic performance and to create more focused and efficient therapies, further research in cutting-edge fields like genomics, proteomics, metabolomics, and gut microbiome is very promising.

IV. CONCLUSION

In conclusion, this review has highlighted the complex role that biochemistry plays in comprehending and improving athletic performance. A solid background in biochemistry offers important insights into everything from the minute aspects of energy metabolism driving various sports to the molecular processes controlling muscle contraction and adaptability. It takes a thorough grasp of biochemical pathways to maximise performance through focused dietary choices and to comprehend the advantages and disadvantages of ergogenic aids. Personalised training plans and improved recuperation techniques are also made possible by controlling oxidative stress and keeping an eye on important indicators.

Sports biochemistry offers a strong foundation for comprehending the molecular underpinnings of athletic performance. Through the integration of biochemical knowledge with training concepts and nutritional methods, coaches and athletes can discover new ways to improve performance and attain the best possible outcomes. Developing tailored therapies that address each athlete's distinct biochemical profile, identifying new biomarkers, and clarifying the mechanisms of action of newly developed ergogenic aids should be the main goals of future study. A more scientific and evidence-based approach to sports training and performance enhancement will be made possible by these developments. Future developments in the

fields of metabolomics, genomics, and personalised nutrition hold the potential to completely transform how we train athletes and improve their performance, thereby establishing the vital and always changing role that biochemistry plays in the sports industry. Future research should focus on translating these advanced biochemical insights into practical, athlete-specific interventions, ultimately unlocking the full athletic potential of individuals across a spectrum of sporting disciplines.

V. LIMITATIONS OF THE STUDY

This article provides a comprehensive overview of energy metabolism and muscle biochemistry, but faces limitations due to its vast scope, potential overlooking nuanced interactions, and the rapidly evolving nature of sports biochemistry. The review's scope is constrained by existing literature on biomarkers, nutritional strategies, and recovery techniques, potentially leaving gaps in understanding athletic performance.

VI. AUTHORS' CONTRIBUTIONS

Study concept and design: Letisa Derveni, Acquisition of data: Aida Bendo. Analysis and interpretation of data: Letisa Derveni, Drafting of the manuscript: Letisa Derveni, Aida Bendo. Critical manuscript revision for important intellectual content: Letisa Derveni. Statistical analysis: Aida Bendo, Administrative, technical, and material support: Aida Bendo. Study supervision: Letisa Derveni.

VII. ETHICAL CONSIDERATION

The publication of this review did not require ethical approval. The authors declare that the findings of this review are presented honestly and without any fabrication, falsification, or inappropriate data manipulation.

VIII. CONFLICT OF INTEREST

The authors declare no conflict of interest.

IX. FINANCIAL DISCLOSURE

The authors have no financial interests related to the materials in the manuscript.

X. FUNDING/SUPPORT

There was no funding for this study. There is no financial interest or profit that any author has derived from this research.

XI. REFERENCES

Aagaard, P & Andersen, JL 2010, 'Effects of strength training on endurance capacity in top-level endurance athletes', *Scandinavian Journal of Medicine & Science in Sports*, vol. 20, suppl. 2, pp. 39–47.

Amawi, A, AlKasasbeh, W, Jaradat, M, Almasri, A, AlObaidi, S, Hammad, AA, Bishtawi, T, Fataftah, B, Turk, N, Saoud, HA, Jarrar, A & Ghazzawi, H 2024, 'Athletes' nutritional demands: a narrative review of nutritional requirements', *Frontiers in Nutrition*, vol. 10, 1331854.

Aragon, AA & Schoenfeld, BJ 2013, 'Nutrient timing revisited: is there a post-exercise anabolic window?', *Journal of the International Society of Sports Nutrition*, vol. 10, no. 1, p. 5.

Biesalski, HK, Grune, T, Tinz, J, Zöllner, I & Blumberg, JB 2010, 'Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials', *Nutrients*, vol. 2, no. 9, pp. 929–949.

Bouchard, C, Rankinen, T & Timmons, JA 2011, 'Genomics and genetics in the biology of adaptation to exercise', *Comprehensive Physiology*, vol. 1, no. 3, pp. 1603–1648.

Burke, LM, Hawley, JA, Wong, SH & Jeukendrup, AE 2011, 'Carbohydrates for training and competition', *Journal of Sports Sciences*, vol. 29, suppl. 1, pp. S17–S27.

Burns-Whitmore, B, Froyen, EB & Isom, KA 2024, 'Vitamin D and Calcium—An Overview, Review of Metabolism, and the Importance of Co-Supplementation', *Dietetics*, vol. 3, no. 4, pp. 588–608.

Cerit, M 2020, 'The Secrets to Better Athletic Performance', *Biomed J Sci & Tech Res*, vol. 25, no. 1, pp. 18740–18741.

Chennaoui, M, Vanneau, T, Trignol, A, Arnal, P, Gomez-Merino, D, Baudot, C, Perez, J, Pochettino, S, Eirale, C & Chalabi, H 2021, 'How does sleep help recovery from exercise-induced muscle injuries?', *Journal of Science and Medicine in Sport*, vol. 24, no. 10, pp. 982–987.

Clarke, SF, Murphy, EF, O'Sullivan, O, Lucey, AJ, et al. 2014, 'Exercise and associated dietary extremes impact on gut microbial diversity', *Gut*, vol. 63, no. 12, pp. 1913–1920.

Cooper, GM 2000, *The Cell: A Molecular Approach*, 2nd edn, Sinauer Associates, Sunderland, MA.

Cozma, S, Dima-Cozma, LC, Ghiciuc, CM, Pasquali, V, Saponaro, A & Patacchioli, FR 2017, 'Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk', *Brazilian Journal of Medical and Biological Research*, vol. 50, no. 2, e5577.

Dhama, K, Latheef, SK, Dadar, M, Samad, HA, Munjal, A, et al. 2019, 'Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values', *Frontiers in Molecular Biosciences*, vol. 6, 91.

Drake, JC, Wilson, RJ & Yan, Z 2016, 'Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle', *FASEB Journal*, vol. 30, no. 1, pp. 13–22.

Egan, B & Sharples, AP 2023, 'Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training', *Physiological Reviews*, vol. 103, no. 3, pp. 2057–2170.

Furrer, R, Hawley, JA & Handschin, C 2023, 'The molecular athlete: exercise physiology from mechanisms to medals', *Physiological Reviews*, vol. 103, no. 3, pp. 1693–1787.

Ghazzawi, HA, Hussain, MA, Raziq, KM, Alsendi, KK, et al. 2023, 'Exploring the relationship between micronutrients and athletic performance: a comprehensive scientific systematic review of literature in sports medicine', *Sports*, vol. 11, no. 6, 109.

Guimarães-Ferreira, L 2014, 'Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles', *Einstein (São Paulo)*, vol. 12, no. 1, pp. 126–131.

Hackney, AC & Walz, EA 2013, 'Hormonal adaptation and the stress of exercise training: the role of glucocorticoids', *Trends in Sport Sciences*, vol. 20, no. 4, pp. 165–171.

Hall, ECR, Semenova, EA, Bondareva, EA, et al. 2021, 'Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects', *Biology of Sport*, vol. 38, no. 4, pp. 659–666.

Heianza, Y & Qi, L 2017, 'Gene-diet interaction and precision nutrition in obesity', *International Journal of Molecular Sciences*, vol. 18, no. 4, 787.

Higgins, MR, Izadi, A & Kaviani, M 2020, 'Antioxidants and exercise performance: with a focus on vitamin E and C supplementation', *International Journal of Environmental Research and Public Health*, vol. 17, no. 22, 8452.

Hill, CA, Harris, RC, Kim, HJ, Harris, BD, Sale, C, Boobis, LH, Kim, CK & Wise, JA 2007, 'Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity', *Amino Acids*, vol. 32, no. 2, pp. 225–233.

Hughes, DC, Ellefson, S & Baar, K 2018, 'Adaptations to endurance and strength training', *Cold Spring Harbor Perspectives in Medicine*, vol. 8, no. 6, a029769.

Jeukendrup, A 2014, 'A step towards personalized sports nutrition: carbohydrate intake during exercise', *Sports Medicine*, vol. 44, suppl. 1, pp. S25–S33.

Jomova, K, Alomar, SY, Alwasel, SH, Nepovimova, E, Kuca, K & Valko, M 2024, 'Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants', *Archives of Toxicology*, vol. 98, no. 5, pp. 1323–1367.

Kraemer, WJ & Ratamess, NA 2005, 'Hormonal responses and adaptations to resistance exercise and training', *Sports Medicine*, vol. 35, no. 4, pp. 339–361.

Lavin, KM, Coen, PM, Baptista, LC, Bell, MB, Drummer, D, Harper, SA, et al. 2022, 'State of knowledge on molecular adaptations to exercise in humans: historical perspectives and future directions', *Comprehensive Physiology*, vol. 12, no. 2, pp. 3193–3279.

Lee, EC, Fragala, MS, Kavouras, SA, Queen, RM, Pryor, JL & Casa, DJ 2017, 'Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes', *Journal of Strength and Conditioning Research*, vol. 31, no. 10, pp. 2920–2937.

Li, S, Kempe, M, Brink, M, et al. 2024, 'Effectiveness of recovery strategies after training and competition in endurance athletes: an umbrella review', *Sports Medicine – Open*, vol. 10, 55.

Lombardo, B, Izzo, V, Terracciano, D, Ranieri, A, et al. 2019, 'Laboratory medicine: health evaluation in elite athletes', *Clinical Chemistry and Laboratory Medicine*, vol. 57, no. 10, pp. 1450–1473.

Lukaski, HC 2004, 'Vitamin and mineral status: effects on physical performance', *Nutrition*, vol. 20, nos 7–8, pp. 632–644.

Malsagova, KA, Butkova, TV, Kopylov, AT, Izotov, AA, et al. 2021, 'Molecular portrait of an athlete', *Diagnostics*, vol. 11, no. 6, 1095.

Manabe, Y, Gollisch, KS, Holton, L, Kim, YB, Brandauer, J, Fujii, NL, Hirshman, MF & Goodear, LJ 2013, 'Exercise training-induced adaptations associated with increases in skeletal muscle glycogen content', *The FEBS Journal*, vol. 280, no. 3, pp. 916–926.

Margolis, LM, Allen, JT, Hatch-McChesney, A & Pasiakos, SM 2021, 'Coingestion of carbohydrate and protein on muscle glycogen synthesis after exercise: a meta-analysis', *Medicine and Science in Sports and Exercise*, vol. 53, no. 2, pp. 384–393.

Marocolo, M, Mota, GR, Rodrigues, AB, de Matos, RC, et al. 2024, 'Unveiling bias: examining the influence of positive results on ergogenic aids in published sports science studies', *Sports Medicine International Open*, vol. 8, a21816798.

Marques, L, Costa, B, Pereira, M, Silva, A, Santos, J, et al. 2024, 'Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare', *Pharmaceutics*, vol. 16, no. 3, 332.

Menard, L, Maughan, D & Vigoreaux, J 2014, 'The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon?', *Biology*, vol. 3, no. 3, pp. 623–644.

Mittal, N, Babu, MM & Roy, N 2009, 'The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 *Saccharomyces cerevisiae*', *Aging Cell*, vol. 8, no. 6, pp. 643–653.

Moghetti, P, Bacchi, E, Brangani, C, Donà, S & Negri, C 2016, 'Metabolic effects of exercise', *Frontiers of Hormone Research*, vol. 47, pp. 44–57.

Moore, E, Fuller, JT, Buckley, JD, Saunders, S, Halson, SL, Broatch, JR & Bellenger, CR 2022, 'Impact of cold-water immersion compared with passive recovery following a single bout of strenuous exercise on athletic performance in physically active participants: a systematic review with meta-analysis and meta-regression', *Sports Medicine*, vol. 52, no. 7, pp. 1667–1688.

Murphy, MJ, Rushing, BR, Sumner, SJ & Hackney, AC 2022, 'Dietary supplements for athletic performance in women: beta-alanine, caffeine, and nitrate', *International Journal*

of *Sport Nutrition and Exercise Metabolism*, vol. 32, pp. 311–323.

Naureen, Z, Cristoni, S, Donato, K, Medori, MC, Samaja, M, et al. 2022, ‘Metabolomics application for the design of an optimal diet’, *Journal of Preventive Medicine and Hygiene*, vol. 63, no. 2 suppl. 3, pp. E142–E149.

Ogasawara, R, Kobayashi, K, Tsutaki, A, Lee, K, Abe, T, Fujita, S, Nakazato, K & Ishii, N 2013, ‘mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle’, *Journal of Applied Physiology*, vol. 114, no. 7, pp. 934–940.

Ordovas, JM, Ferguson, LR, Tai, ES & Mathers, JC 2018, ‘Personalised nutrition and health’, *BMJ*, vol. 361, k2173.

Petróczki, A & Boardley, ID 2022, ‘The meaning of “clean” in anti-doping education and decision making: moving toward integrity and conceptual clarity’, *Frontiers in Sports and Active Living*, vol. 4, 869704.

Pi, A, Villivalam, SD & Kang, S 2023, ‘The molecular mechanisms of fuel utilization during exercise’, *Biology*, vol. 12, no. 11, 1450.

Qiu, S, Cai, Y, Yao, H, Lin, C, Xie, Y, Tang, S & Zhang, A 2023, ‘Small molecule metabolites: discovery of biomarkers and therapeutic targets’, *Signal Transduction and Targeted Therapy*, vol. 8, no. 1, 132.

Rawson, ES & Volek, JS 2003, ‘Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance’, *Journal of Strength and Conditioning Research*, vol. 17, no. 4, pp. 822–831.

Reardon, CL & Creado, S 2014, ‘Drug abuse in athletes’, *Substance Abuse and Rehabilitation*, vol. 5, pp. 95–105.

Richter, EA & Ruderman, NB 2009, ‘AMPK and the biochemistry of exercise: implications for human health and disease’, *Biochemical Journal*, vol. 418, no. 2, pp. 261–275.

Simioni, C, Zauli, G, Martelli, AM, Vitale, M, Sacchetti, G, Gonelli, A & Neri, LM 2018, ‘Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging’, *Oncotarget*, vol. 9, no. 24, pp. 17181–17198.

Spanakis, M, Fragkiadaki, P, Renieri, E, Vakonaki, E, et al. 2024, ‘Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights’, *Frontiers in Sports and Active Living*, vol. 5, 1327792.

Squire, J 2019, ‘Special issue: the actin-myosin interaction in muscle: background and overview’, *International Journal of Molecular Sciences*, vol. 20, no. 22, 5715.

Turina, P, Samoray, D & Gräber, P 2003, ‘H⁺/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CFoF1-liposomes’, *EMBO Journal*, vol. 22, no. 3, pp. 418–426.

Unal, M & Ozer Unal, D 2004, ‘Gene doping in sports’, *Sports Medicine*, vol. 34, no. 6, pp. 357–362.

Vainshtain, A & Sandri, M 2020, ‘Signaling pathways that control muscle mass’, *International Journal of Molecular Sciences*, vol. 21, no. 13, 4759.

Varillas-Delgado, D, Del Coso, J, Gutiérrez-Hellín, J, Aguilar-Navarro, M, Muñoz, A, Maestro, A & Morencos, E 2022, ‘Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing’, *European Journal of Applied Physiology*, vol. 122, no. 8, pp. 1811–1830.

Vo, DK & Trinh, KTL 2024, ‘Emerging biomarkers in metabolomics: advancements in precision health and disease diagnosis’, *International Journal of Molecular Sciences*, vol. 25, no. 23, 13190.

Wang, X & Proud, CG 2006, ‘The mTOR pathway in the control of protein synthesis’, *Physiology*, vol. 21, pp. 362–369.

Wu, HJ & Wu, E 2012, ‘The role of gut microbiota in immune homeostasis and autoimmunity’, *Gut Microbes*, vol. 3, no. 1, pp. 4–14.

Yoshida, Y, Jain, SS, McFarlan, JT, Snook, LA, Chabowski, A & Bonen, A 2013, ‘Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis’, *Journal of Physiology*, vol. 591, no. 18, pp. 4415–4426.

You, JS, Anderson, GB, Dooley, MS & Hornberger, TA 2015, ‘The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice’, *Disease Models & Mechanisms*, vol. 8, no. 9, pp. 1059–1069.

Zulfahmidah & Imran Safei 2022, ‘The role of reactive oxygen species in muscle: beneficial/harmful’, *Green Medical Journal*, vol. 4, no. 3, pp. 84–92.