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In this research we developed implicit block methods which make used of the first and second
derivatives of the problems. The aim is to give a more accurate as well as faster numerical
results for solving first order ordinary differential equations. The methods are then used to
solve a set of first order initial value problems. Numerical results clearly show that the new
proposed methods performed better than other well-known existing methods in solving the set
of test problems.
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I. Introduction

Many researchers have focused on the block
method for solving first order ordinary differ-
ential equations (ODEs). Such as Majid et al.
(2003) developed two point implicit method for
solving a system of ODEs . Majid et al. (2006)
derived three point block method to solve first
order ODEs.Ibrahim et al. (2007) used block
backward diffference formula to solve first or-
der ODEs. This is by computing two or three
points simultaneously using xn−1 and xn as
the back values of each block. Ibrahim et al.
(2008) developed the block method by adding a
fixed coefficients block backward differentiation
formules to solve first order ODEs. Ibrahim
et al. (2011) also considered the property of
convergence two point block backward differ-

entiation formulas. Mehrkanoon et al. (2012)
used the Gauss-seidel technique for the imple-
mentation of the three point 3-step block mul-
tistep method for solving system of first order
ODEs. However, all the work mentioned ear-
lier used onlythe first derivative of the problems
in the derivation of the methods. thus, work
on extra derivatives in the derivation of the
methods have been done by Sahi et al. (2012),
where they implemented Simpson’s types sec-
ond derivative block method for solving first
order ODEs. A four-step block generalized
Adam’s type second derivative method had
been modified by Kumleng and Sirisena (2014)
to solve first order ODEs. Akinfenwa et al.
(2015) used a family of continuous third deriva-
tive block methods derived from the collocation
and interpolation technique to solve first or-
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der ODEs. This paper considered initial value
problems (IVPs) for first-order ODEs in the
form:

y
′

= f
(
x, y), y(x0) = y0. (1)

The second derivative with respect to x gives

g(x, y) = y
′′

= f ′
(
x, y) = fx + f fy

In this work, a new two and three point
second derivative implicit block methods were
derived. The new methods are derived using
Hermite Interpolating Polynomial P , which
can be defined by :

P (x) =
n∑
i=0

mi−1∑
k=0

f
(k)
i Li,k(x), (2)

where fi = f(xi), xi = a+ih, i = 0, 1, ..., n and
h = b−a

n , n is a positive integer. Li,k(x) is
the generalized Lagrange polynomial which can
be defined by

Li,mi(x) = `i,mi(x), i = 0, 1, ..., n,

`i,k(x) =
(x− xi)k

k!

n∏
j=0,j 6=i

(
x− xj
xi − xj

)mj,

i = 0, 1, ..., n, k = 0, 1, ...,mi.

And recursively for k = mi − 2,mi − 3, ..., 0.

Li,k(x) = `i,k(x)−
mi−1∑
v=k+1

`
(v)
i,k (xi)Li,v(x).

The purpose of including the derivatives in
the formula is that, more accurate numerical
results can be obtained. Some numerical
examples were given to show the effectiveness
of these new methods compared with the
existing methods.

II. Derivation of The New
Methods

In order to evaluate the approximate solution
in each block, the interval [a,b] is divided into

a series of blocks that each block contains k
points. The approximate solution at the point
xn is used to start the i th block while the ap-
proximate solution at the point xn+k is the last
point in the i th block. Then, the evaluation
information at the last point in the i th block
will be restored as the approximate solution at
the point xn to start the (i + 1) th block and
the process continues for the next block.

Figure 1: 2-point block method.

Figure 2: 3-point block method.
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A. Two - Point Second Derivative
Implicit Block Method

In two point block method, the interval [a,b]
contains two points for each block with the
step size 2h (refer to Figure1). The two values
of yn+1 and yn+2 are calculated concurrently
in a block. For the evaluation of yn+1 take
xn+1 = xn + h and integrating (1) over the
interval [xn, xn+1] gives :

∫ xn+1

xn

y
′
dx =

∫ xn+1

xn

f(x, y)dx,

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x, y)dx. (3)

Then, f(x, y) in (3) will be replaced by Her-
mite Interpolating Polynomial in (2) and define
p2(x) as follows,

p2(x) = [(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2−((

2

xn − xn+2
)

+(
1

xn − xn+1
))(x−xn)(

x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2]f0

+[(
x− xn

xn+1 − xn
)2(

x− xn+2

xn − xn+2
)2]f1+[(

x− xn
xn+2 − xn

)2

(
x− xn+1

xn+2 − xn+1
)−((

1

xn+2 − xn+1
)+(

2

xn+2 − xn
))

(x− xn+2)(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
)]f2

+[(x− xn)(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)2]g0

+[(x− xn+2)(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
)]g2.

(4)

Let x = xn+2 + s h and

s =
x− xn+2

h
. (5)

Replace dx = h ds and change the limit of in-
tegration from -2 to -1 in (3) we obtain:

y(xn+1) = y(xn) +

∫ −1
−2

[f0L0,0(s) + f1L1,0(s)

+f2L2,0(s) + g0L0,1(s) + g2L2,1(s)] h ds. (6)

where

L0,0(s) = −1

4
(s3 + s2)− 1

2
(s3 + 2s2)(s+ 1),

L1,0(s) = s2(s+ 2)2,

L2,0(s) =
1

4
(s+ 2)2(s+ 1)− 1

2
(s2 + s)(s+ 2)2,

L1,0(s) = −h
4
s2 (s+ 2) (s+ 1),

L2,1(s) =
h

4
s (s+ 2)2(s+ 1).

Evaluating the integral in (6) by using MAPLE
produces the first formula of the two-point im-
plicit block method as follows,

yn+1 = yn +
h

240
[131fn + 128fn+1 − 19fn+2]

+
h2

240
[23gn + 7gn+2]. (7)

Now, integrating (1) over the interval
[xn, xn+2] to obtain the approximate solutions
of yn+2 we have∫ xn+2

xn

y
′
dx =

∫ xn+2

xn

f(x, y)dx,

y(xn+2) = y(xn) +

∫ xn+2

xn

f(x, y)dx. (8)

Then, f(x, y) in (8) will be replaced by Her-
mite Interpolating Polynomial in (4). Also, by
replacing (5) letting dx = h ds and changing
the limit of integration from -2 to 0 in (8) we
obtain:

y(xn+2) = y(xn) +

∫ 0

−2
[f0L0,0(s) + f1L1,0(s)

12
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+f2L2,0(s) + g0L0,1(s) + g2L2,1(s)] h ds. (9)

Evaluating the integral in (9) by using MAPLE
produces the second formula of the two-point
Implicit block method as follows,

yn+2 = yn +
h

15
[7fn + 16fn+1 + 7fn+2]

+
h2

15
[gn − gn+2]. (10)

B. Three - Point Second Derivative
Implicit Block Method

In the three points block, the interval [a,b]
contains three points for each block with the
step size 3h (refer to Figure 2). The three
approximation values of yn+1, yn+2 and yn+3

at the point xn+1, xn+2 and xn+3 are calcu-
lated concurrently in a block. The derivations
of the three point block method are similar to
the previous derivations of the two point block
method.

Equation (1) will be integrated over the in-
terval [xn, xn+1], [xn, xn+2] and [xn, xn+3] to
obtian the approximate solutions of yn+1, yn+2

and yn+3, defined p3(x) as follows,

p3(x) = [(
x− xn+1

xn − xn+1
)(
x− xn+1

xn − xn+1
)(
x− xn+3

xn − xn+3
)2

+((
−1

xn − xn+1
) + (

−1

xn − xn+2
) + (

−2

xn − xn+3
))

((x−xn)(
x− xn+1

xn − xn+1
)(
x− xn+2

xn − xn+2
)(
x− xn+3

xn − xn+3
)2)]f0+

[(
x− xn

xn+1 − xn
)2(

x− xn+2

xn+1 − xn+2
)(

x− xn+3

xn+1 − xn+3
)2]f1

+[(
x− xn

xn+2 − xn
)2(

x− xn+1

xn+2 − xn+1
) (

x− xn+3

xn+2 − xn+3
)2]f2

+[(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)(

x− xn+2

xn+3 − xn+2
)

−((
2

xn+3 − xn
)+(

1

xn+3 − xn+1
)+(

1

xn+3 − xn+2
))

((x− xn+3)(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)

(
x− xn+2

xn+3 − xn+2
))]f3 + ((x− xn)(

x− xn+1

xn − xn+1
)

(
x− xn+2

xn − xn+2
)(
x− xn+3

xn − xn+3
)2)g0 + ((x− xn+3)

(
x− xn

xn+3 − xn
)2(

x− xn+1

xn+3 − xn+1
)(

x− xn+2

xn+3 − xn+2
))]g3.

(11)

Then, Hermite Interpolating Polynomial
in (11) will interpolate f(x, y) and let
x = xn+3 + sh and s = x−xn+3

h . For each
evaluation of yn+1, yn+2 and yn+3, we take
xn+1 = xn + h, xn+2 = xn+1 + h and
xn+3 = xn+2 + h respectively.

The first , second and third point can be writ-
ten as follows,

yn+1 = yn+
h

6480
[3463fn+3537fn+1−783fn+2

+263fn+3] +
h2

1080
[97gn − 17gn+3].

yn+2 = yn +
h

405
[181fn + 459fn+1 + 189fn+2

−19fn+3] +
h2

135
[8gn + 2gn+3].

yn+3 = yn +
h

80
[39fn + 81fn+1 + 81fn+2

+39fn+3] +
h2

40
[3gn − 3gn+3]. (12)

III. Order Conditions And
Error Constant Of The

New Methods

This section presents a definition of the order
of the two and three point block methods that
have been derived in this paper.
According to Fatunla (1991) and Lambert
(1991), the local truncation error associated
with normalized form of the new method can
be defined as the linear difference operator

L[Z(x);h] =

k∑
i=0

αiZ(x+jh)−
k∑
i=0

hβiZ
′(x+jh)

13
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−
k∑
i=0

h2γiZ
′′(x+ jh). (13)

Assuming that Z(x) is sufficiently differen-
tiable, (13) can be expanded as a Taylor series
expansion about the point x to obtain the ex-
pression L[Z(x);h] = C0Z(x)+C1hZ

′(x)+...+
CphpZ

p(x)+ ..., where the constant coefficients
Cp, p = 0, 1, ... are given as follows:

C0 =

k∑
i=0

αj ,

C1 =

k∑
i=0

jαj −
k∑
i=0

βj ,

Cp =
1

p!

k∑
i=0

jpαj −
1

(p− 1)!

k∑
i=0

jp−1βj

− 1

(p− 2)!

k∑
i=0

jp−2γj , p = 2, 3, .. (14)

According to Henrici (1962), it can be
said that the new method has order p if
C0 = C1 = ... = Cp = 0, Cp+1 6= 0.

Therefore, Cp+1 is the error constant and
Cp+1h

p+1Z(p+1)(xn) is the principal local
truncation error at the point xn.
The formulae of a new two point block method
is given by (7) and (10) and the formulae is
written into a matrix as follows:

αYm = +hβFm + h2γGm (15)

where α, β and γ are the coefficients with the
m-vector Ym, Fm and Gm be defind as,

α =

[
−1 1 0
−1 0 1

]
, β =

[
131
240

128
240

−19
240

7
15

16
15

7
15

]
,

γ =

[
23
240 0 7

240
1
15 0 −1

15

]
,

Ym =

 yn
yn+1

yn+2

 , Fm =

 fn
fn+1

fn+2

 , Gm =

 gn
gn+1

gn+2

 .

α0 =

[
−1
−1

]
, α1 =

[
1
0

]
, α2 =

[
0
1

]
,

β0 =

[
131
240
7
15

]
, β1 =

[
128
240
16
15

]
, β2 =

[−19
240
7
15

]
,

γ0 =

[
23
240
1
15

]
, γ1 =

[
0
0

]
, γ2 =

[
7

240
−1
15

]
.

For p = 0,

C0 =
2∑
i=0

αj =

[
0
0

]
,

For p = 1,

C1 =

2∑
i=0

jαj −
2∑
i=0

βj =

[
0
0

]
,

For p = 2,

C2 =
1

2!

2∑
i=0

j2αj −
2∑
i=0

jβj −
2∑
i=0

γj =

[
0
0

]
,

For p = 3,

C3 =
1

3!

2∑
i=0

j3αj −
1

(2)!

2∑
i=0

j2βj

−
2∑
i=0

jγj =

[
0
0

]
,

For p = 4,

C4 =
1

4!

2∑
i=0

j4αj −
1

(3)!

2∑
i=0

j3βj−

1

(2)!

2∑
i=0

j2γj =

[
0
0

]
,

For p = 5,

C5 =
1

5!

2∑
i=0

j5αj −
1

(4)!

2∑
i=0

j4βj

14
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− 1

(3)!

2∑
i=0

j3γj =

[
0
0

]
,

For p = 6,

C6 =
1

6!

2∑
i=0

j6αj −
1

(5)!

2∑
i=0

j5βj

− 1

(4)!

2∑
i=0

j4γj =

[ −1
720
0

]
6=
[
0
0

]
.

Then, the 2-point implicit block method has
order p = 5 and error constant C6 = [ −1720 , 0]T .

The formulae of a new three point block
method is given by (12) and the formulae is
written into a matrix from (15) as follows:

α =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 ,

β =

3463
6480

3537
6480

−783
6480

263
6480

181
405

459
405

189
405

−19
405

39
80

81
80

81
80

39
80

 ,
γ =

 97
1080 0 0 −17

1080
8

135 0 0 2
135

3
40 0 0 −3

40

 ,

Ym =


yn
yn+1

yn+2

yn+3

 , Fm =


fn
fn+1

fn+2

fn+3

 , Gm =


gn
gn+1

gn+2

gn+3

 .

α0 =

−1
−1
−1

 , α1 =

1
0
0

 , α2 =

0
1
0

 , α3 =

0
0
1

 ,
β0 =

3463
6480
181
405
39
80

 , β1 =

3537
6480
459
405
81
80

 , β2 =

−7836480
189
405
81
80

 ,
β3 =

 263
6480
−19
405
39
80

 , γ0 =

 97
1080
8

135
3
40

 , γ1 =

0
0
0

 ,

γ2 =

0
0
0

 and γ3 =

 −171080
2

135
−3
40

 .
For p = 0,

C0 =
3∑
i=0

αj =

0
0
0

 ,
For p = 1,

C1 =

3∑
i=0

jαj −
3∑
i=0

βj =

0
0
0

 ,
For p = 2,

C2 =
1

2!

3∑
i=0

j2αj −
3∑
i=0

jβj −
3∑
i=0

γj =

0
0
0

 ,
For p = 3,

C3 =
1

3!

3∑
i=0

j3αj−
1

(2)!

3∑
i=0

j2βj−
3∑
i=0

jγj =

0
0
0

 ,
For p = 4,

C4 =
1

4!

3∑
i=0

j4αj −
1

(3)!

3∑
i=0

j3βj−

1

(2)!

3∑
i=0

j2γj =

0
0
0

 ,
For p = 5,

C5 =
1

5!

3∑
i=0

j5αj −
1

(4)!

3∑
i=0

j4βj

− 1

(3)!

3∑
i=0

j3γj =

0
0
0

 ,
For p = 6,

C6 =
1

6!

3∑
i=0

j6αj −
1

(5)!

3∑
i=0

j5βj

15
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− 1

(4)!

3∑
i=0

j4γj =

0
0
0

 ,
For p = 7,

C7 =
1

7!

3∑
i=0

j7αj −
1

(6)!

3∑
i=0

j6βj

− 1

(5)!

3∑
i=0

j5γj =

 97
100800
−1
6300
9

11200

 6=
0

0
0

 .
Then, the 3-point implicit block method
has order p = 6 and error constant
C7 = [ 97

100800 ,
−1
6300 ,

9
11200 ]T .

IV. The Zero-Stability Of
The Methods

In this section, the zero-stability of the 2-point
and 3-point implicit block method are dis-
cussed.

Two point implicit block method

The general form of (7) and (10) can be writ-
ten in the matrix form :

[
1 0
0 1

] [
yn+1

yn+2

]
=

[
0 1
0 1

] [
yn−1
yn

]

+h

[
131
240

128
240

−19
240

7
15

16
15

7
15

] fn
fn+1

fn+2


+h2

[
23
240 0 7

240
1
15 0 −1

15

] gn
gn+1

gn+2

 .
The first characteristic polynomial of the 2-
point implicit block method is given as follows,
ρ(R) = det [RA(0) −A(1)] = 0,

where

A(0) =

[
1 0
0 1

]
and A(1) =

[
0 1
0 1

]
.

ρ(R) = det

[
R −1
0 R− 1

]
= 0, R(R − 1) =

0, R = 0, 1, | R |≤ 1.

Three point implicit block method

The general form of (12) can be written in
the matrix form :1 0 0

0 1 0
0 0 1

yn+1

yn+2

yn+3

 =

0 0 1
0 0 1
0 0 1

yn−2yn−1
yn



+h

3463
6480

3537
6480

−783
6480

263
6480

181
405

459
405

189
405

−19
405

39
80

81
80

81
80

39
80



fn
fn+1

fn+2

fn+3



+h2

 97
1080 0 0 −17

1080
8

135 0 0 2
135

3
40 0 0 −3

40



gn
gn+1

gn+2

gn+3

 .
The first characteristic polynomial of the 3-
point implicit block method is given as follows,
ρ(R) = det [RA(0) −A(1)] = 0,

where

A(0) =

1 0 0
0 1 0
0 0 1

 and A(1) =0 0 1
0 0 1
0 0 1

 .
ρ(R) = det

R 0 −1
0 R −1
0 0 R− 1

 =

0, R2(R− 1) = 0, R = 0, 0, 1 , | R |≤ 1.

According to Fatunla (1991), the two point
and three point implicit block methods are
zero-stable, since the first characteristic poly-
nomial ρ(R) = 0 satisfy | Rj |≤ 1, j = 0, ..., k.
Also, the two point and three point implicit
block methods are consistent as they have
order p greater than one. Following Henrici
(1962), we can say that the two point and
three point block methods are convergence
because they are zero-stable and consistent.

16
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V. Implementation

This section focuses on the explanation
of the implementation of the two and three
point implicit second derivative block methods.

Two point implicit second derivative
block method
The values of yn+1 and yn+2 in (7) and (10)
will be approximated by using the predictor-
corrector equations.
The predictor equations:

ypn+m = ycn +m h f cn, m = 1, 2, (16)

fpn+m = f(xn+m, y
p
n+m),

gpn+m = f ′(xn+m, y
p
n+m).

The corrector equations:

ycn+1 = ycn +
h

240
[131f cn + 128fpn+1 − 19fpn+2]

+
h2

240
[23gcn + 7gpn+2].

ycn+2 = ycn +
h

15
[7f cn + 16fpn+1 + 7fpn+2]

+
h2

15
[gcn − g

p
n+2].

And the next corrector equations will be taken
as follows:

ycn+1 = ycn +
h

240
[131f cn + 128f cn+1 − 19f cn+2]

+
h2

240
[23gcn + 7gcn+2].

ycn+2 = ycn +
h

15
[7f cn + 16f cn+1 + 7f cn+2]

+
h2

15
[gcn − gcn+2].

f cn+m = f(xn+m, y
c
n+m),

gcn+m = f ′(xn+m, y
c
n+m), m = 1, 2.

Three point implicit second derivative
block method
The values of yn+1, yn+2 and yn+3 in (12)

will be approximated by using the predictor-
corrector equations.

The predictor equations:

Define (16) as the predictor equations and let
m = 1, 2, 3.
The corrector equations:

ycn+1 = ycn+
h

6480
[3463f cn+3537fpn+1−783fpn+2+

263fpn+3] +
h2

1080
[97gcn − 17gpn+3].

ycn+2 = ycn+
h

405
[181f cn+459fpn+1+189fpn+2−19fpn+3]

+
h2

135
[8gcn + 2gpn+3].

ycn+3 = ycn+
h

80
[39f cn+81fpn+1+81fpn+2+39fpn+3]

+
h2

40
[3gcn − 3gcn+3].

And the next corrector equations will be taken
as follows:

ycn+1 = ycn+
h

6480
[3463f cn+3537f cn+1−783f cn+2+263f cn+3]

+
h2

1080
[97gcn − 17gcn+3].

ycn+2 = ycn+
h

405
[181f cn+459f cn+1+189f cn+2−19f cn+3]

+
h2

135
[8gcn + 2gcn+3].

ycn+3 = ycn+
h

80
[39f cn+81f cn+1+81f cn+2+39f cn+3]

+
h2

40
[3gcn − 3gcn+3].

f cn+m = f(xn+m, y
c
n+m),

gcn+m = f ′(xn+m, y
c
n+m), m = 1, 2, 3.
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VI. Numerical Experiments

In this section, based on the new methods we
developed C codes for solving first - order
ordinary differential equation problems and
compared the numerical results when the same
set of problems are solved by using the existing
methods .

Problem 1:

y′ = y − x2 + 1, y(0) =
1

2
, [0, 5].

Exact solution :y(x) = (1 + x)2 − 1

2
ex.

Source Yaacob and Sanugi (1995).

Problem 2:

y′ = xy3 − y, y(0) = 1, [0, 10].

Exact solution :y(x) =
2√

2 + 4x+ 2e2x
.

Source: Famurewa et al. (2011).
Problem 3:

y′1 = y3, y1(0) = 1, [0, π].

y′2 = y4, y2(0) = 1,

y′3 = −e−xy2, y3(0) = 0,

y′4 = 2exy3, y4(0) = 1.

Exact solution :y1(x) = cos(x),

y2(x) = excos(x),

y3(x) = −sin(x),

y4(x) = excos(x)− exsin(x).

Source : Abdul Majid et al. (2012).
Problem 4:

y′i = −βiyi + y2i , i = 1, 2, 3, 4, yi(0) = −1, [0, 20].

with β1 = 0.2, β2 = 0.2, β3 = 0.3, β4 = 0.4.

Exact solution :yi(x) =
βi

1 + cieβix
,

ci = −(1 + βi).

Source : Johnson and Barney (1976).

Notations used are as follows.

• h: step size.

• Time: seconds.

• Max Error: maximum error |y(xi)− yi|.

• New 2P: The new 2-point implicit second
derivative block method derived in this pa-
per.

• New 3P: The new 3-point implicit second
derivative block method derived in this pa-
per.

• method 2A: 2-point Implicit third deriva-
tive block method proposed by Akinfenwa
et al. (2015).

• method 3A: 3-point Implicit third deriva-
tive block method proposed by Akinfenwa
et al. (2015).

• method 2M : 2-point implicit block one-
step method half Gauss-Seidel proposed
by Majid et al. (2003).

• method S : A simpson’s-type second
derivative block method proposed by Sahi
et al. (2012).

Table 1: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 1.

h Methods MAXE Time

New 2P 3.097580(-7) 0.008
0.1 2A 9.075473(-6) 0.009

Majid 1.028331(-3) 0.007

New 2P 3.096409(-9) 0.027
0.05 2A 2.336125(-7) 0.033

Majid 4.335581(-5) 0.026

New 2P 4.814321(-11) 0.072
0.025 2A 6.980545(-9) 0.074

Majid 2.708640(-6) 0.070

New 2P 6.593552(-13) 0.117
0.0125 2A 5.621164(-10) 0.119

Majid 6.505416(-7) 0.115
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Table 2: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 2.

h Methods MAXE Time

New 2P 8.068236(-7) 0.036
0.1 2A 2.407103(-5) 0.038

Majid 5.322828(-5) 0.035

New 2P 1.852646(-8) 0.079
0.05 2A 6.901808(-6) 0.081

Majid 4.287203(-6) 0.078

New 2P 3.577403(-10) 0.130
0.025 2A 1.925143(-6) 0.132

Majid 3.081526(-7) 0.128

New 2P 6.248941(-12) 0.155
0.0125 2A 5.110584(-7) 0.158

Majid 2.073222(-8) 0.154

Table 3: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 3.

h Methods MAXE Time

New 2P 4.803249(-6) 0.046
0.1 2A 6.021320(-6) 0.047

Majid 7.434949(-5) 0.045

New 2P 1.380934(-7) 0.094
0.05 2A 9.966465(-7) 0.096

Majid 4.751417(6) 0.093

New 2P 4.138981(-9) 0.141
0.025 2A 8.262003(-8) 0.143

Majid 3.003513(-7) 0.140

New 2P 1.266727(-10) 0.175
0.0125 2A 5.800818(-9) 0.177

Majid 1.887970(-8) 0.174

Table 4: Numerical Results of the New 2P, 2A
and Majid Methods for solving Problem 4.

h Methods MAXE Time

New 2P 1.085710(-5) 0.062
0.1 2A 3.864142(-4) 0.063

Majid 4.230879(-4) 0.060

New 2P 7.773816(-7) 0.171
0.05 2A 3.396333(-5) 0.173

Majid 3.499478(-5) 0.169

New 2P 3.393665(-8) 0.296
0.025 2A 3.873437(-6) 0.298

Majid 2.530419(-6) 0.294

New 2P 1.239543(-9) 0.483
0.0125 2A 4.865963(-7) 0.485

Majid 1.703761(-7) 0.481

Table 5: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 1.

h Methods MAXE Time

New 3P 8.462243(-8) 0.007
0.1 3A 2.311753(-6) 0.007

Sahi 1.605447(-6) 0.010

New 3P 1.309864(-9) 0.025
0.05 3A 5.083822(-8) 0.026

Sahi 2.476227(-8) 0.034

New 3P 2.071335(-11) 0.065
0.025 3A 2.913834(-9) 0.069

Sahi 3.812920(-10) 0.075

New 3P 2.957443(-12) 0.098
0.0125 3A 2.473823(-11) 0.114

Sahi 1.740532(-11) 0.122
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Table 6: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 2.

h Methods MAXE Time

New 3P 1.368469(-7) 0.032
0.1 3A 1.897087(-5) 0.034

Sahi 1.350523(-7) 0.036

New 3P 5.097240(-9) 0.072
0.05 3A 6.888210(-6) 0.074

Sahi 9.439226(-9) 0.080

New 3P 8.308907(-11) 0.126
0.025 3A 2.049793(-6) 0.127

Sahi 6.071470(-10) 0.131

New 3P 1.311735(-12) 0.151
0.0125 3A 5.595309(-7) 0.153

Sahi 3.812597(-11) 0.157

Table 7: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 3.

h Methods MAXE Time

New 3P 2.941061(-6) 0.040
0.1 3A 4.800874(-5) 0.041

Sahi 7.541150(-5) 0.046

New 3P 8.019770(-8) 0.089
0.05 3A 6.981759(-7) 0.091

Sahi 3.244254(-6) 0.095

New 3P 2.349645(-9) 0.136
0.025 3A 1.057838(-8) 0.137

Sahi 1.087780(-7) 0.141

New 3P 7.114069(-11) 0.172
0.0125 3A 1.630123(-10) 0.174

Sahi 3.662937(-9) 0.175

Table 8: Numerical Results of the New 3P, 3A
and Sahi Methods for solving Problem 4.

h Methods MAXE Time

New 3P 5.100885(-6) 0.046
0.1 3A 1.469320(-3) 0.047

Sahi 2.407790(-5) 0.062

New 3P 3.832369(-7) 0.109
0.05 3A 4.396974(-5) 0.110

Sahi 2.257036(-6) 0.171

New 3P 1.772670(-8) 0.218
0.025 3A 1.770248(-6) 0.220

Sahi 1.573703(-7) 0.296

New 3P 6.679853(-10) 0.405
0.0125 3A 5.820560(-7) 0.407

Sahi 1.023594(-8) 0.483

Figure 3: The Efficiency curves for Problem
1 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.00125.
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Figure 4: The Efficiency curves for Problem
2 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 5: The Efficiency curves for Problem
3 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 6: The Efficiency curves for Problem
4 (2-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 7: The Efficiency curves for Problem
1 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 8: The Efficiency curves for Problem
2 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

Figure 9: The Efficiency curves for Problem
3 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.
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Figure 10: The Efficiency curves for Problem
4 (3-point block method) with step size h =
0.1, 0.05, 0.025, 0.0125.

VII. Results and Discussion

In this paper, we presented the derivation of
two and three point second derivatives implicit
block methods for solving first-order ODEs.
The numerical results are tabulated in Tables
1-8 and are plotted in Figures 3-10. Those
figures showed the efficiency curves, where the
common logarithm of the maximum global
errors were plotted versus the computational
time. Figures 3-6 revealed that 2P (2- point
order 5 second derivative block method derived
in this paper) is the most efficient compared
to 2A (2-point one-step order 5 implicit third
derivative block multistep method) and Majid
(2-point implicit block method). Tables 1-4
showed that the new 2P method has less
maximum error compared with 2A and Majid
methods. Figures 7-10 showed that the new
3P (3- point order 6 second derivative block
method derived in this paper) is the most effi-
cient compared to 3A (order 6, 3-point implicit
third derivative block multistep method) and
Sahi (Simpson’s type order 6 second derivative
block method). Tables 5-8 showed that the
new 3P method has less maximum error and
less computational time compared to 3A and
Sahi’s methods.

Numerical results revealed that the new
2P and 3P methods are more efficient as

compared to the existing methods and they
also illustrated that the new second deriva-
tive block methods are more accurate and
competent for solving first order ODEs.
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