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In current practice, stock is considered as a univariate time 
series of closing price. Under the assumption that log price 
returns are independent and identically distributed (i.i.d), 
the similarity among stocks is measured by using Pearson 
correlation coefficient (PCC) that is based on log price 
returns data. Those consideration and assumption allow us 
to represent stocks market as a complex system in the form 
of complex network (Bonanno et al. 2003, 2004; Jung et 
al. 2006; Garas & Argyrakis 2007; Brida & Risso 2008; 
Sieczka & Holyst 2009; Galazka 2011). More specifically, 
stock is represented as a node and the relationship between 
two stocks as a link (Tumminello et al. 2005; Onnela 2006; 
Kitsak et al. 2010; Newman 2011). According to graph 
theory, that network is an undirected weighted complete 
and finite graph (West  2001). 

Essentially, in daily market activity, stock is considered 
as multivariate time series composed by opening, highest, 
and lowest prices besides closing price. This consideration, 
which is closer to the reality, is not new in stocks network 
analysis. For example, Brida & Risso (2008) talk on 
bivariate time series similarity of closing price and volume 
transformed into univariate time series through the use of 
symbolic time series analysis (STSA). They noted that if we 
used only a univariate time series of closing price to obtain 
the structure and taxonomy of the stocks market, we would 
lose the possibility of embodying information from other 
variables such as trading volume. Another example is the 

work of Yamashita and Yodahisa (2012), who considered 
stock as a multivariate time series of its opening, highest, 
lowest and closing prices.  They asserted that the use these 
four prices provided more information than that of the 
information provided by only the closing price. Hence, to 
construct the network among stocks in this setting, they 
proposed a particular ‘correlation’ coefficient. However, in 
the generalisation of PCC, neither of those two functions, 
which means that their similarity measures cannot be used 
in a special case where stock is represented by only its 
closing price. This motivated us to develop a similarity 
measure among the multivariate time series of opening, 
highest, lowest and closing prices which generalise PCC.

In this paper we have opted to use Escoufier’s operator, 
which characterises a multivariate data set by an operator, 
to generalise PCC. If PCC is the cosine of the angle 
between two variables, then we define the correlation of 
two variable vectors as the cosine of the angle between 
two operators. This approach allows us to define the notion 
of similarity among stocks in multivariate setting and 
then construct stocks network. The rest is to investigate 
the topological properties of stocks. For that purpose, as 
suggested in Mantegna (1999) and Mantegna and Stanley 
(2000), minimal spanning tree (MST) is used.  

In the next section, the notion of multivariate correlation 
will be introduced by representing random vector as an 
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Escoufier’s operator. Since, algebraically, PCC is the cosine 
of the angle between two vectors, the notion of similarity 
among stocks in multivariate setting is developed by using 
that algebraic concept on two Escoufier’s operators. Section 
3 is devoted for multivariate stocks network construction 
and analysis. In Section 4, to illustrate the advantages of 
the proposed methodology, Bursa Malaysia data will be 
analysed. The results will be compared to those provided 
by the standard methodology based on univariate approach 
and discussed in Section 5. Finally, concluding remarks in 
the last section is highlighted to close the presentation. The 
list of company names involved in this study is given in the 
appendix.

Similarity among Stocks in Multivariate Setting

For simplicity, we write pi(t,1), pi(t,2), pi(t,3) and pi(t,4)  
the opening, highest, lowest and closing prices of stock  
i; i = 1, 2, …, n. Here n is the number of stocks under study. 
Let,

ri(t,m) = ln pi(t,m) – ln pi(t – 1,m) (1)

the logarithm of the m-th price returns of stock i at time t; m 
= 1, 2, 3, 4. Theoretically, each of the four stock’s prices is 
assumed to be a geometric Brownian motion (GBM) process 
for all stocks. This means that ri(t,m) are independent and 
identically normally distributed (i.i.n.d) for all m (Wilmott 
2007). However, in practice, it is sufficient to assume that 
ri(t,m) are i.i.d. This is to ensure that PCC and Escoufier’s 
operator are working well. 

That assumption allows us to consider ri(t,1), ri(t,1),   
ri(t,3) and ri(t,4) in (1) as the components of a random 
vector. Thus, stock is considered as a multivariate object. 
In order to be able to speak about the ‘correlation’ of two 
random vectors, in the next paragraph random vector will 
be represented as an Escoufier’s operator. Since the set of 
all such operators is a Hilbert-Schmidt space (Escoufier 
1973, 1976), we all know how to define the angle between 
two operators.
   

Operator Representation of Random Vector 

Escoufier’s operator (Escoufier 1973, 1976; Djauhari 2011) 
is a very powerful tool to simplify multivariate analysis  
into univariate-like. In practice, it is closely related to the 
notion of principal components of a random vector. Let 
us start by considering L2 (Ω, А, P) the set of all centred 
random variables of finite variance defined on a probability 
space (Ω, А, P). We denote X = (X1, X2,..., Xp)t a random 
vector of p components; Xk is in L2 (Ω, А, P) for all k = 
1, 2, …, p. To that random vector, Esoufier (1973, 1976) 
associated the following operator φX from L2 (Ω, А, P) into 
itself,

                    
              =                            ; for all Y in L2 (Ω, А, P).

In matrix notation,

φX (Y) = E(XY) X.

We recognise E(XY) the covariance matrix of random 
vector X and random variable Y. The role of operator   is 
to put Y in the coordinate system of X1, X2,..., Xp. It is 
then a linear combination of those random variables. The 
coefficient of Y on Xk, i.e., the scalar product in the space L2 
(Ω, А, P), is E(XkY) the covariance of Y and Xk. 

The following theorem shows that the operator φX 

characterises the random vector X in the sense that there 
is a one-to-one correspondence between the set P of all 
random vectors in L2 (Ω, А, P) and the set R of all such 
operators. The proof can be seen in Escoufier (1973).

Theorem. Let ΣXX be the covariance matrix of X 
assumed to be positive definite. If u  Rp such that ΣXX u 
=  λu, then Y = ut X satisfies φX (Y) = λY. Conversely, if Y 
  L2 (Ω, А, P) such that φX (Y) = λY, then Y = ut X where u 
satisfies ΣXX u = λu. 

From this theorem we learn that (i) φX  and ΣXX  have the 
same positive eigenvalues, and (ii) if λ ≠ 0, then Y is the 
principal component of X with variance λ. 

Correlation of Two Random Vectors 

The operator φX is credited to Escoufier and called 
Escoufier’s operator associated with the random vector X. 
From the theorem we have a very important consequence. 
Two random vectors are declared similar if and only if their 
covariance matrices have the same eigensystem. With this, 
the study of random vectors is transformed into the study 
of operators. Therefore, since L2 (Ω, А, P) with the scalar 
product defined by covariance is a Hilbert space, in R we 
can define a scalar product,

< φX,φY > = Tr (ΣXY ΣYX)

for all X and Y in P where Tr is the trace operator. It is 
the scalar product in R induced by the covariance. 
Consequently, 

          =                      and           =                     ,
   
are the length of operators φX  and φY, respectively, and 
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is the cosine of the angle between the two φX  operators  
and φY. The parameter XY  in (2) defines the ‘correlation’ of 
random vectors X and Y. In the literature, it is called vector 
correlation of X and Y.

Sample Version of Vector Correlation 

Consider two stocks represented as random vectors X and Y 
each of p = 4 and q = 4 components. The m-th component 
of X and Y are rX(t,m) and rY(t,m); m = 1, 2, 3, 4. We 
denote X and Y data matrices of size (T  p) and (T  q), 
representing a realization of X and Y, respectively. Here, 
T is the length of time support of the four prices. Without 
loss of generality, we assume they are centred in column. 
Then, the sample covariance matrix of X, Y, and between 
X and Y are, 

SXX =                   , SYY  =                   and SXY  =                  .

Therefore, see also Robert and Escoufier (1976), the sample 
form of XY  is,

RVXY = (3)

        =                                               . 

This RV-coefficient is called Escoufier vector coefficient 
(EVC). It satisfies the following properties:

 1. 0 ≤ RVXY ≤ 1. It equals 0 if each column of X is 
uncorrelated with all columns of Y, and it is equal to 
1 if the eigensystem of SXX  is equal to that of SYY. 

 2. If both stocks are represented by their closing prices 
only, then RVXY  is the squared of PCC. 

 3. If one stock represented by its closing price only, and 

the other one by its four prices, RVXY  =   

  where R2
XY is the R-squared when we regress the 

closing price of the first stock, with respect to all 
prices of the second. 

Therefore, EVC generalises the notion of similarity  
of two random variables into two random vectors. In  
short, PCC measures the linear relationship of these 
two stocks each of which is represented by its closing  
price, whereas EVC measures the linear relationship of 
those stocks represented by their opening, highest, lowest, 
and closing prices. Hence, in that sense, EVC generalises 
PCC.

Four Prices-based Stocks Network

Network Construction 

Basically, stocks network is constructed once we have 
measured the similarity among stocks. Based on the four 
prices discussed in the previous section, the notion of 
similarity of stocks i and j will be defined by using RV 
coefficient. Let Sij be the covariance matrix of the four 
prices in both stocks i and j. Then, Sii  is the covariance 
matrix of the four prices in stock i. From (3), the RV 
coefficient of stocks i and j is,

RVij =                              . (4)

Since EVC in (4) measures the linear relationship 
of two stocks each which is represented by its opening, 
highest, lowest and closing prices, in similar manner as in 
Mantegna (1999), it can be used as a similarity measure 
of those stocks in multivariate setting defined by the four 
prices.

By using EVC, let V be a matrix of size (n  n) with 
RVij  as the element of its i-th row and j-th column. Then, V 
is a symmetric matrix with all diagonal elements equal to 
1 and the off-diagonal elements are between 0 and 1. This 
matrix represents stocks network in multivariate setting of 
opening, highest, lowest, and closing prices. This vector 
correlations network generalises the notion of correlations 
network such as presented in Mantegna (1999), Mantegna 
and Stanley (2000), Bonanno et al. (2003, 2004), and 
Galazka (2011). 

Network Analysis Methodology 

Inspired by the work of Mantegna (1999), to analyse the 
vector correlations network, we define the function, 

δij  =                       . (5)

It defines the distance between two stocks i and j. If D is 
a matrix of size (n  n) with δij 

 
as the element of its i-th row 

and j-th column, then D represents an undirected weighted 
complete graph of n stocks in multivariate setting. Like 
in univariate setting, in what follows multivariate stocks 
network is analysed by using (i) the MST of D to filter 
the economic information contained in vector correlations 
network, and (ii) the four principal centrality measures to 
interpret the topological properties of each stock in the 
filtered network.

To obtain an MST of D, we use Kruskal’s algorithm 
introduced by Kruskal (1956) and developed by Djauhari 
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and Gan (2013). Furthermore, to understand the topological 
properties of each stock, we use degree, betweenness, 
and closeness centrality measures introduced in Freeman 
(1979), and eigenvector centrality proposed in Bonacich 
(1987).  

Example: Bursa Malaysia Case

In this section, 30 most capitalised stocks at Bursa Malaysia 
were studied. Data of stocks’ opening, highest, lowest and 
closing prices were collected during the period of July 26, 
2012 until December 31, 2012 (T = 106 trading days). 
Based on those four prices’ data, first, EVC for each pair 
of stocks was calculated using (3) or more conveniently 
(4). Then, distance matrix D defined by (5) was calculated, 
and finally an MST of D was constructed. For that purpose, 
as suggested in the literature on econophysics, Kruskal’s 
algorithm was used (Kruskal, 1956; Graham & Hell 1985; 
Huang et al., 2008; and Djauhari & Gan 2013). 

MST of D represents a network consisting of n stocks 
each of which is in the form of multivariate time series of 
opening, highest, lowest and closing prices, and (n – 1)
most relevant relationships in terms of EVC where each 
pair of stocks are connected in such a way that the sum of 
distances between two directly linked stocks is minimum. 
The result is presented in Figure 1. 

The stocks (nodes) of Figure 1 are coloured according 
to their economic sectors defined in Industry Classification 

Benchmark (ICB); basic materials (purple), consumer 
goods (green), consumer services (orange), financials 
(yellow), health care (cyan), industrials (gray), oil and gas 
(red), telecommunication (blue) and utilities (pink). 

At a glance we observe that CIMB is the most 
powerful stock in Bursa Malaysia according to the 
four popular centrality measures; degree, betweenness, 
closeness and eigenvector centralities. We also see that 
all telecommunication stocks (MAXIS –TM – DIGI – 
AXIATA) are linked to each other and directly linked to 
CIMB. Further details about the topological properties of 
each sector viewed as a multivariate time series is presented 
in Section 5.

To illustrate the advantages of multivariate approach 
and RV-coefficient, the results given in Figure 1 were 
compared with those given by univariate approach based 
on closing price only. By using closing price only, MST 
represents a network consisting of n stocks each of which 
is in the form of univariate time series of closing price, 
and (n – 1) most relevant relationships in terms of PCC 
where each pair of stocks are connected in such a way that 
the sum of distances between two directly linked stocks is 
minimum. Here, the distance between the two stocks was 

defined as dij  =                , where cij is the PCC of stocks  

i and j (Mantegna, 1999; Mantegna and Stanley, 2000). 
This distance dij is a special case of δij  in (5). An MST 
issued from closing price approach is presented in  
Figure 2. 
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Figure 1. Multivariate MST of 30 stocks at Bursa Malaysia. Figure 2. Univariate MST of Bursa Malaysia 30 stocks.
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This MST is totally different from that in Figure 1. Just 
to mention their difference, although CIMB is still the most 
powerful stock according to the four popular centrality 
measures and also all telecommunication stocks (MAXIS 
–TM – DIGI – AXIATA) are linked to each other and 
directly to CIMB, their degrees are different.

DISCUSSION

According to the 30 most capitalised stocks, during the 
period of July 26, 2012 until December 31, 2012, univariate 
approach of Bursa Malaysia stocks market analysis as 
represented in Figure 2 gives different topological properties 
compared to those given by multivariate approach in Figure 
1. As we will show, the real situation of stocks market in 
Bursa Malaysia, among those 30 stocks during the period 
of study, can better be figured out by the latter than the 
former. See, for example, the connections of PETDAG and 
PETGAS, and also of GENM and GENTING in Figure 1. 
These connections, which show the phenomenon of social 
embeddedness (Halinen & Tornroos 1998), can only be 
detected by multivariate approach and not by univariate 
one. We also learnt from company’s website that PETDAG 
and PETGAS are led by two common directors. On the 
other hand, GENTING is the management company and 
investment holding of Genting Group where GENM is its 
subsidiary. The board of directors in both companies is 
chaired by the same person and the same deputy chairman. 

Further properties, for example, are the number of 
leaves and the diameter of MST. Based on the graph theory, 
a leaf is a node of degree one, while diameter is the longest 
path between two leaves. Therefore, according to the four 
centrality measures, a leaf represents the worst stock while 
diameter shows how far at most the information from 
one worst stock could reach the other one. According to 
multivariate approach, the number of leaves is 16 and 
diameter is 10 (from PBBANK to IHH). On the other hand, 
based on univariate approach, the number of leaves is 17 
and diameter is 8 (from PPB or RHBCAP to IHH). This 
does make sense as the information in multivariate setting 
is more complex than in the univariate one. 

From Figures 1 and 2 we learn that AIRASIA, 
AMBANK, GENTING, IHH, MHB, PBBANK, PETDAG, 
PPB, RHBCAP, SIME, TENAGA, UMW, and YLT 
are considered as the worst in Bursa Malaysia by both 
approaches. We are then more confident to say so as an 
evident from MST. On the other hand, Table 1 shows the 
stocks considered as worst by multivariate approach but 
not by univariate one, and vice versa.

Table 1 shows that, according to multivariate approach 
which is more comprehensive than univariate, AXIATA, 
MAYBANK, and YLTPOWER should be considered as 
the worst stocks even though they have degree 2 or 3 in 
univariate approach. A more general comparison of the 
two approaches is presented in Table 2 in terms of the 
four principal centrality measures; degree centrality (D), 
betweenness centrality (B), closeness centrality (C), and 
eigenvector centrality (E). Furthemore, the details of the 
first three centrality measures can be found in Freeman 
(1979), and the last one in Bonacich (1987). We can 
also find all those measures in the works of many such 
as Borgatti (1995), Borgatti (2005), Borgatti and Everett 
(2006), and Newman (2008).  

From Table 2 we learn, for example, that zero betweenness 
refers to the stock of degree one which represents leaf. If 
we exclude those leaves in further analysis, then we arrive 
at the 10 most powerful stocks as presented in Table 3.

We see a different conclusion given by the two 
approaches. Since multivariate approach is more 
comprehensive, we recommend the policy makers and 
stock players to use the results issued by that approach.

CONCLUDING REMARKS

The EVC generalises PCC into multivariate setting. In this 
setting, stock is represented as a multivariate time series of 
its opening, highest, lowest, and closing prices, whereas in 
univariate setting, stock is represented by its closing price 
only. EVC allows us to define the similarity among stocks 
in multivariate case in similar manner as in univariate case 

TABLE 1. THE WORST STOCKS ACCORDING TO UNIVARIATE AND MULTIVARIATE APPROACHES.

Stock’s name Degree
 Univariate approach Multivariate approach

AXIATA 3 1
BAT 1 2
MAYBANK 3 1
MAXIS 1 3
PCHEM 1 3
PETGAS 1 3
YLTPOWER 2 1
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TABLE 2. CENTRALITY MEASURES OF EACH STOCK.

Stock’s name Multivariate setting Univariate setting
 D B C E D B C E

AIRASIA 0.035 0 0.227 0.079 0.035 0 0.220 0.098
AMBANK 0.035 0 0.230 0.091 0.035 0 0.220 0.057
ARMADA 0.138 0.259 0.264 0.131 0.103 0.136 0.227 0.077
AXIATA 0.035 0 0.181 0.017 0.103 0.680 0.392 0.368
BAT 0.069 0.069 0.184 0.019 0.035 0 0.216 0.083
CIMB 0.241 0.771 0.392 0.603 0.207 0.603 0.363 0.567
DIGI 0.103 0.197 0.220 0.050 0.103 0.404 0.330 0.206
GENM 0.069 0.069 0.290 0.232 0.069 0.069 0.274 0.233
GENTING 0.035 0 0.227 0.079 0.035 0 0.216 0.083
HLBANK 0.069 0.069 0.213 0.050 0.103 0.136 0.279 0.273
HLFG 0.069 0.069 0.290 0.232 0.138 0.259 0.269 0.124
IHH 0.035 0 0.156 0.007 0.035 0 0.179 0.018
IOICORP 0.172 0.505 0.322 0.244 0.138 0.446 0.337 0.254
KLK 0.069 0.069 0.250 0.094 0.138 0.313 0.279 0.159
MAXIS 0.103 0.352 0.322 0.275 0.035 0 0.204 0.030
MAYBANK 0.035 0 0.284 0.205 0.103 0.136 0.279 0.273
MHB 0.035 0 0.246 0.083 0.035 0 0.254 0.091
PBBANK 0.035 0 0.177 0.017 0.035 0 0.220 0.098
PCHEM 0.103 0.512 0.363 0.326 0.035 0 0.254 0.091
PETDAG 0.035 0 0.230 0.091 0.035 0 0.269 0.203
PETGAS 0.103 0.136 0.296 0.267 0.035 0 0.213 0.044
PPB 0.035 0 0.210 0.044 0.035 0 0.186 0.027
RHBCAP 0.035 0 0.210 0.044 0.035 0 0.186 0.027
SIME 0.035 0 0.201 0.032 0.035 0 0.220 0.057
TENAGA 0.035 0 0.246 0.094 0.035 0 0.220 0.098
TM 0.069 0.246 0.264 0.111 0.069 0.069 0.254 0.085
UEMLAND 0.069 0.069 0.290 0.232 0.069 0.069 0.274 0.233
UMW 0.035 0 0.246 0.083 0.035 0 0.220 0.098
YTL 0.035 0 0.227 0.079 0.035 0 0.213 0.044
YTLPOWR 0.035 0 0.269 0.111 0.069 0.069 0.216 0.051

TABLE 3. TEN MOST POWERFUL STOCKS. (Ordered from the most to less powerful).

No. Multivariate setting Univariate setting

1 CIMB CIMB
2 PCHEM HLFG
3 IOICORP IOICORP
4 MAXIS KLK
5 ARMADA AXIATA
6 PETGAS DIGI
7 GENM HLBANK
8 TM MAYBANK
9 HLFG GENM
10 UEMLAND UEMLAND
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suggested by Mantegna (1999) and Mantegna and Stanley 
(2000). Then, we can construct a multivariate stocks 
network and filter multivariate economic information by 
using MST. Since multivariate approach is closer to the real 
activity than univariate one, the results are more reliable. 
The topological properties of stocks derived from Figure 
1 are then more reliable than those issued from Figure 
2. It is also important to note that the phenomenon of 
social embeddedness can only be detected by multivariate 
approach and not by univariate one. Thus, the real situation 
of Bursa Malaysia’s 30 most capitalised stocks, during the 
period of study, can better be figured out by the former than 
the latter. 
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Appendix: List of Stocks and their Company’s Name.

No. Stock Company’s Name

1 AIRASIA AirAsia
2 AMBANK AMMB Holdings
3 ARMADA Bumi Armada
4 AXIATA Axiata Group
5 BAT British American Tobacco
6 CIMB CIMB Group Holdings
7 DIGI Digi. Com
8 GENM Genting Malaysia/ Resorts World
9 GENTING Genting
10 HLBANK Hong Leong Bank
11 HLFG Hong Leong Financial Group
12 IHH IHH Healthcare
13 IOICORP IOI Corporation
14 KLK Kuala Lumpur Kepong
15 MAXIS Maxis
16 MAYBANK Malayan Banking
17 MHB Malaysia Marine and Heavy Engineering
18 PBBANK Public Bank
19 PCHEM PETRONAS Chemicals Group
20 PETDAG PETRONAS Dagangan
21 PETGAS PETRONAS Gas
22 PPB PPB Group
23 RHBCAP RHB Capital
24 SIME Sime Darby
25 TENAGA Tenaga Nasional
26 TM Telekom Malaysia
27 UEMLAND UEM Land
28 UMW UMW Holdings
29 YTL YTL Corporation
30 YTLPOWR YTL Power International
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