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A Trigonometrically-Fitted Diagonally Implicit Two Derivative Runge-Kutta (TFDITDRK)
method for the numerical solution of first order Initial Value Problems (IVPs) which possesses
oscillatory solutions is derived. We present a fourth-order two stage Diagonally Implicit
Two Derivative Runge-Kutta (DITDRK) method designed using the trigonometrically-fitted
property. The numerical experiments are carried out to show the efficiency of the derived
methods in comparison with other existing Runge-Kutta (RK) methods of the same order
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I. Introduction

Consider the numerical solution of the Initial
Value Problems (IVPs) for first order Ordinary
Differential Equations (ODEs) in the form of

y
′

= f(x, y), y(x0) = y0, (1)

whose solutions show an observable periodi-
cally or oscillatory behavior. Such problems
occurs in several fields of applied sciences, for
instance, circuit simulation, orbital mechanics,
molecular dynamics, mechanics, astrophysics
and electronics which has attracted the con-
cern of numerous researchers. In general, most
problems with oscillatory or periodically be-
havior are second order or higher order. Hence,
it is quite important to reduce the higher or-
der problems to first order problems in order
to solve the ODEs (1).

Vanden et al. (1999) and Berghe et al.
(1999) constructed exponentially-fitted explicit

RK methods which exactly integrates dif-
ferential IVPs problems whose solutions are
linear combination of the functions in the
form of exp(ωx) and exp(−ωx). Meanwhile,
Simos (1998) constructed exponentially-fitted
and trigonometrically-fitted RK methods of
fourth-order for the numerical integration of
IVPs with periodic solutions.

Several well-known authors in their papers
have developed Diagonally Implicit Runge-
Kutta (DIRK) methods especially designed for
solving stiff problems. Franco and Gómez
(2003) focused on dispersion (phase errors)
as well as the dispersion conditions for sym-
metric DIRK methods and symmetric stability
functionsand succeeded in developing two new
fourth-order symmetric methods of four and
five stages. Skvortsov (2006) developed meth-
ods of third, fourth, fifth and sixth order which
have several advantages over some other meth-
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ods in terms of minimization of certain error
functions.

Ababneh et al. (2009) presented new fifth-
order DIRK integration formulas for stiff IVPs
which are designed to be L-stable method. The
stability of the method derived is analyzed and
numerical results are carried out to verify the
conclusions. Ismail et al. (2009) and Jawias
et al. (2010) developed SDIRK methods for
solving linear ODEs of fifth-order five stage and
fourth-order four stage respectively where the
numerical results have proven that both meth-
ods have bigger stability region compared to
explicit methods.

In the evolution of TDRK methods, Chan
and Tsai (2010) introduced special explicit
TDRK methods by implementing and includ-
ing the second derivative which involves only
one evaluation of f and a few evaluations of
g per step. They managed to derive TDRK
methods of seventh-order and some embedded
pairs. Zhang et al. (2013) developed a new
trigonometrically-fitted TDRK method of al-
gebraic order five for solving Schrödinger equa-
tion and related problems. The linear stabil-
ity as well as the phase properties of the new
method are analyzed.

Tsai et al. (2014) presented their study on
both explicit and implicit TDRK methods on
stiff ODEs problems and extend their work
by implementing the developed methods to
various Partial Differential Equations (PDEs).
Chen et al. (2015) constructed three practical
exponentially fitted TDRK (EFTDRK) meth-
ods for the simulation of oscillatory genetic reg-
ulatory systems. Yakubu and Kwami (2015)
introduced a new class of implicit TDRK col-
location methods especially for the numerical
solution of systems of equations and their im-
plementation in an efficient parallel computing
environment.

In this recent year, there are no research
findings related to trigonometrically-fitting in
DITDRK methods. Researchers have not
yet explored the advantages or disadvantages
of applying trigonometrically fitted techniques
to DITDRK methods. Hence, in this pa-

per, fourth-order two stage trigonometrically-
fitted DITDRK method is derived. In Sec-
tion 2, an overview of TDRK method is given.
In Section 3, trigonometrically-fitted condi-
tions are considered. The construction of
the trigonometrically-fitted DITDRK method
is given in Section 4. The numerical results,
discussion, and conclusion are discussed briefly
in Sections 5, 6, and 7, respectively.

II. Diagonally Implicit Two
Derivative Runge-Kutta

method

A TDRK method for the numerical integration
of IVPs (1) is given by

Yi = yn + h
s∑
j=1

aijf(Yj) + h2
s∑
j=1

âijg(Yj),

(2)

yn+1 = yn + h

s∑
i=1

bif(Yi) + h2
s∑
i=1

b̂ig(Yi),

(3)

where i = 1, . . . , s.

The TDRK parameters aij , âij, bi, b̂i and ci
are assumed to be real and s is the number
of stages of the method. The s-dimensional
vectors b, b̂, c and s × s matrix, A and Â
are introduced where b = [b1, b2, . . . , bs]

T , b̂ =[
b̂1, b̂2, . . . , b̂s

]T
, c = [c1, c2, . . . , cs]

T , A = [aij ]

and Â = [âij ] respectively.

The TDRK method with the coefficients in
(2) and (3) are presented using the Butcher
tableau as follows:

c A Â

bT b̂T

Diagonally implicit methods with a minimal
number of function evaluations can be devel-
oped by considering the methods in the form
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Yi = yn + hcif(xn, yn) + h2
i∑

j=1

âijg(xn + hcj , Yj),

(4)

yn+1 = yn + hf(xn, yn) + h2
s∑
i=1

b̂ig(xn + hci, Yi),

(5)

where i = 1, . . . , s.

The above method is denoted as special DIT-
DRK method. The unique part of this method
is that it involves only one evaluation of f and
many evaluation of g per step compared to
many evaluation of f per step in traditional
RK methods. Its Butcher tableau is given as
follows:

c Â

b̂T

The order conditions for special DITDRK
methods as written in Chan and Tsai (2010)
are given in Table 1.

Table 1: Order conditions for special DITDRK
methods.

Order Conditions

1 bT e = 1

2 b̂T e = 1
2

3 b̂T c = 1
6

4 b̂T c2 = 1
12

5 b̂T c3 = 1
20 b̂T Âc = 1

120

6 b̂T c4 = 1
30 b̂T cÂc = 1

180

b̂T Âc2 = 1
360

7 b̂T c5 = 1
42 b̂T c2Âc = 1

252

b̂T cÂc2 = 1
504 b̂T Âc3 = 1

840

b̂T Â2c = 1
5040

III. Trigonometrically-Fitted
Property

In order to construct the trigonometrically-
fitted method, we introduce an extra param-
eter zi in the internal stage given by equation
(4) of the DITDRK method,

Yi = yn+hzicif+h2
i∑

j=1

âijg(xn+hcj , Yj), (6)

yn+1 = yn + hf + h2
s∑
i=1

b̂ig(xn + hci, Yi), (7)

where i = 1, . . . , s.
Meanwhile, the associated Bucther tableau

has an extra column

c z Â

b̂T

A DITDRK method (6)–(7) will have
trigonometrically-fitted properties if it exactly
integrate the functions eiλx and e−iλx or equiv-
alently sin(λx) and cos(λx) with the princi-
pal frequency of the problem, λ > 0 when it
is applied to the test equation y′ = iλy and
y′′ = −λ2y. When DITDRK method (6)–(7)
is applied to the test question as stated above,
the method becomes:

yn+1 = yn +hy′n +h2
s∑
i=1

b̂ig(xn + cih, Yi), (8)

where

Y1 =yn + z1c1hy
′
n − h2λ2â11Y1, (9)

Y2 =yn + z2c2hy
′
n − h2λ2 (â21Y1 + â22Y2) ,

(10)

Y3 =yn + z3c3hy
′
n − h2λ2 (â31Y1 + â32Y2

+â33Y3) , (11)

...

Yi =yn + zicihy
′
n − h2λ2

i∑
j=1

âij(Yj). (12)
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which results in

yn+1 = yn + hy′n − h2λ2
s∑
i=1

b̂i(Yi). (13)

Let yn = eiλx and f(xn, yn) = iλyn, com-
pute the values for yn+1 and substitute those
values in equation (8)-(13). By using eiv =
cos(v)+i sin(v), separate the real and the imag-
inary part, hence the following equations are
obtained

cos(civ)− 1 + v2
i∑

j=1

âij cos(cjv) =0, (14)

sin(civ)− ziciv + v2
i∑

j=1

âij sin(cjv) =0, (15)

together with

cos(v)− 1 + v2
s∑
i=1

b̂i cos(civ) =0, (16)

sin(v)− v + v2
s∑
i=1

b̂i sin(civ) =0. (17)

where i = 1, . . . , s and v = λh.

IV. Derivation of
TFDITDRK method

Firstly, we will derive the fourth-order two
stages DITDRK method. According to the or-
der conditions up to order four in Table 1, we
have

b̂2 + b̂3 −
1

2
= 0, (18)

b̂2c2 + b̂3c3 −
1

6
= 0, (19)

b̂2c2
2 + b̂3c3

2 − 1

12
= 0. (20)

Solving equation (18)-(20) we obtain b̂1, b̂2
and c2 in term of c1

b̂1 =
1

(36 c12 − 24 c1 + 6)
, (21)

b̂2 =
1

3

(
9 c1

2 − 6 c1 + 1

6 c12 − 4 c1 + 1

)
, (22)

c2 =
1

2

(
2 c1 − 1

3 c1 − 1

)
. (23)

Our aim is to choose c1 such that the principal
local truncation error coefficient,

∥∥τ (5)∥∥
2

have
a very small value. Wrong choices of c1 may
cause a huge global error difference. By plot-
ting the graph of

∥∥τ (5)∥∥
2

against c1, a small
value of c1 is chosen in the range of [0.0, 1.0]
and hence, the value of c1 lies between [0.1, 0.3].
We choose c1 = 1

5 for an optimized pair. All the
coefficients are showed in the following Butcher
tableau and it is denoted as DITDRK(2,4).

Table 2: Butcher Tableau for DITDRK(2,4) Method

1
5

1
50

3
4

209
800

1
50

25
66

4
33

The norms of the principal local truncation
error coefficients for DITDRK(2,4) method is
given by∥∥∥τ (5)∥∥∥

2
= 4.374801584× 10−3. (24)

Now, the trigonometrically-fitted property will
be implemented in the method derived earlier.
Evaluate the internal stage given by equation
(14)–(15) and retaining the value of c1 and c2
in DITDRK(2,4), we have

− 1 + â11v
2 cos

(v
5

)
+ cos

(v
5

)
= 0, (25)

− 1 + v2
(
â2,1 cos

(v
5

)
+ â1,1 cos

(
3

4
v

))
+ cos

(
3

4
v

)
= 0, (26)

− 1

5
z1v + â1,1v

2 sin
(v

5

)
+ sin

(v
5

)
= 0, (27)

− 3

4
z2v + v2

(
â2,1 sin

(v
5

)
+ â1,1 sin

(
3

4
v

))
+ sin

(
3

4
v

)
= 0, (28)

together with the final stage given by equation
(16)–(17)
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− 1 + v2
(
b̂1 cos

(v
5

)
+ b̂2 cos

(
3

4
v

))
+ cos (v) = 0, (29)

− v + v2
(
b̂1 sin

(v
5

)
+ b̂2 sin

(
3

4
v

))
+ sin (v) = 0. (30)

Solve equations (25)–(30) lead to

â11 =
− cos

(
v
5

)
+ 1

cos
(
v
5

)
v2

, (31)

â21 =
2 cos

(
v
5

)
− 2 cos

(
3
4v
)

v2 cos
(
2
5v
)

+ v2
, (32)

b̂1 =
− cos

(
3
4v
)
v + sin

(
v
4

)
+ sin

(
3
4v
)

v2 sin
(
11
20v
) , (33)

b̂2 =
− sin

(
4
5v
)

+ v cos
(
v
5

)
− sin

(
v
5

)
v2 sin

(
11
20v
) , (34)

z1 =5
sin
(
v
5

)
v cos

(
v
5

) , (35)

z2 =
8 sin

(
11
20v
)

+ 4 sin
(
2
5v
)

3 v cos
(
2
5v
)

+ 3 v
. (36)

As v → 0, the following Taylor expansions are
obtained

â11 =
1

50
+

v2

3000
+

61 v4

11250000
+

277 v6

3150000000

+
50521 v8

35437500000000
+ . . . , (37)

â21 =
209

800
− 10241 v2

3840000
+

50369 v4

46080000000
−

282511361 v6

1032192000000000
−

30372761353 v8

5308416000000000000
+ . . . , (38)

b̂1 =
25

66
− v2

792
+

811 v4

16632000
+

907 v6

665280000
+

55546409 v8

1317254400000000
+ . . . , (39)

b̂2 =
4

33
+

v2

792
+

6217 v4

133056000
+

147557 v6

106444800000

+
7133716823 v8

168608563200000000
+ . . . , (40)

z1 =1 +
v2

75
+

2 v4

9375
+

17 v6

4921875
+

62 v8

1107421875
+ . . . , (41)

z2 =1− 49 v2

12000
− 1547 v4

19200000
− 1314443 v6

537600000000

− 75866893 v8

1327104000000000
+ . . . . (42)

This new method is denoted as TFDIT-
DRK(2,4). TFDITDRK(2,4) method will re-
duce to its original method which is denoted
as DITDRK(2,4) method when v → 0. Other
than that, as v → 0, TFDITDRK(2,4) method
will have the same error constant as DIT-
DRK(2,4) method.

V. Problems Tested and
Numerical Results

In this section, the performance of the
proposed method TFDITDRK(2,4) are com-
pared with existing RK methods with the
trigonometrically-fitted, phase-fitted and
amplification-fitted properties by considering
the following problems. All problems below
are tested using C code for solving differential
equations where the solutions are periodic.

Problem 1(Harmonic Oscillator)

y1
′
(x) = y2(x), y1(0) = 1.0,

y2
′
(x) = −64y1(x), y2(0) = −2.0,

for x ∈ [0, 1000]. Exact solution is

y1(x) = −1

4
sin(8x) + cos(8x),

y2(x) = −2 cos(8x)− 8 sin(8x).

Problem 2(Inhomogeneous problem, (Van de
Vyver, 2007))

y1
′

= y2, y1(0) = 1,

y2
′

= −100y1 + 99 sin(x), y2(0) = 11,

for x ∈ [0, 1000]. Exact solution is

y1(x) = cos(10x) + sin(10x) + sin(x),

y2(x) = −10 sin(10x) + 10 cos(10x) + cos(x).
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Problem 3(An “almost” Periodic Orbit prob-
lem, (Stiefel and Bettis, 1969))

y1
′

= y2, y1(0) = 1,

y2
′

= −y1 + 0.001 cos(x), y2(0) = 1,

y3
′

= y4, y3(0) = 0,

y4
′

= −y3 + 0.001 sin(x), y4(0) = 0.995,

for x ∈ [0, 1000]. Exact solution is

y1(x) = cos(x) + 0.0005x sin(x),

y2(x) = − sin(x) + 0.0005x cos(x) + 0.0005x sin(x),

y3(x) = sin(x)− 0.0005x cos(x),

y4(x) = cos(x) + 0.0005x sin(x)− 0.0005 cos(x).

Problem 4 (Duffing problem, (Kosti et al.,
2012))

y1
′ = y2,

y2
′ = −y1 − y13 + 0.002 cos(1.01x),

y1(0) = 0.200426728067,

y2(0) = 0,

for x ∈ [0, 100]. Exact solution is

y1(x) =0.200179477536 cos(1.01x)+

2.46946143× 10−4 cos(3.03x)+

3.04014× 10−7 cos(5.05x)+

3.74× 10−10 cos(7.07x),

y2(x) =− 0.2021812723 sin(1.01x)−
7.482468133× 10−4 sin(3.03x)−
1.53527070× 10−6 sin(5.05x)−
2.64418× 10−9 sin(7.07x).

Problem 5 (Prothero-Robinson problem,
(Chan and Tsai, 2010))

y′ = −λ(y − ϕ) + ϕ′, y(0) = ϕ(0), Re(λ) < 0,

where ϕ(x) is a smooth function and
ϕ(x) = sin(x) for x ∈ [0, 1000].
Exact solution is y(x) = ϕ(x).

The following abbreviations are used in Fig-
ures 1–10.

• TFDITDRK(2,4): The fourth-order two
stages trigonometrically-fitted DITDRK
method derived in this paper.

• TFDIRKK(3,4): Existing fourth-order
three stages trigononometrically-fitted
DIRK method developed in Kalogiratou
(2013).

• PFAFDIRKA(3,4): Existing fourth-
order three stages phase-fitted and
amplification-fitted DIRK method given
by Ahmad et al. (2016).

• EFDIRKE(3,4): Existing fourth-order
three stages exponentially-fitted DIRK
method given in Ehigie et al. (2018).

The performance of these numerical results
are represented graphically in Figures 1–10.

EFDIRKE(3,4)
PFAFDIRKA(3,4)

TFDIRKK(3,4)
TFDITDRK(2,4)

log10(Function Evaluations)

lo
g
1
0
(M

A
X
E
R
R
)

6.86.66.46.265.85.65.4

4

2

0

−2

−4

−6

−8

−10

−12

Figure 1: The efficiency curve for Harmonic Oscil-
lator (Problem 1) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 5, . . . , 9.
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EFDIRKE(3,4)
PFAFDIRKA(3,4)

TFDIRKK(3,4)
TFDITDRK(2,4)

CPU Time (Seconds)

lo
g
1
0
(M

A
X
E
R
R
)

10.80.60.40.2

4

2

0

−2

−4

−6

−8

−10

−12

Figure 2: The efficiency curve for Harmonic Oscil-
lator (Problem 1) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 5, . . . , 9.
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1
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A
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E
R
R
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−6

−8

−10

−12

Figure 3: The efficiency curve for Inhomogeneous
problem (Problem 2) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 7, . . . , 11.
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PFAFDIRKA(3,4)

TFDIRKK(3,4)
PFDITDRK(2,4)
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R
)

876543210
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−8
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Figure 4: The efficiency curve for Inhomogeneous
problem (Problem 2) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 7, . . . , 11.
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−6

−8

−10
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Figure 5: The efficiency curve for an “almost” Peri-
odic Orbit problem (Problem 3) for TFDITDRK(2,4)
method with h = 1.0/2i, i = 5, . . . , 9.
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TFDIRKK(3,4)
PFDITDRK(2,4)
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Figure 6: The efficiency curve for an “almost” Peri-
odic Orbit problem (Problem 3) for TFDITDRK(2,4)
method with h = 1.0/2i, i = 5, . . . , 9.
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Figure 7: The efficiency curve for Duffing problem
(Problem 4) for TFDITDRK(2,4) method with h =
1.0/2i, i = 3, . . . , 7.
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EFDIRKE(3,4)
PFAFDIRKA(3,4)

TFDIRKK(3,4)
TFDITDRK(2,4)

CPU Time (Seconds)

lo
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1
0
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Figure 8: The efficiency curve for Duffing problem
(Problem 4) for TFDITDRK(2,4) method with h =
1.0/2i, i = 3, . . . , 7.
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Figure 9: The efficiency curve for Prothero-Robinson
problem (Problem 5) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 1, . . . , 5.
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Figure 10: The efficiency curve for Prothero-Robinson
problem (Problem 5) for TFDITDRK(2,4) method with
h = 1.0/2i, i = 1, . . . , 5.

VI. Discussion

The results show the typical properties of
the trigonometrically-fitted DITDRK method,
TFDITDRK(2,4) which have been derived ear-
lier. The derived method are compared with
some well-known existing RK methods with the
same order and properties. The global error
and the efficiency of the method over a long
period of integration are plotted. Figures 1–
10 represent the efficiency and accuracy of the
method developed by plotting the graph of the
logarithm of the maximum global error against
the logarithm number of function evaluations
for a longer periods of computations as well as
the CPU times in seconds.

From the plotted graphs, TFDITDRK(2,4)
method has the smallest maximum global error
compared to other existing RK methods which
have trigonometrically-fitted, exponentially-
fitted and phase-fitted and amplification-fitted
properties. In DITDRK methods, the exis-
tance of the second derivative which involves
only one evaluation of f and a few evaluations
of g per step compared to the traditional DIRK
methods which only need the first derivative
that makes the DITDRK methods more ad-
vanced. Hence, this is why TFDITDRK(2,4)
method can achieve smaller maximum global
error.

In Figures 2 and 10, TFDITDRK(2,4) have
shorter CPU times in comparison with other
existing methods. Meanwhile in Figures 4, 6
and 8, TFDITDRK(2,4) have comparable CPU
times compared to other existing methods. The
comparisons are made between methods of the
same properties but it can be seen that TFDIT-
DRK(2,4) method is the most accurate method
of all in term of maximum global error and
comparable in term of CPU times. TFDIT-
DRK(2,4) method has lesser number of stages
compared to other existing DIRK methods.
Hence, fewer number of stages lead to a fewer
total number of function evaluations.
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VII. Conclusion

In this research, a trigonometrically-fitted DIT-
DRK method of fourth-order is developed.
Based on the numerical results obtained, it can
be concluded that the derived method, TFDIT-
DRK(2,4) is more promising compared to other
well-known existing DIRK methods in terms of
accuracy, the number of function evaluations
per step and comparable in term of CPU times.
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symmetric dirk methods for periodic stiff
problems. Numerical Algorithms, 32(2-
4):317–336, 2003.

[8] Fudziah Ismail, Nur Izzati Che Jaw-
ias, Mohamed Suleiman, and Azmi Jaa-
far. Solving linear ordinary differential
equations using singly diagonally implicit
runge-kutta fifth order five-stage method.
WSEAS Transactions on Mathematics, 8
(8):393–402, 2009.

[9] Nur Izzati Che Jawias, Fudziah Ismail,
Mohamed Suleiman, and Azmi Jaafar.
Fourth order four-stage diagonally im-
plicit runge-kutta method for linear or-
dinary differential equations. Malaysian
Journal of Mathematical Sciences, 4(1):
95–105, 2010.

[10] Zacharoula Kalogiratou. Diagonally im-
plicit trigonometrically fitted symplectic
runge–kutta methods. Applied Mathe-
matics and Computation, 219(14):7406–
7412, 2013.

[11] AA Kosti, Zacharias A Anastassi, and
Tom E Simos. An optimized explicit
runge–kutta–nyström method for the nu-
merical solution of orbital and related
periodical initial value problems. Com-
puter Physics Communications, 183(3):
470–479, 2012.

58



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

[12] TE Simos. An exponentially-fitted runge-
kutta method for the numerical integra-
tion of initial-value problems with pe-
riodic or oscillating solutions. Com-
puter Physics Communications, 115(1):
1–8, 1998.

[13] Leonid Markovich Skvortsov. Diagonally
implicit runge-kutta methods for stiff
problems. Computational mathematics
and mathematical physics, 46(12):2110–
2123, 2006.

[14] Eduard Stiefel and DG Bettis. Stabi-
lization of cowell’s method. Numerische
Mathematik, 13(2):154–175, 1969.

[15] Angela YJ Tsai, Robert PK Chan, and
Shixiao Wang. Two-derivative runge–
kutta methods for pdes using a novel dis-
cretization approach. Numerical Algo-
rithms, 65(3):687–703, 2014.

[16] Hans Van de Vyver. An explicit numerov-
type method for second-order differen-
tial equations with oscillating solutions.
Computers & Mathematics with Applica-
tions, 53(9):1339–1348, 2007.

[17] Berghe G Vanden, H De Meyer,
M Van Daele, and T Van Hecke.
Exponentially-fitted explicit runge-kutta
methods. Computer Physics Communi-
cations, 123(1-3):7–15, 1999.

[18] DG Yakubu and AM Kwami. Im-
plicit two-derivative runge–kutta colloca-
tion methods for systems of initial value
problems. Journal of the Nigerian Math-
ematical Society, 34(2):128–142, 2015.

[19] Yanwei Zhang, Haitao Che, Yonglei
Fang, and Xiong You. A new trigonomet-
rically fitted two-derivative runge-kutta
method for the numerical solution of the
schrödinger equation and related prob-
lems. Journal of Applied Mathematics,
2013, 2013.

59


