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We present a new third order convergence iterative method for m multiple roots of nonlinear
equation. The proposed method requires one evaluation of function and two evaluations of
the first derivative of function. In numerical tests exhibit that the present method provides
provides high accuracy numerical result as compared to other methods. The stability of the
dynamical behaviour of iterative method is investigated by displaying the basin of attraction.
Basin of attraction displays less black points which give us wider choices of initial guess in
computation. Keywords: Basin of attraction, Multi-point iterative methods, Multiple roots,

Nonlinear equations, Order of convergence.

I. Introduction

Solving nonlinear equation accurately is one of
the most important task in numerical analysis.
The well-known Newton’s method for finding
multiple roots, x* is written as

f(zx)

Pt =R f(xr)

(1)

where m is multiplicity of roots. This method
was developed by Schroder and Stewart (1998),
which converges quadratically. In recent years,
some modification of Newton’s method for
multiple roots with third order convergence
have been developed and analyzed. Examples
are Dong (1982), Dong (1987), Ferrara et al.
(2015), Heydari et al. (2010), Homeier (2009),
Sharifi et al. (2015) and Victory Jr and Neta
(1983). All of those methods require the mul-
tiplicity, m, to be known. Parida and Gupta
(2008), Soleymani and Babajee (2013) and Yun
(2009) developed the iterative methods with
the unknown m. Chun et al. (2009), Hansen
and Patrick (1976), Neta (2008) and Osada

(1994) developed the iterative methods which
require the evaluation of second derivative of
function.

In this paper we deal with the iterative meth-
ods of third order convergence to find the mul-
tiple roots z*, of non-linear equation, with
known multiplicity, m. Our proposed method
is free from the evaluation of second derivative,
1" of function.

II. Construction of method

Osada (1994) proposed the third order one-
point iterative method for finding the multiple
roots of nonlinear equation, f(z) =0 as

1 m—1)2 f' (k)
+ 2( 1) f”(ﬂfk). (2)

Consider a Newton-type iterative method for
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multiple roots as

2m_ f(xk)
Tk m+2 f(xg)’ (3)

where m is the multiplicity of multiple roots.
With the help of Taylor’s series, we obtain

(m+2) (k) [f (2r) — [/ ()] ()

2m f (k) '
Substitute (4) into (2) and incorporate with
(3), we have

Yk =

f//(xk) o~

( Yk k—Lm S(x)
m+2 f' (:ng
o m(m+1)f(zy) .
Tpy1 = Tk > () (5)
n (m —1)?mf (k)
{ (m+2) (f(xzx) — f'(yk))

The scheme in (5) is not in stable state as
third order convergence. In order to archive
the stable third order convergence, we write

= a2 f (k)
m+2 f' (mkg
_ o m(m+1)f (k)
Tyl = Tk ; (6)
af' ()
L Bn = Pmf(a)
\ (m+2) (f'(zr) = f'(y)

where a and (8 are free disposable parameters.
For simple root case, where m = 1, method (6)
becomes one point iterative Newton’s method,
with the first step is void.

ITI. Convergence Analysis

In this section, we describe a choice of param-
eters a and § in order to get the third-order
convergence for our scheme (6).

Theorem 1. Let x* € D be a multiple roots of
a sufficiently smooth function f : D C R — R
defined on an open interval D with the multi-
plicity m > 1, which includes xg as an initial
approximation of x*. Then, the iterative meth-
ods defined by (6) has third order convergence
when

2m™ (m+1)

@ = T SmZ(mr )t mm (—Atm(m+2))
B = m=™(m+2)1=™ (m™ (m+2)—m(m+2)™)>
4(m—1)2 )

42

2(m™—(q)™)c3ed

with the error term e,11 = P

O(e}).

n

Proof. Let en 1= xp — 2%, eny = yn — ", ¢; 1=
m!_ f(ar)

m+0)! o (z¥) 0 =1p=m+l,g=m+2,r=
m — 1. Using the fact that f(z*) = 0, Taylor
expansion of f at x* yields

f(zy) = (1+61€n+026 + c3e;, )—|—O( ")

(7)

and

f'(xn) = €' (m + enper + €;,(g)ca

+ep, (m+3)e3 +0(ey))). (8)

Thus
. men 20162
A C)
(—2 c1 + 4’m02) f’L 4
0] . (9
P 0. )

For f(y,) we have

flyn) = eijy

2 3
(1 +cieny + ey, + 036n7y)

+0(ep,). (10)

Substituting (7)-(10) into (6) gives the error
term as

En+1 = Diep + D2€$z + D3€73‘L + O(ei)a

where

1 P P2 2123
Dy = ~m(—2- -
2 2m( mo * m2a  mqg— mmg2—m
)Cla

(12)

2q" (m?p)g™ + m™(4 — mpq)) B
m? (m™q — mg™)?

AV + 2com (m™q — mq™) S
Dy =

. (13
2m2q (m™q — mg™)° a 13)
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2 4

V = —m3mp2gt + m3pg®™ (2 + 3m + m?

+ 2r2aB) — m™@*™ (3m>p?¢* + 4r*(—4

—2m 4+ 3m?® + m*Y)aB) + m*m¢™(3mp*>

and

+ 2r2(—=16 + m(—8 + mp(4 + m)))aB)

S = m*pg+m2g?m (2 +3m 4+ m? + 27“2(15)

—2m™q™ (mpq2 + 7“2(—4 + mq)aﬁ) .

To obtain the third convergence order, it is nec-
essary to choose D; =0 (i = 1,2), which yield

2m™p
a J—
—m2q™ + m™(—4 + mq)
and
5 m="q" (m™q — mqg™)’
N 472 ’
and the error terms becomes
2(m™ — (q)™) ciey, 4
En+1 = miq — m3qm + O(en)
which completes the proof. O

IV. Numerical Analysis

Consider the following iterative methods of
third order convergence

. Chun et al.’s method (CBN) in (Chun

et al., 2009) is given by

T41 = Tk
Cm((2y—1)m+3-27) f(ax)
2 f' (@)
v(m —1)% f'(xx)
T )

- mP(1 =) flan)* " (xr)
2 (f'(zr))? 7

(14)

where v = —1.
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2. Dong’s method (DM) in (Dong, 1987) is

given by
_ f(zk)
Y= TR i)
oot = f(zg)
" VI (k) + Af (zx)
(15)
m—+1

where v = (%) and A = "Z;Ti)_gl

3. Ferrara et al.’s method (FSS) in (Ferrara
et al., 2015) is given by

- f(zk)
f@e)’
tpn =y 0f(ew)  flaw)
! 0f(xk) — fy) f'(xk)’
(16)
—14+m
where 6 = <—17Zm> .
4. Osada’s method (OS) in (Osada, 1994) is
given by
Tpi1 = T — %m(m +1) jj:’((z];))
1 5 f'(zk)
+ §(m -1) ) (17)

5. Victory and Neta’s method (VN) in (Vic-
tory Jr and Neta, 1983) is given by

_ ~ f(xk)
Y = Xk ; ,
J'(xy,

oy =y — ) F(we) + AF (k)

" f'(@r) fzk) + Bf(yr)’
(18)
where A = p*™ — . B =
pMm=2)(m—1) +1 and j—

Test functions listed in Table 1 are used for
the numerical experiments. Table 2 exhibits
that our proposed method provides a high ac-
curacy numerical results. It is noticed that er-
ror per iteration is much smaller as compared
to other existing methods (equations (14)-(18))
for the same number of iterations. Note that
the computational order of convergence (COC)
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and approximated computational order of con-
vergence (ACOC) are defined, respectively, as
(Grau-Sanchez et al., 2010)

COC ~ 111\(!%”_,_1 - )/(l‘n -z )|

n|(zn —x*)/(2n-1 — 2*)|

(19)

and

In ‘(.Z'n_t,_l - xn)/(wn - xn—l)’ )
In|(zn — &n-1)/(Tn-1 — Tn_2)|

20)

ACOC =~

V. Basin of attraction

In this section we investigate the stability of
the dynamical behaviour of iterative methods
by utilizing the basin of attraction in complex
plane. Let a square D C C and we choose
the initial guess, z9 € D. We assign the grid
300 x 300 point and set the square D with
[—3.0,3.0] x [—3.0,3.0]. In basin of attraction
we assign the different colour to different roots.
The intensity of colour corresponding to the
number of iteration needed to converge; region
with the brighter colour require less number of
iterations to converge to the roots, z* as com-
pared to the darker colour. If the initial guess
x* is chosen in the black region, the numeri-
cal convergence will not be archived even after
100 iterations with minimum tolerance > 1073,
Table 3 shows the list of test functions with the
complex roots used to generate basin of attrac-
tion.

Figures 1-5 show the comparison of the dy-
namical behaviour of the iterative methods
listed in Table IV.. Its clearly seen that our
newly developed iterative method provides less
black points and larger brighter region as com-
pared to others, which means the choice of ini-
tial guess is vast.
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Conclusion

We developed a new iterative method to obtain
multiple roots of the nonlinear equation. The
proposed method requires one evaluations of
function and two evaluation of the first deriva-
tive of function, and it is free from second
derivative. Numerical performances exhibit
that our method provides faster convergence
and higher accuracy as compared to other
methods with the same order of convergence.
Basin of attraction displays that the proposed
scheme contains less black points which gives
us more choices of initial guess.
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Table 1: List of Test Functions

Test functions Root Multiplicity
fn z* m
fi(z) = (sin?z + x)® 0 5
fo(z) = (In (1 + 2%) + ™’ 5% gin z)® 0 6
fa(z) = (2 +1In (1 + )7 0 7
fa(z) = (25 — 8)%In (2® — 7) V2 3
fs(z) = (In(z® — 2z + 1) + 4sinz — 1)*° 1 10

Figure 1: Basin of attraction of Present Method, CBN, DM, FSS, OS, VN for test function
p1(z).
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Table 2: Error, COC and ACOC of iterative methods

Methods Method(6) CBN(14) DM(15) FSS(16) 0S(17) VN(18)
fl, Xro = 0.1
|1 — ¥ 0.482¢73 0.113e72 0.420e~3 0.740e~3 0.163e~2 0.820e ™3
|2 — 2| 0.494¢~ 10 0.215¢™8 0.314e™1° 0.364¢° 0.107¢™7 0.565¢ 7
|zs — z*| 0.531e™ 3! 0.150e~2° 0.132¢3! 0.434e~ 28 0.304e~23 0.186e~27
COoC 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
ACOC 3.0001 2.9998 3.0000 2.9999 2.9994 2.9999
fg, Xo = 0.3
|z1 — 2| 0.114¢e™* 0.623¢™* 0.479¢™* 0.564¢* 0.600e™* 0.562¢™*
|zo — z*| 0.219¢7° 0.665e > 0.116e~* 0.178¢~4 0.122¢? 0.111e73
|z3 — 2| 0.151e716 0.320e~° 0.223e~ 11 0.437¢~1* 0.784e™" 0.471e™12
cocC 3.0000 3.0011 3.0001 3.0000 3.0002 2.9997
ACOC 3.0040 3.2118 2.9490 2.7447 3.0858 3.0946
f3, Xo = 0.2
|z1 — x*| 0.644e™3 0.104e™* 0.781e™2 0.925¢2 0.100e™* 0.921¢™2
|2 — ¥ 0.201e71° 0.967¢~° 0.376e~° 0.702¢~¢ 0.682¢~6 0.673e~°
|3 — 2| 0.621¢™ 33 0.830e™'8 0.425¢*° 0.316¢'® 0.238¢™'® 0.270¢™'®
CcoC 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
ACOC 2.9995 2.9934 2.9986 2.9972 2.9894 2.9968
f4,.’E0 =1.5
|z — 2| 0.951e73 0.422¢72 0.221e72 0.329¢ 2 0.418¢~2 0.329¢ 2
|2 — 2| 0.113¢™7 0.592¢™° 0.329¢™ 6 0.163¢™5 0.248¢7° 0.147¢7°
|ws — x*| 0.180e™22 0.129¢ 13 0.970e™ '8 0.171le*® 0.492¢~*° 0.115¢*°
cocC 3.0000 3.0000 3.0000 3.0000 3.000 3.0000
ACOC 3.0058 3.0339 3.0134 3.0207 3.0067 3.0186
f5,$0 =1.2
|z — 2| 0.552¢™* 0.182¢™2 0.146¢™2 0.164¢™2 0.183¢™2 0.164¢™2
|2 — z*| 0.350e~1° 0.171e78 0.688¢~° 0.109¢~8 0.175¢~8 0.109¢ 78
|3 — 27| 0.892¢*° 0.141e26 0.719¢%8 0.322¢%7 0.155¢2¢ 0.327¢~27
CcoC 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
ACOC 3.0001 2.9998 2.9999 2.9999 2.9998 2.9999
Table 3: List of test functions and their roots
Test problem Root
pn(z) z”
pi(z) = (24 1)° +i

ps(z) = (2° +1)°

pa(z) = (22" = 2)°

ps(z) = (2" =2 + 1)

1, —0.5+0.866025¢
—1, 0.5+ 0.8660257

0, —0.39685 £ 0.6873651,
0.793701

—0.808731,
—0.464912 £ 1.07147+,
0.869278 £ 0.3882691
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Figure 2: Basin of attraction of Present Method, CBN, DM, FSS, OS, VN for test function
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Figure 3: Basin of attraction of Present Method, CBN, DM, FSS, OS, VN for test function
p3(2).
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Figure 5: Basin of attraction of Present Method, CBN, DM, FSS, OS, VN for test function

p5(2).
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