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The aim of this paper is to solve the initial-value problem for single first order neutral delay
differential equation (NDDE) of constant delay type by applying explicit method. In order to
find the approximate solution of the problem, a two-point explicit multistep block method has
been derived by implementing Taylor series interpolation polynomial. The method obtained
will compute numerical solution to solve NDDE problem at two points simultaneously using
constant stepsize. The delay solutions of the unknown function will be interpolated using
previous values and the derivative of the delay terms will be obtained by applying divided
difference formula. The main implementation idea of the method is based on the multistep
method formula. The order and consistency of the method will be discussed in methodology
section. Numerical results presented have shown that the proposed block method is more
accurate than the implicit multistep block method and is suitable and efficient for solving
first order NDDE of constant delay type. Keywords: Constant delay, Initial-value problem,
Explicit Multistep Block Method, Neutral Delay Differential Equation

I. Introduction

Nowadays, dynamical system involving time
delays have played a very important role
in solving real life phenomena with their
applications in biological and physiological
processes. For instance, the delay term can
be presented as a transport delay which can
be described as a signal to travel to the
controlled object as quoted by (Kuang, 1993).
In mathematics, Delay Differential Equations
(DDE) are assumed to have occured in many
different fields of science, mathematics and
technology. DDE are defined as an equation
which the derivatives of a function at present
time is dependable on the function at previous
time. DDE is also known as different names
by different researchers such as a time-delay
systems, hereditary systems, equations with
deviating argument or differential difference

equations, Ordinary Differential Equation
(ODE) with time lags and retarded ODE.
DDE can be divided into many classes which
are retarded DDE, distributed DDE, neutral
DDE, stochastic DDE and many more. In this
research, Neutral Delay Differential Equation
(NDDE) is being considered. Many researchers
have been solving NDDE with different types of
delay by using numerical methods where one of
them has a generic approach based on the use
of continuous Runge-Kutta formula with defect
control and its convergence properties has
also been investigated, (Enright and Hayashi,
1997). The continuous Runge-Kutta formula
has been improved by (Enright and Hayashi,
1998) to solve problems with state-dependent
delay of NDDE. Certain stability properties
are then investigated by (Wang et al., 2009)
to provide numerical results on stability
analysis. It is well-known that the solution
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of an implicit and explicit NDDE may have
discontinuous derivatives (Baker and Paul,
2006). The one-leg θ methods have been
discussed by (Wang and Li, 2007) for the
numerical solution of NDDE with pantograph
delay. The method is then being compared
with variational iteration method (VIM) which
has been applied by (Chen and Wang, 2010) for
the numerical solution of NDDE. A two-point
variable order variable stepsize block method
for the numerical solution of DDE has been
described by (Ishak et al., 2008). A homotopy
pertubation method (HPM) has been applied
to solve NDDE and the effectiveness of the
method has also been revealed by (Biazar
and Ghanbari, 2012). Both VIM and HPM
are included in the class of analytical method
where the results obtained have known to
approach the exact solution even with a few
iterations. The development of block method
for NDDE problems has then being described
by (Ishak et al., 2014) where they have
derived an implicit two-point block method in
variable stepsize technique. Later, an implicit
three-point one-block method for solving first
order NDDE using variable stepsize has been
developed by (Ishak and Ramli, 2015). A
two-point block method to solve NDDE of
pantograph type which is also an implicit
method has been used by (Seong and Majid,
2015) to solve NDDE problems. Most of
the authors have been proposing implicit
block multistep method or one-step block
method in the predictor-corrector scheme and
none of them seemed to applied an explicit
multistep block method for solving NDDE.
Some of the authors have also proposed
analytical methods for the solution of NDDE
problems. NDDE is a differential equation
which consists of different types of delay such
as constant, pantograph, state-dependent and
even a discontinuity of delay case. As a number
of authors have been solving these cases using
different approaches, this has motivate our
research to focus more on solving and handling
constant NDDE using explicit multistep block
method. As known by many researchers, it is

sometimes difficult and impossible to obtain
analytical solutions for DDE and thus the
best approach is to use numerical methods in
order to approximate the solutions as accurate
as possible. The motivations of proposing
an explicit method are because the method
itself have owned many advantages that are
unseen by many researchers especially in
treating differential equations with delays.The
advantages in using explicit method is it
has reduced the computational cost, produced
faster results, consumed lesser time and has
simple computational calculation than any
implicit method. In this study, a first-order
NDDE is considered as follows:

y′(x) = f(x, y(x), y(x− τi), y′(x− σi))
y(x) = φ(x), x ≤ a
y′(x) = φ′(x), x ≤ a

(1)

where τ(x, y(x)) and σ(x, y(x)) are the delays
while y(x − τ(x, y(x))) and y′(x − σ(x, y(x)))
are the expressions of delay solutions. Any
divided difference formulas will be applied
in order to solve the delay derivatives. A
two-point explicit block method which is based
on multistep method formula will approximate
the solutions at two point simultaneously using
constant stepsize.

II. Methodology

In this section, the development of two-point
block method will be explained briefly. A
block method to solve NDDE is adapted from
(Majid and Suleiman, 2011). First order
NDDE as mentioned in (1) is considered.
In order to compute the two approximation
values of yn+1 and yn+2 simultaneously, the
interval [a, b] is divided into a series of
blocks with constant stepsize given by, a =
x0, x1, ..., xn−1, xn, xn+1, ..., xN = b and each
block contains two points as shown in Figure
1 below:
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Figure 1: Two-Point Block

Suppose the kth block contains xn−2, xn−1
and xn, where xn−2 will be set as the starting
point and xn is the last point in the kth block
with stepsize h. The evaluation solution at
the last point in kth block will be used as the
initial values for (k+1)th block. The next block
will be calculated using the same procedure
until reaching the end point of the interval.
Let yn(xn) be the approximated solution and
y(xn) is the exact solution of y at point xn.
The approximation values of yn+1 and yn+2 are
computed simultaneously.

A. Formulation of the Method

Definition 1. Linear difference operator L
associated with

k∑
j=0

αjyn+j = h
k∑

j=0

βjfn+j (2)

is given by

L[y(x) : h] =

k∑
j=0

[αjy(x+ jh)

− hβjy′(x+ jh)

(3)

expanding y(x + jh) and y′(x + jh) as Taylor
series about x and collecting terms will give

L[y(x) : h] = C0y(x) + C1y
(1)(x) + ...

+ Cph
py(p)(x).

(4)

The current task is to evaluate yn(xn+1) and
yn(xn+2) as well as their corresponding delay
and delay derivative solutions. The expression
f(x, y(x), y(x−τi), y′(x−σi)) will be denoted as
fn. The approximation of y(xn+1) and y(xn+2)
are obtained by Taylor series polynomial in the

forms:

yn+(k−1) = α0yn+(k−2) + h

k+1∑
i=0

βiy
′
[
x+ (i− (k + 1))h

]
yn+k =α0yn+(k−2) + h

k+2∑
i=1

βiy
′
[
x+ (i− (k + 1))h

]
(5)

where the value of k is 2. Letting α0 = +1,
expanding individual terms in (5) using Taylor
series expansion, substituting the expansion
back in (5) and collecting the terms will give:[
y(x) + 4hy′(x) + 8h2y′′(x) +

32

3
h3y′′′(x)

+
32

3
h4y′′′′(x)

]
=
[
y(x) + 3hy′(x)+

9

2
h2y′′(x) +

9

2
h3y′′′(x) +

27

8
h4y′′′′(x)

]
+ hβ0

[
y′(x)

]
+ hβ1

[
y′(x) + hy′′(x)+

1

2
h2y′′′(x) +

1

6
h3y′′′′(x)

]
+ hβ2

[
y′(x)

+ 2hy′′(x) + 2h2y′′′(x) +
4

3
h3y′′′′(x)

]
+

hβ3

[
y′(x) + 3hy′′(x) +

9

2
h2y′′′(x)

+
9

2
h3y′′′′(x)

]

(6)

and[
y(xn+1) + 4hy′(xn+1) + 8h2y′′(xn+1)

+
32

3
h3y′′′(xn+1) +

32

3
h4y′′′′(xn+1)

]
=[

y(xn+1) + 2hy′(xn+1) + 2h2y′′(xn+1)

+
4

3
h3y′′′(xn+1) +

2

3
h4y′′′′(xn+1)

]
+

hβ1

[
y′(xn+1)

]
+ hβ2

[
y′(xn+1)+

hy′′(xn+1) +
1

2
h2y′′′(xn+1)+

1

6
h3y′′′′(xn+1)

]
+ hβ3

[
y′(xn+1)

+ 2hy′′(xn+1) + 2h2y′′′(xn+1)+

(7)
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4

3
h3y′′′′(xn+1)

]
+ hβ4

[
y′(xn+1)

+ 3hy′′(xn+1) +
9

2
h2y′′′(xn+1)

+
9

2
h3y′′′′(xn+1)

]
.

Collecting terms from (6) and (7) and equating
coefficients of ymxn yields to the following
block:

yn+1 = yn +
h

24

[
55fn − 59fn−1 + 37fn−2

− 9fn−3

]
yn+2 = yn +

h

3

[
8fn+1 − 5fn + 4fn−1

− fn−2
]
.

(8)

The method obtained above is a two-point
explicit multistep block method (2PEBM)
which will be applied to solve neutral class of
DDE. The order and convergence of the block
method will be discussed in section 2.2 and 2.3
respectively. The implementation on how the
delay terms will be treated will be explained in
section 2.4.

B. Order of Method

Definition 2. A linear multistep method (2) is
said to be of order p if, C0 = C1 = ... = Cp = 0
and Cp+1 6= 0 is called as error constant.

Cp =
k∑

j=0

[jpαj

p!
− jp−1βj

(p− 1)!

]
(9)

where p = 0, 1, 2, ...

The order and error constant of 2PEBM can
be obtain from:

C0 =
k∑

j=0

αj =

[
0
0

]

C1 =

k∑
j=0

(jαj − βj) =

[
0
0

]

C2 =

k∑
j=0

(
j2αj

2!
− jβj) =

[
0
0

]

C3 =

k∑
j=0

(
j3αj

3!
− j2βj

2!
) =

[
0
0

]

C4 =
k∑

j=0

(
j4αj

4!
− j3βj

3!
) =

[
0
0

]

C5 =
k∑

j=0

(
j5αj

5!
− j4βj

4!
) =

[
251/720
29/90

]
.

This implies that the block method has
order 4 (2PEBM4) with error constant C5 =
(251720 ,

29
90)T .

C. Convergence of Method

Based on (Lambert, 1973), linear multistep
method (2) is said to be converge if and only if
the method is consistent and zero-stable. Thus
two analyses have been formulated to prove
the consistency and zero-stability of the explicit
method respectively.

Definition 3. A linear multistep method (2) is
said to be consistent if it has order p > 1 and
the method is consistent if and only if

k∑
j=0

αj = 0 and

k∑
j=0

jαj =

k∑
j=0

βj (10)

Explicit multistep block method (8) will be
rewritten in the form shown below:[

1 0
0 1

] [
yn+1

yn+2

]
=

[
0 1
0 1

]
[
yn−1
yn

]
+ h

[
− 9

24
37
24

0 −1
3

] [
fn−3
fn−2

]
+ h

[
−59

24
55
24

4
3 −5

3

] [
fn−1
fn

]
+ h[

0 0
8
3 0

] [
fn+1

fn+2

]
(11)

where (11) is equivalent to:

A2YN+2 = A1YN+1 + h
2∑

j=0

BjFN+j (12)
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Following condition in (10):

k∑
j=0

αj =
5∑

j=0

αj = α0 + α1 + α2

+ α3 + α4 + α5

=

[
0
0

]
followed by:

k∑
j=0

jαj =
k∑

j=0

βj

where

k∑
j=0

jαj =

5∑
j=0

jαj = 0 · α0 + 1 · α1 + 2 · α2

+ 3 · α3 + 4 · α4 + 5 · α5

=

[
1
2

]
and

k∑
j=0

βj =
5∑

j=0

βj = β0 + β1 + β2

+ β3 + β4 + β5

=

[
1
2

]

Hence, it is shown that

k∑
j=0

αj = 0 and

k∑
j=0

jαj =
k∑

j=0

βj =

[
1
2

]
. As 2PEBM4 in (8)

has order 4 = p ≥ 1, thus the conditions
on consistency stated in Definition 3 have
been proved and 2PEBM4 is concluded to be
consistent.

According to (Lambert, 1973) on
zero-stability interpretation,

Definition 4. The linear multistep method (2)
is said to be zero-stable if no root of the first
characteristic polynomial:

ρ(ξ) =

k∑
j=0

αjξ
j = 0 (13)

has modulus greater than one.

In such a way,

ρ(ξ) =
5∑
0

αjξ
j = α0ξ

0 + α1ξ
1 + α2ξ

2

+ α3ξ
s3 + α4ξ

4 + α5ξ
5

=

[
ξ3(−1 + ξ)
ξ3(−1 + ξ2)

]
From the above interpretation, a conclusion on
the roots of (13) are achieved as there will be no
root has modulus greater than one. Following
(Lambert, 1973), 2PEBM4 is converge as it
has satisfied both consistency and zero-stability
conditions.

D. Implementation of the Method

By considering the first order constant NDDE
as denoted in (1), the 2PEBM4 in (8) will be
used to obtain the approximate solutions of
the problems. Since (8) needs to have four
previous values to complete the calculation
with only one given information which is the
initial value, therefore three starting values
will be computed using one-step method.
Runge-Kutta order 4 (RK4) has been chosen
to find the initial solutions as it has the
same order with 2PEBM4. In handling
the delay terms for neutral class of DDE,
two different functions of delay need to be
considered which are the delay that involved
its derivative of unknown previous function and
the one that does not involve the estimation
of the derivative function. The location
of the delay must first be determined to
obtain the solution of y(x − τi) and y′(x −
σi). For constant type of NDDE problems,
the derivative delay functions need to be
estimated by using divided difference formulas
which are backward, forward and central
formula depending on their applicability on
each iteration. In 2PEBM4, the first derivative
delay solution has been approximated by using
backward divided difference formula as the
function needed in the formula has been given
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in (1). The formula for backward difference is
shown below:

y′(x− σi) =
y(x− τi)− (y(x− τi)− h)

h
.

As the value of the delay functions are sufficient
enough, the forward difference formula shown
below can be applied:

y′(x− σi) =
(y(x− τi) + h)− y(x− τi)

h
.

If the delay itself, x − τi < a, then the initial
function given in (1) needs to be applied to
solve the delay terms. But, if x − τi ≥ a,
then the delay terms need to be solved by using
Lagrange interpolation polynomial in the form:

P (x) = Ln,0(x)f(x0) + . . .+ Ln,n(x)f(xn)

=
n∑

k=0

f(xk)Ln,k(x)

where

Ln,k(x) =

n∏
i=0
i 6=k

(x− xi)
(xk − xi)

k = 0, 1, . . . , n.

As mentioned above, 2PEBM is implemented
based on the multistep method formula and
the block method produced approximations for
yn+1 and yn+2 simultaneously. The algorithm
of the proposed block method is developed in
C language by using constant step size.

Algorithm

Step 1: Set values for a, b, N, h and the
given initial value.

Step 2: Use RK4 for approximating the
starting values.

Step 3: If x− τi < a, compute the delay
terms by using initial function
given in (2).

If x− τi ≥ a, then the delay terms
need to be solved by using Lagrange
interpolation polynomial:

P (x) = Ln,0(x)f(x0) + . . .+ Ln,n(x)f(xn)

=

n∑
k=0

f(xk)Ln,k(x).

Step 4: For i = 1, 3, . . .

y′(x− τi) is obtained by applying
backward difference formula.

The approximate value yn+i is evaluated
by using:

yn+i = yn + h
24

[
55fn − 59fn−1

+37fn−2 − 9fn−3

]
.

Step 5: For i = 2, 4, . . .

y′(x− τi) is obtained by applying
forward difference formula.

yn+i = yn + h
3

[
8fn+1 − 5fn

+4fn−1 − fn−2
]
.

Step 6: If the functions of delay terms are
adequate to be included in
iterations, then forward difference
formula can be applied.

Step 7: End.

III. Results and Discussion

In this section, some numerical results for
two point explicit multistep block method
of order four (2PEBM4) has been presented
and being compared with a two-point implicit
block method (2PIBM4) in order to show
the efficiency and accuracy of the proposed
method. Four problems of single first order
neutral delay differential equation have been
tested. Problem 1 is taken from (Ishak et al.,
2014) while Problem 2, 3, and 4 are taken from
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(Ishak and Ramli, 2015):

Example 1.

y′(x) = y(x) + y(x− 1)− 1

4
y′(x− 1), x ∈ [0, 1]

y(x) = −x, x ≤ 0

y(x) = −1

4
+ x+

1

4
exp(x), x ∈ [0, 1]

Example 2.

y′(x) = y(x) + y(x− 1)− 2y′(x− 1), x ∈ [0, 1]

y(x) = −x, x ≤ 0

y(x) = −2 + x+ 2 exp(x), x ∈ [0, 1]

Example 3.

y′(x) = y(x) + y′(x− 1), x ∈ [0, 1]

y(x) = 1, x ≤ 0

y(x) = exp(x), x ∈ [0, 1]

Example 4.

y′(x) = y(x) + y(x− 1)− 1

4
y′(x− 1) + sin(x),

x ∈ [0, 1]

y(x) = 1, x ≤ 0

y(x) = −1

4
+ x+

3

4
exp(x)− 1

2
cos(x)− 1

2
sin(x),

x ∈ [0, 1]

Numerical results for Example 1 - 4 are
displayed in Table 1 - 4. From the numerical
results obtained, it is observed that the
proposed method, 2PEBM4 is more accurate
and efficient than 2PIBM4. An implicit
method has been said to have more accurate
results than the explicit method as the
computation of the implicit method involved
both approximation of predictor and corrector
scheme. Theoretically, a predictor-corrector
form method will produce better results in
terms of accuracy but in neutral delay case, an
explicit method has out performed the implicit
method. As shown in numerical results below,
2PEBM4 is proved to have better average
and maximum errors than 2PIBM4. Based
on previous literature review, it has been

observed that no explicit multistep method
has been applied in solving NDDE. The delay
behavior is known to be slow and sensitive to
be handled using high performance method
while an explicit method is said to be less
effective than the implicit method in solving
differential equations. Thus, this concludes
that they are both suitable to be pair as
they have already shared the similarity. The
function evaluation has also been chosen as one
of the parameter because the explicit method
apparently has less function evaluation than
an implicit method and also to highlight
an extra advantage for applying the explicit
method. Other benefit of using 2PEBM4 is the
method managed to decrease the time taken in
computing all the approximate solutions and
its total function call compared to 2PIBM4.
Besides, the explicit method has known to
produced faster results as it is independent
of other values and only a single equation is
needed to evaluate one new iteration for a
single step. Overall, the proposed method is
suitable to be applied in constant delay type
of NDDE problems. The following notations
are used in Table 1 - 4 shown on page 8.

h Step size
MTD Method
FCN Total function calls
TS Total Step
TIME Time Taken
AVERE Average Error
MAXE Maximum Error
2PEBM4 Two-point Explicit Multistep

Block Method (Order 4)
2PIBM4 Two-point Implicit Multistep

Block Method (Order 4).

IV. Conclusion

In this paper, single first order NDDE with
constant delay type have been solved by
implementing the proposed method named
as 2PEBM4. The block method have
solved NDDE problems by producing two
approximate solutions in a single step using
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Table 1: Numerical results for Example 1
h MTD FCN TS TIME(s) AVERE MAXE

0.1 2PEBM4 16 7 0.016 2.9129e-06 8.7145e-06
2PIBM4 17 6 0.031 6.5832e-06 1.9381e-05

0.01 2PEBM4 61 52 0.078 3.9663e-10 1.0874e-09
2PIBM4 107 51 0.094 1.0449e-09 2.8602e-09

0.001 2PEBM4 511 502 0.578 4.0083e-14 1.0969e-13
2PIBM4 1007 501 0.594 1.0918e-13 2.9732e-13

Table 2: Numerical results for Example 2
h MTD FCN TS TIME(s) AVERE MAXE

0.1 2PEBM4 16 7 0.016 2.3303e-05 6.9716e-05
2PIBM4 17 6 0.031 5.2666e-05 1.5505e-04

0.01 2PEBM4 61 52 0.078 3.1730e-09 8.6994e-09
2PIBM4 107 51 0.094 8.3593e-09 2.2881e-08

0.001 2PEBM4 511 502 0.578 3.2221e-13 8.7308e-13
2PIBM4 1007 501 0.609 8.7229e-13 2.3732e-12

Table 3: Numerical results for Example 3
h MTD FCN TS TIME(s) AVERE MAXE

0.1 2PEBM4 16 7 0.016 1.1651e-05 3.4858e-05
2PIBM4 17 6 0.031 2.6333e-05 7.7524e-05

0.01 2PEBM4 61 52 0.078 1.5865e-09 4.3497e-09
2PIBM4 107 51 0.094 4.1797e-09 1.1441e-08

0.001 2PEBM4 511 502 0.578 1.6157e-13 4.3832e-13
2PIBM4 1007 501 0.594 4.3840e-13 1.1928e-12

Table 4: Numerical results for Example 4
h MTD FCN TS TIME(s) AVERE MAXE

0.1 2PEBM4 16 7 0.016 6.9997e-06 2.2501e-05
2PIBM4 17 6 0.031 8.1327e-06 2.5951e-05

0.01 2PEBM4 61 52 0.078 8.4144e-10 2.6208e-09
2PIBM4 107 51 0.094 1.2894e-09 3.9462e-09

0.001 2PEBM4 511 502 0.578 8.3588e-14 2.5979e-13
2PIBM4 1007 501 0.594 1.3501e-13 4.1123e-13

the same previous values and have shown to
reduce the time taken and its total function
call compared to 2PIBM4.
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