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I. Introduction

Sumset was initially introduced by Cauchy in
(Cauchy, 1813). His result was subsequently
discussed by Davenport in (Davenport, 1935)
and the theorem was later known as Cauchy-
Davenport’s theorem. Eliahou and Kervaire
performed a thorough study on sumsets and
its related concepts in vector spaces and
various abelian groups, see (Eliahou and Ker-
vaire, 1998, 2005, 2006, 2010, Eliahou et al.,
2003). Beside of abelian groups, some recent
results on sumsets in finite non-abelian groups
(Eliahou and Kervaire, 2006, 2007) were
derived by modifying the Cauchy-Davenport’s
theorem. For recent results on sumsets, see
(Bajnok and Matzek, 2015, 2016, Eliahou and
Kervaire, 2007, 2010, Klopsch and Lev, 2009).
In this paper, we will study a different form
of combinatorial objects, which is analogue to
sumset. Here, we are interested in studying
product set in abelian group. More formally,
for a nonempty subset S of a finite abelian
group G, we say that S is exhaustive if there
exists a positive integer n such that Sn = G.
The number e(S) = min {t | St = G} is
called the exhaustion number of the set S. We
said that S is an exhaustion set of G with
exhaustion number e(S). Note that we adopt
the definition of exhaustion set used in (Chin,

2003). However, the definition of exhaustion
set can be more intelligibly described using the
notion of group ring. Traditionally, the notion
of group ring has been used to describe many
combinatorial objects (Beth et al., 1999, Davis
and Jedwab, 1997, Ma and Ng, 2009, Pott,
1995, Turyn, 1965). In term of group ring, S
is exhaustive if there exists a positive integer
n such that G ⊆ Sn, that is, Sn = G + X for
some X ∈ Z[G].

Our approach to study exhaustion set is first
by viewing it as an element of group ring.
Then, with the help of character theory (Isaacs,
1976, Pott, 1995), we obtain more properties
for exhaustion set. By using the well-known or-
thogonality relations, see Lemma 1.2.1 in (Pott,
1995), S is an exhaustion set with e(S) = n
that satisfies the properties: Suppose χ ∈ G∗,
where G∗ is the group of all characters of G.
If χ is the principal character of G, then we
have |S|n = |G| + |X|. On the other hand,
if χ is a non-principal character of G, then
|χ(S)|n = |χ(X)|. Therefore, we introduce the
following more general definition of exhaustion
set, compare to Chin (2003).

Definition 1. Let G be a finite abelian group.
A subset S ⊂ G is called an (a, n)−exhaustion
set with modulus w provided
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(a) e(S) = n,

(b) a = |S| = (|G|+ |X|)
1
n , and

(c) For every non-principal character χ of G,

|χ(S)| = |χ(X)|
1
n = w.

From Definition 1, we see that the case
when a = 1 is trivial since any S with
a = |S| = 1 has the property e(S) = ∞. Also,
if a = |S| = |G|, it follows that e(S) = 1,
in which we also consider this as a trivial
case. Thus, from now onward, we assume
that 2 ≤ a ≤ |G| − 1. For some cases when
the parameter w is not needed for determin-
ing the existence of an (a, n)−exhaustion set,
we should just mention the parameters a and n.

Contribution. The main contribution of
this paper is to obtain some relationships be-
tween the parameters a, w and n. Our main
result on the bound of exhaustion set which
will be proved in Section 4 is given as follows:

Theorem 1. Let q be a prime and H be an
abelian group such that the Sylow q-subgroup
of H is cyclic. Suppose Y ∈ Z[H] satisfies

(a) q is self-conjugate modulo exp(H);

(b) qr ||χ(Y )|2 for all non-principal character
χ of H; and

(c) there exists at least one i with 0 ≤ i ≤ n,
such that

(
n
i

)
q(br/2c−1)i+n−1 > |H|.

Then, e(Y ) > n.

Paper Organization. In Section 2, we pro-
vide some examples and basic constructions of
exhaustion sets in abelian groups. In Section
3, we derive some fundamental results which
will be used to determine many families of ex-
haustion sets in abelian groups. In Section 4,
we derive a lower bound for exhaustion sets
in an abelian group H containing a cyclic Sy-
low q−subgroup and q is self-conjugate modulo
exp(H).

II. Preliminaries

We begin by stating some basic concepts which
will be used throughout this paper. In gen-
eral, the character values are uniquely deter-
mined by the group ring element as shown by
the following well-known Fourier inversion for-
mula, refer Lemma 1.2.2 (Beth et al., 1999) for
a proof.

Lemma 1. Let G be a finite abelian group and
A =

∑
g∈G agg ∈ C[G]. Then

ag =
1

|G|
∑
χ∈G∗

χ(A)χ(g−1).

The finite Fourier transform F is a mapping
from C[G] to C[G∗] such that it mapsA ∈ C[G]
to F (A) =

∑
χ∈G∗ χ(A)χ ∈ C[G∗]. For every

g ∈ G, we identify g with the character g :
G∗ → C of G∗ such that g(χ) = χ(g) for all χ ∈
G∗. Suppose B =

∑
χ∈G∗ bχχ ∈ C[G∗]. Then,

we can also apply the finite Fourier transform
to B as follows:

F (B) =
∑
g∈G

g(
∑
χ∈G∗

bχχ)g

=
∑
g∈G

(
∑
χ∈G∗

bχχ(g))g ∈ C[G].

We refer the reader to (Ma and Ng, 2009) for
more information on the finite Fourier trans-
form. The next lemma is important as it will
be used to prove some results in this paper. We
recall that if G is a finite abelian group of order
mu and U is a subgroup of G of order u, then
we define U⊥ = {χ ∈ G∗|χ(g) = 1, ∀g ∈ U}.

Lemma 2. Let G be a finite abelian group of
order mu and U be a subgroup of G of order u.
Then, the following hold:

(a) U⊥ is a subgroup of G∗ of order |G/U |.

(b) F (χ0) = G,

(c) F (U⊥) = mU , and

(d) F (G∗) = mu.

(e) For every A ∈ C[G], F (F (A)) = |G|A(−1).

2
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We start by giving some examples of exhaus-
tion sets.

Example 1. Let G be a cyclic group of order
7 with generator g. For S = g+g2 +g4, we see
that e(S) = 3 as S can be written in the form

S3 = 6+3g+3g2+4g3+3g4+4g5+4g6 = G+X,

where X = 5+2g+2g2+3g3+2g4+3g5+3g6 ∈
Z[G]. Thus, S is an (3, 3)− exhaustion set in
G.

Example 2. Let G = 〈x, y | x2 = y2 = 1〉 ∼=
Z2
2. Let B0 = 1 +x and B1 = 1 +xy. Consider

the set {B0, B1} which is an (2, 2, 2)− build-
ing set in G relative to 〈x〉, see Davis and Jed-
wab (1997). Suppose S = B0 + B1, then it is
straightforward to verify that e(S) = 2, and so
S is an (3, 2)−exhaustion set in Z2

2.

We list three families of difference sets. For
some well-known constructions of difference
sets, see (Beth et al., 1999, Chapter VI) and
(Pott, 1995, Chapter 2).

(i) A k-subset A of G of order v is an
(v, k, λ)− difference set if and only if
AA(−1) = (k − λ) + λG.

(ii) A k-subset R of G of order mn is an
(m,n, k, λ)− relative difference set relative
to a subgroup N of order n if and only if
RR(−1) = k + λ(G−N).

(iii) A k-subset D of G of order mn is an
(m,n, k, λ1, λ2)− divisible difference set
relative to a subgroup N of order n if and
only if DD(−1) = (k− λ1) + (λ1 − λ2)N +
λ2G.

Furthermore, a set S is called reversible if S is
fixed by −1, that is, S(−1) = S, see (Beth et al.,
1999, Chapter IV).

Example 3. Suppose there exist families of re-
versible difference sets as defined previously in
parts (i) to (iii). Then, all these families of re-
versible difference sets are (k, 2)− exhaustion
sets.

We provide three constructions of exhaustion
sets in abelian groups. The first and the second
constructions are similar to the complementary
and extension of many combinatorial objects.
The last one is a result for elementary abelian
2-group.

Theorem 2. Suppose G is a finite abelian
group and let H be any subset of G. Then,
G −H is an (|G| − |H|, 2)− exhaustion set in
G.

Proof. Note that (G−H)2 = (|G| − 2|H|)G+
H2, and so e(G−H) = 2.

Theorem 3. Let G = 〈θ〉×H, where o(θ) = 2
and H is an abelian group of odd order. Sup-
pose B ⊆ H with e(B) = n. Then, B ∪ θB is
an (2|B|, n)− exhaustion set in G provided n is
odd.

Proof. Since B ⊆ H with e(B) = n, then we
have Bn = H+XB for some XB ∈ Z[H]. Next,
we compute

(θ + θB)n =

n∑
i=0

(
n

i

)
θiBn

=

n∑
i=0

(
n

i

)
θi(H +XB)

=

n∑
i=0

(
n

i

)
θiH +

n∑
i=0

(
n

i

)
θiXB

=
n∑
i=0

(
n

i

)
θiH +A,

for some A ∈ Z[G]. Upon expanding the sum-
mation, we have

Case 1: If n is even, then (θ + θB)n =
αdn+1

2 e+ βbn−12 cθH +A′,
Case 2: If n is odd, then (θ + θB)n =

n+1
2 (ωH + λθH) +A′′,
where α, β, ω, λ ∈ Z+, A′, A′′ ∈ Z[G]. There-

fore, we see that B∪θB ⊆ G with e(B∪θB) =
n provided n is odd.

Theorem 4. Let G = 〈g1, g2, . . . , gt | g2i =
1 for all i, 1 ≤ i ≤ t〉 be an elementary abelian
2-group of order 2t for every t ≥ 2. Suppose
S = 1 +

∑t
i=1 gi. Then, S is an (t + 1, t)−

exhaustion set.

3



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

Proof. By using the multinomial theorem, we
have

St =
∑

∑t
i=0 ni=t

(
t

n0, n1, . . . , nt

)
1n0gn1

1 . . . gnt
t .

Next, we form the equation n1+· · ·+nt = t−1,
we see that by using the pigeonhole principle,
at least one of the ni must be 0. Thus, we
conclude that g1g2 . . . gt /∈ S t−1 which implies
that e(S) > t − 1. Finally, together with the
equation of St, we deduce that S is an (t+1, t)−
exhaustion set.

III. Results on Exhaustion
Number

Let t be any integer, we define A(t) =∑
g∈G agg

t for A =
∑

g∈G agg ∈ Z[G]. We start
with the following simple result.

Proposition 1. Let G be a finite multiplicative
abelian group and A ⊂ G. Then, e(A) = n if
and only if e(A(−1)) = n.

Proof. Given e(A) = n. Then, An = G+X for
some X ∈ Z[G]. Hence, (A(−1))n = (An)(−1) =
(G + X)(−1) = G(−1) + X(−1) = G + X(−1).
Suppose there exists an integer k < n such that
(A(−1))k = G + Y for some Y ∈ Z[G]. Then,
Ak = ((Ak)(−1))(−1) = ((A(−1))k)(−1) = (G +
Y )(−1) = G(−1) + Y (−1) = G + Y (−1), which
contradicts e(A) = n. Therefore, we conclude
that e(A(−1)) = n. On the other hand, the
converse of this statement can be proved in a
similar way.

From Example 1, by using Proposition 1, we
see that D(−1) = g6 + g5 + g3 is also an (3, 3)−
exhaustion set in G.

Proposition 2. Let G be a finite abelian
group. Suppose A ⊆ G with e(A) = n. Then,
A(n) = G+ Z for some Z ∈ Z[G].

Proof. Given A ⊆ G. Then, we have A(n) ⊆ An
for all n ≥ 1. Thus, An = A(n) + X, for some
X ∈ Z[G]. Since e(A) = n, it follows that

An = Y + G for some Y ∈ Z[G]. Thus, we
have Y + G = A(n) + X which implies that
A(n) = G+ (Y −X), where Y −X ∈ Z[G].

The partial converse of Proposition 2 is also
true.

Proposition 3. Let G be a finite abelian group
and A ⊆ G. Suppose n is the smallest integer
such that A(n) = G + Z for some Z ∈ Z[G].
Then e(A) = n.

Proof. Clearly, G + Z ⊆ An. Hence, we can
write An = G + Z + W for some W ∈ Z[G].
Suppose there exists a k < n such that Ak =
G + V for some V ∈ Z[G]. As Ak ⊂ An and
Ak = A(k) + T for some T ∈ Z[G], then we
have A(k) = G+ (V −T ) which contradicts the
choice of n. Therefore, e(A) = n.

The following result is taken from (Chin,
2003), but we derive a proof by using the no-
tation of group ring.

Proposition 4. Let G be a finite abelian group
and S ⊆ T ⊆ G. Then e(T ) ≤ e(S).

Proof. Given S ⊆ T , it follows that T = S+X
for some X ∈ Z[G]. Since e(S) = n and by
using Proposition 3, we obtain S(n) = G+Y for
some Y ∈ Z[G]. Hence, we have (T −X)(n) =
G + Y . By applying the Binomial theorem to
(T −X)(n), we obtain T (n) = G+W for some
W ∈ Z[G]. Therefore, e(T ) ≤ n.

Proposition 5. Let G be an abelian group.
Suppose H is a subgroup of G and S ⊆ H.
Then, when S ⊆ G, e(S) = nm if and only
if e(X) = m provided Sn = H + X for some
X ∈ Z[H].

Proof. By using the Binomial theorem, we have
(Sn)m = (H + X)m =

∑m
i=0

(
m
i

)
H iXm−i =

Xm+HA = Y +G+HA, for some A, Y ∈ Z[G].
Therefore, e(S) = nm.

In many times, it is beneficial to work with
homomorphic images of a group. To accom-
plish this, if α : G→ H is any mapping from G
into a group H, it follows that we can extend
α linearly from the group ring R[G] into the

4
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group ring R[H]. Thus, α(A) =
∑
g∈G

agα(g) for

A =
∑
g∈G

agg ∈ R[G]. We use α to denote both

the group homomorphism and the group ring
homomorphism when it is clear from the con-
text that which homomorphism we are dealing
with.

Theorem 5. Let G and H be finite abelian
groups and α : G → H be an epimorphism.
Suppose S ⊆ G with e(S) = n. Then, α(S) ⊆
H with e(α(S)) = n.

Proof. Given S ⊆ G with e(S) = n. Then, by
using Proposition 3, we have S(n) = G+X for
some X ∈ Z[G]. Extend α linearly from Z[G]
onto Z[H] so that α is a group ring epimor-
phism from Z[G] onto Z[H]. Then (α(S))(n) =
α(S(n)) = α(G + X) = α(G) + α(X) =
H + α(X), for some α(X) ∈ Z[H]. Now, as-
sume that e(α(S)) = k < n. Then, we have
(α(S))(k) = H + W, for some W ∈ Z[H] and
so S(k) = G + W ′ + ker(α), for some W ′ ∈
Z[G], which contradicts e(S) = n. Therefore,
e(α(S)) = n.

In the previous proof, the importance of the
kernel of an epimorphism can be seen. The
following result which is a refinement of a result
in (Ma, 1996) derived a general form for the
kernel of a ring homomorphism.

Theorem 6. Let G = 〈g〉 × H be an abelian
group with o(g) = qr where q is a prime and
r ≥ 1. Suppose σ : Z[G] → Z[ξqr ][H] is the
ring homomorphism such that σ(g) = ξqr and
σ(h) = h,∀h ∈ H. Then

ker(σ) =
{
〈gqr−1〉X|X ∈ Z[G]

}
.

Proof. We write ξqr as ξ. Let A ={
〈gqr−1〉X | X ∈ Z[G]

}
. Suppose y ∈ A. Then

y = 〈gqr−1〉X for some X ∈ Z[G]. Since
〈gqr−1〉 =

∑q−1
i=0 g

iqr−1
is the subgroup gener-

ated by gq
r−1

and thus y can be written as

y =

(
q−1∑
i=0

giq
r−1

)
X.

Hence, we have σ(y) = 0 and so y ∈ ker(σ).
Therefore, A ⊆ ker(σ). Next, we let

y =
∑
h∈H

qr−1∑
i=0

aihg
ih ∈ Z[G]

with aih ∈ Z. If y ∈ ker(σ), then σ(y) =
0 and so

∑qr−1
i=0 aihξ

i = 0 for all h ∈ H.

Since
∑q−1

i=0 x
iqr−1

is a minimal polynomial of

ξ over Z, then 〈gqr−1〉 =
∑q−1

i=0 g
iqr−1

divides∑qr−1
i=0 aihg

i for all h ∈ H. Thus, the results
follows directly.

The following corollary can be deduced di-
rectly from Theorem 6.

Corollary 1. Let G = 〈g〉 × H be an abelian
group with o(g) = qr where q is a prime and
r ≥ 1. Suppose σ : Z[G] → Z[ξqr ][H] is the
ring homomorphism such that σ(g) = ξqr and
σ(h) = h,∀h ∈ H. If e(σ(X)) = n, then
e(X) = n for every X ∈ Z[G].

IV. Main Result: The Lower
Bound for Exhaustion

sets

As previously mentioned, knowing the charac-
ter values of a group ring element can assist
us to recover the group ring element. In this
section, we state some well-known results from
(Beth et al., 1999, Ma, 1996, Pott, 1995, Turyn,
1965). Hence, we relate all these results to the
existence of exhaustion sets. For the reader’s
convenience, we include the proof which is de-
rive by using the finite Fourier transform.

Proposition 6. Let G be a finite abelian
group. Suppose S =

∑
g∈G agg ∈ Z[G] satis-

fies χ(S) = 0 for all non-principal characters
χ of G. Then S(−1) = mG for some m ∈ Z.
Furthermore, |G| | |S|.

Proof. By applying finite Fourier transform to
S, we have F (S) =

∑
χ∈G∗ χ(S)χ = χ0(S)χ.

By applying finite Fourier transform again and
by using Lemma 2, we obtain

|G|S(−1) = F (F (S)) = |S|F (χ0)

5
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and so S(−1) = |S|
|G|G, where |S||G| ∈ Z. It follows

that |G| | |S|.

Proposition 6 together with propositions 1
and 3 immediately give the following result.

Corollary 2. Suppose S =
∑
g∈G

agg ∈ Z[G] sat-

isfies χ(S) = 0 for all non-principal characters
χ of G. Then e(S) = 1. In other word, S is an
(|S|, 1)-exhaustion set.

Proposition 7. Let G be a finite abelian
group, p be a prime, S ⊆ G with χ(S) = pr for
all non-principal characters χ of G and r ≥ 1.
Then |S| ≡ pr(mod |G|).

Proof. Apply the finite Fourier transform to S
to obtain

F (S) =
∑
χ∈G∗

χ(S)χ

= χ0(S)χ0 +
∑

χ∈G∗−{χ0}

χ(S)χ

= |S|χ+ pr(
∑

χ∈G∗−{χ0}

χ).

Next, we apply finite Fourier transform again
to F (S) and by using Lemma 2 to obtain

|G|S(−1) = F (F (S))

= |S|χ̂+ prF (
∑

χ∈G∗−{χ0}

χ)

= |S|F (χ0) + pr(F (G∗)− F (χ0))

= |S|G+ pr(|G| −G).

Therefore, S(−1) = pr + |S|−pr
|G| G is an element

in Z[G]. Thus, |G| | |S| − pr and so |S| ≡
pr(mod |G|).

By using propositions 1, 3 and 7, we obtain
the following result.

Corollary 3. Let G be a finite abelian group, p
be a prime, S ⊆ G with χ(S) = pr for all non-
principal characters χ of G and r ≥ 1. Then
|S| ≡ pr( mod |G|). Furthermore, e(S) = 1.

Proposition 8. Let p be a prime. Suppose
χ(S) = pr for all characters χ of G which is
principal on U . Then S = pr|U |U + X for some

X ∈ Z[G] and r ≥ 1.

Proof. Write S =
∑

g∈G agg. Then, apply the
finite Fourier transform to S to obtain

F (S) =
∑
χ∈G∗

χ(S)χ

=
∑
χ∈U⊥

χ(S)χ+
∑

χ∈G∗−U⊥
χ(S)χ

= pr
∑
χ∈U⊥

χ+
∑

χ∈G∗−U⊥
χ(S)χ.

Next, we apply finite Fourier transform again
to F (S) to obtain

|G|S(−1) = pr
|G|
|U |

U + F (
∑

χ∈G∗−U⊥
χ(S)χ)

= pr
|G|
|U |

U +
∑

χ∈G∗−U⊥
χ(S)F (χ)

= pr
|G|
|U |

U +
∑

χ∈G∗−U⊥
χ(g)

∑
g∈G

χ(S)g.

Therefore, S(−1) = pr|U |U + X, where X =∑
χ∈G∗−U⊥ χ(g)

∑
g∈G χ(S)g ∈ Z[G]. Clearly,

|U | | pr.

By using Lemma 2 , Proposition 1 and
Proposition 3, it can be deduced from Proposi-
tion 8 that the subset S with e(S) = mn only
if X with e(X) = m.

The following result is a variation of the well-
known Ma’s Lemma (Beth et al., 1999).

Theorem 7. Let q be a prime. Let H be an
abelian group such that the Sylow q-subgroup of
H is cyclic. Let Y ∈ Z[H]. Suppose

(a) q is self-conjugate modulo exp(H); and

(b) qr |χ(Y )χ(Y ) for all non-principal charac-
ter χ of H.

6
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Then

Y = qbr/2cX1 +QX2.

for some X1, X2 ∈ Z[H] and Q is the subgroup
of H of order q.

Proof. Let |H| = u and qt strictly divides
u, where t ≥ 0. By the decomposition of
prime ideal in the ring of algebraic integers,
we know that qZ[ξu] = (π1π2 . . . πg)

φ(qt), where
π1, π2, . . . , πg are distinct prime ideal divisors of
qZ[ξu], see Beth et al. (1999), Pott (1995). Let
χ be any non-principal character of H. Then,
qr | χ(Y )χ(Y ) which implies χ(Y )χ(Y ) ≡ 0
mod qr. Hence, we have

χ(Y )χ(Y ) ∈ qrZ[ξu]

= (qZ[ξu])r

= (π1π2 . . . πg)
rφ(qt).

Since we assume t ≥ 1 and we let Q = 〈h〉,
then χ(Y ) ∈ (π1π2 . . . πg)

cφ(qt) where c =
⌊
r
2

⌋
,

and thus χ(Y ) ≡ 0(modqc) for all non-principal
characters χ on H. Write H = P ×K, where P
is the Sylow q-subgroup of H. Take a charac-
ter τ of P such that the order of τ is qt. Define
θ : Z[H] → Z[ξqt ][K] such that θ(g) = τ(g)
for all g ∈ P and θ(h) = h for all h ∈ K.
For every character γ of K, by extending γ
to a ring homomorphism from Z[ξqt ][K] to C,
we see that γ(θ(Y )) ≡ 0(mod qc). Therefore,
qc | γ(θ(Y )) which implies γ(θ(Y )) = qckγ◦θ for
some kγ◦θ ∈ Z[ξu]. Since

Y =
∑
h∈K

∑
g∈P

aghgh ∈ Z[H],

then

θ(Y ) =
∑
h∈K

∑
g∈P

aghθ(g)θ(h)

=
∑
h∈K

∑
g∈P

aghτ(g)h

=
∑
h∈K

∑
g∈P

bghh,

where bgh = aghτ(g) ∈ Z[ξqt ].

By Lemma 1, we have

bgh =
1

|K|
∑
γ∈K∗

γ(θ(Y ))γ((gh)−1).

Thus

|K|bgh =
∑
γ∈K∗

qckγ◦θγ((gh)−1) = qcdgh,

where dgh =
∑

γ∈K∗ kγ◦θγ((gh)−1) ∈ Z[ξu].

Note that dgh =
|K|bgh
qc ∈ Q and thus dgh ∈

Z[ξu] ∩Q = Z. Hence, we have

θ(Y ) =
∑
h∈K

∑
g∈P

bghh

implies

|K|θ(Y ) =
∑
h∈K

∑
g∈P
|K|bghh

=
∑
h∈K

∑
g∈P

qcdghh

= qcX,

where X =
∑

h∈K
∑

g∈P dghh ∈ Z[K]. Since
|K| and qc are relatively prime, then there ex-
ists e, f ∈ Z such that e|K| + fqc = 1. Thus,
we see that

θ(Y ) = e|K|θ(Y ) + fqcθ(Y )

= eqcX + fqcθ(Y )

= qcZ,

where Z = eX + fθ(Y ) ∈ Z[K]. Therefore,
Y = qcX1 + ker(θ), where X1 ∈ Z[H] and by
Theorem 6, we have ker(θ) = QX2 for some
X2 ∈ Z[H].

Theorem 8. Suppose Y ∈ Z[H] satisfies the
conditions

(a) q is self-conjugate modulo exp(H); and

(b) qr |χ(Y )χ(Y ) for all non-principal charac-
ter χ of H.

If e(Y ) = n, then
(
n
i

)
q(br/2c−1)i+n−1 ≤ |H| for

all i = 0, 1, 2, . . . , n.

7
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Proof. From Theorem 7, we have Y =
qbr/2cX1 + QX2 and so by using the Binomial
Theorem, we obtain

Y n =

n∑
i=0

(
n

i

)
q(br/2c−1)i+n−1QXi

1X
n−i
2 .

Since e(Y ) = n, then we have

H +W =

n∑
i=0

(
n

i

)
q(br/2c−1)i+n−1QXi

1X
n−i
2

for some W ∈ Z[H]. Next, consider any h ∈ H
such that χ(h) 6= 1 for some non-principal char-
acter χ of H. Since (1 − h)H = 0, then we
have (1 − h)W =

∑n
i=0

(
n
i

)
q(br/2c−1)i+n−1(1 −

h)QXi
1X

n−i
2 . Thus, the coefficients of W lies

between −|H| and |H|. Also, the coeffi-
cients of the right hand side are multiple of
±
(
n
i

)
q(br/2c−1)i+n−1. Thus, we have(

n

i

)
q(br/2c−1)i+n−1 ≤ |H|,

for i = 0, 1, 2, . . . , n.

By considering the contrapositive form of
Theorem 8, we directly obtain Theorem 1.
Finally, we illustrate Theorem 1 as follows:

Consider an abelian group H ∼= Z3 × Z2
5

containing the Sylow 3-subgroup K ∼= Z3

which is cyclic. Furthermore, exp(H) = 15.
We take q = 3, which is self-conjugate modulo
15. Let w = χ(Y )χ(Y ). Consider the case
when 32|w, that is, r = 2. We see that when
n = 4, we have

(
4
2

)
33 > |H| = 45. Thus,

we conclude that e(Y ) ≥ 5. Therefore, if
32 | |χ(Y )|2, it follows that e(Y ) ≥ 5. Here, we
demonstrate that by knowing the property of
the character value we are able to estimate a
lower bound for the exhaustion number. On
the other hand, if we choose r = 4, then we
see that n = 3 is the smallest integer such that(
3
i

)
3i+2 > |H| = 45 when i = 2. Therefore, we

conclude that if 34||χ(Y )|2, then e(Y ) ≥ 4.

V. Concluding Remarks

In this paper, we performed a thorough study
on exhaustion sets in abelian group using group
ring notation and group characters. Further-
more, we derive a lower bound for exhaustion
sets in abelian group. The self-conjugacy con-
dition is used in constructing the bound, which
is a useful method in the study of difference sets
and the work did here is a standard treatment
in combinatorial design theory. However, by re-
leasing the self-conjugacy condition, we are not
sure whether a similar bound can be obtained.
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