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The purpose of this work is to study the effects of partial slip on the boundary layer flow
over a moving horizontal thin needle in nanofluid. Three types of nanoparticles, namely,
alumina, copper and titania are considered. The self-similar ordinary differential equations
are obtained by adopting the similarity transformations and these equations are then solved
numerically using bvp4c function in MATLAB software. Special emphasis has been given to
the parameters of interest which include the nanoparticle volume fraction, slip, needle size and
velocity ratio. The effect of these parameters on the velocity and temperature profiles, skin
friction coefficient and heat transfer rate are further discussed through graphs. It is revealed
from the study that the dual solutions exist when the needle oppose the direction of the fluid
motion ε < 0, and the range of the possible solutions obtained is strongly depending on the
needle size and slip parameters. The stability of the solutions is determined using a stability
analysis. This analysis indicated that the upper branch solution is linearly stable and there is
an initial decay of disturbance in the system. Meanwhile, the result is invertible for the lower
branch solution.
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I. Introduction

A few decade ago, fluid heating and cooling are
most important subject in view of its applica-
tions in industries and engineering purposes.
Such applications are power generation, manu-
facturing and also transportations. Generally,
conventional fluids used in these applications
such as kerosene, water, ethylene glycol and
engine oil cannot meet the requirement of the
cooling process. Experimentally, Choi (1995)
introduced a new mixture between solid parti-
cles whose diameter is less than 100nm, called
nanoparticles and the base fluid. This mixture
is known as a nanofluid and has a tendency to
improve the thermal conductivity of the con-

ventional fluids drastically as needed by the in-
dustries. Interestingly, nanofluid possess some
special characteristics where it is very stable
and do not have any additional problem such
as erosion, sedimentation, non-Newtonian be-
havior or additional pressure drop. This is due
to the tiny size of nanoparticles and low vol-
ume fraction of nanoelements needed for the
thermal conductivity improvement.

There are two models of nanofluid which fa-
miliar in fluid mechanics. First is the model
proposed by Buongiorno (2006), and the sec-
ond is the model proposed by Tiwari and Das
(2007). Tiwari and Das model is a single phase
model, where the nanoparticles and base fluid
are said to be in thermal equilibrium, flowing at
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a constant velocity and there is no-slip condi-
tion occurs between them. This model consid-
ers the influence of nanoparticles volume frac-
tion. Different with the Tiwari and Das model,
Buongiono’s model is a two phase model, by
which the slip velocity between nanoparticles
and base fluid are not equal to zero. This model
incorporates the effect of the Brownian mo-
tion and thermophoresis. There are some ar-
ticles regarding these two models which can be
found in the existing literature (Bachok et al.,
2012,, Othman et al., 2017, Pandey and Ku-
mar, 2017). Furthermore, nanofluid has many
practical applications, especially in automotive
applications, electronic devices and biomedical
industries (Huminic and Huminic, 2012, Saidur
et al., 2011, Wong and Leon, 2010).

The study of the boundary layer flow past a
thin needle in a viscous fluid was first stud-
ied by Lee (1967). The needle is described
as a parabolic of revolution with the axis in
the direction of the incident flow. Moreover,
the needle is considered “thin” when its thick-
nesses are smaller or comparable to that of
the boundary layer on it. Some applications
of the thin needle are coating of wires, hot
wire anemometer for measuring the wind’s ve-
locity, the blood flow problem, lubrication as
well as geothermal power generation. A few
years later, Narain and Uberoi (1972, 1973) and
Wang (1990) extended the Lee (1967) work by
considering forced and mixed convection flow
over a thin needle, respectively. Apart from
that, the numerous works regarding the bound-
ary layer behavior past a thin needle were car-
ried out by some authors (Afridi and Qasim,
2018, Ahmad et al., 2008, Ishak et al., 2007).
The consideration of the boundary layer flow
over a thin needle immersed in nanofluid has
been studied by Grosan and Pop (2011). They
reported the classical problem of forced convec-
tion flow and heat transfer with a variable sur-
face temperature. Then after, few researchers
(Hayat et al., 2016, Krishna et al., 2017, Soid
et al., 2017, Trimbitas et al., 2014) further the
research in many aspects of the problem.

In all the above mentioned works, the au-

thors focused their analysis on the boundary
layer flow and heat transfer with no-slip bound-
ary condition. Nevertheless, no-slip assump-
tion does no longer consistent in certain flow
situations and it must be replaced by a partial
slip boundary condition (Bhattacharyya et al.,
2012). The study about the slip effect was in-
troduced by Beavers and Joseph (1967) consid-
ering a permeable wall in viscous fluid. The
slip flows under different flow configurations
have been studied by many researchers in re-
cent years (Awais et al., 2016, Das, 2012, Uddin
et al., 2018, Wang, 2002). However, no study
has been performed to investigate the effect of
the partial slip over a thin needle. Therefore,
the aim of the present work is to analyze the
effects of partial slip on the boundary layer flow
over a moving thin needle in nanofluid with a
stability analysis. Recently, stability analysis
has attracted a lot of researches (Mahapatra
and Nandy, 2011, Sharma et al., 2014, Yasin
et al., 2017) due to the stable solutions offer a
good physical meaning in the system. The non-
linear ordinary differential equations are solved
numerically using bvp4c package in MATLAB
and the results are discussed from the physical
point of view in the next section.

II. Methodology

Consider two-dimensional laminar boundary
layer flow and heat transfer on a moving hori-
zontal thin needle in a nanofluid at a constant
ambient temperature T∞. The curved surface
of the needle is kept at constant temperature
Tw such that Tw > T∞. x and r represent the
axial and radial coordinates in cylindrical form,
respectively, where r = R(x) is the radius of the
needle. The needle moves with a constant ve-
locity Uw in the same or opposite direction to
the fluid flow of a constant velocity U∞. Under
these assumptions, the basic equations for the
flow and heat transfer are given as

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (1)
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We assume the initial and boundary conditions
are as follows:

t < 0 : u(x, r, t) = v(x, r, t) = 0, T (x, r, t) = T∞,

t ≥ 0 : u(x, r, t) = Uw + L
∂u

∂r
, v(x, r, t) = 0,

T (x, r, t) = Tw at r = R(x),

u(x, r, t)→ U∞, T (x, r, t)→ T∞ as r →∞.
(4)

in which u and v are the velocity components
in the direction of x and r axis, respectively,
T is the temperature of the fluid, L is the slip
length, µ is the viscosity, α is the thermal dif-
fusivity and ρ is the density in which the sub-
scripts ’s’, ’f ’ and ’nf ’ represent ’solid’, ’fluid’
and ’nanofluid’, respectively. According to Oz-
top and Abu-Nada (2008), the equations that
relate these parameters are given by:

ρnf = (1− φ) ρf + φρs,

(ρCp)nf = (1− φ) (ρCp)f + φ (ρCp)s ,

αnf =
knf

(ρCp)nf
, µnf =

µf
(1− φ)2.5

,

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

, (5)

where the thermal conductivity, heat capac-
ity and nanoparticle volume fraction for the
nanofluid are given by k, (ρCp) and φ, respec-
tively.

Since this study considers the steady-state
flow, we assume ∂u/∂t = 0 and ∂T/∂t = 0.
Thus, the following similarity transformations
have been introduced to solve the Equations
(1)–(3) along with the boundary conditions (4):

ψ = νxf(η), η =
Ur2

νx
, θ(η) =

T − T∞
Tw − T∞

. (6)

Here U = Uw + U∞ is the composite velocity
between the needle and the free stream flow,

and ψ is the stream function which is defined
as u = r−1∂ψ/∂r and v = −r−1∂ψ/∂x. Note-
worthy, the similarity transformations are a
good mathematical simplification in order to
reduce PDEs to ODEs. The reason why need
to use the similarity transformations are that
the PDEs have many independent variables x
and r which are difficult to solve. Hence, the
equations must reduce to ODEs with η as a
new independent variable.

Setting η = c which refer to the needle wall,
Equation (6) prescribes the size and shape of
the needle where its surface is given by:

R(x) =
(νcx
U

)1/2
. (7)

Next, we obtain the following ordinary differ-
ential equations by substituting Equations (5)
and (6) into the basic Equations (2)–(4):

2η

A1
f ′′′ +

2

A1
f ′′ + ff ′′ = 0, (8)

2η

Pr

A2

A3
θ′′ +

2

Pr

A2

A3
θ′ + fθ′ = 0, (9)

where

A1 = (1− φ)2.5 [1− φ+ φ (ρs/ρf )]

A2 = knf/kf

A3 = 1− φ+ φ (ρCp)s / (ρCp)f

Here prime represents the differentiation with
respect to the similarity variable η. The ap-
propriate boundary conditions are then given
by:

f(c) =
εc

2
+ 2σcf ′′(c), f ′(c) =

ε

2
+ 2σf ′′(c),

θ(c) = 1,

f ′(η)→ 1− ε
2

, θ(η)→ 0 as η →∞, (10)

where ε = Uw/U is the velocity ratio param-
eter between the needle and the free stream
flow, Pr = ν/α is the Prandtl number and
σ = ULr/νx is the slip parameter. It is worth
knowing that the parameter σ is the function
of x and its value varies locally throughout the
flow motion.
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The physical quantities of interest are the
skin friction coefficients, Cf and the local Nus-
selt number, Nux which are defined as follows:

Cf =
µnf (∂u/∂r)r=c

ρfU2
,

=
4

(1− ϕ)2.5
Re−1/2x c1/2f ′′(c), (11)

Nux =
−xknf (∂T/∂r)r=c
kf (Tw − T∞)

,

= −2
knf
kf

Re1/2x c1/2θ′(0), (12)

where Rex = Ux/ν is the local Reynolds num-
ber.

III. Stability Flow

In this study, a stability analysis is performed
to know which of the solutions obtained are
physically realistic or not. According to the
previous studies by Weidman et al. (2006) and
Rosca and Pop (2013), they found that the
lower branch solutions are not physically re-
alistic or said to be in unstable mode. Mean-
while, the opposite trend is noted for the up-
per branch solutions. To identify the stability
of the solutions, we first consider the unsteady
Equations (2) and (3) by introducing the new
dimensionless time variable τ = 2Ut/x. The
function of τ is associated with an initial value
problem that is consistent with the solution
that will be obtained in practice (physically re-
alistic).

Hence, the new similarity transformations in
terms of η and τ for the Equation (6) are:

ψ = νxf(η, τ), θ(η, τ) =
T − T∞
Tw − T∞

, η =
Ur2

νx
,

τ =
2Ut

x
, (13)

Then, substituting Equation (13) into Equa-

tions (2) and (3) yields the following

2η

A1

∂3f

∂η3
+

2

A1

∂2f

∂η2
+ f

∂2f

∂η2
− ∂2f

∂η∂τ

+ τ
∂f

∂η

∂2f

∂η∂τ
= 0, (14)

2η

Pr

A2

A3

∂2θ

∂η2
+

2

Pr

A2

A3

∂θ

∂η
+ f

∂θ

∂η
− ∂θ

∂τ

+ τ
∂f

∂η

∂θ

∂τ
= 0, (15)

along with the boundary conditions:

f(c, τ) =
εc

2
+ 2σc

∂2f

∂η2
(c, τ), θ(c, τ) = 1,

∂f

∂η
(c, τ) =

ε

2
+ 2σ

∂2f

∂η2
(c, τ),

∂f

∂η
(η, τ)→ 1− ε

2
, θ(η, τ)→ 0 as η →∞,

(16)
Afterwards, we assume (Rosca and Pop, 2013,
Weidman et al., 2006)

f(η, τ) = f0(η) + e−γτF (η, τ),

θ(η, τ) = θ0(η) + e−γτG(η, τ), (17)

in order to identify the stability of the solution
f = f0(η) and θ = θ0(η) satisfying the bound-
ary value problem (14)–(16). Here, functions
F (η, τ) and G(η, τ) are small relative to f0(η)
and θ0(η), respectively, and γ is an unknown
eigenvalue parameter.

Substituting Equation (17) into Equations
(14)–(16), we obtain the following linear eigen-
value problem:

2η

A1
F ′′′0 +

2

A1
F ′′0 + f0F

′′
0 + f ′′0F0 + γF ′0 = 0,

(18)

2η

Pr

A2

A3
G′′0 +

2

Pr

A2

A3
G′0 + f0G

′
0 + F0θ

′
0

+ γG0 = 0, (19)

subject to the boundary conditions

F0(c) = 2σcF ′′0 (c), F ′0(c) = 2σF ′′0 (c), G0(c) = 0,

F ′0(η)→ 0, G0(η)→ 0, as η →∞. (20)
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Note that, Harris et al. (2009) suggested that
the range of possible eigenvalues can be deter-
mined by relaxing the boundary conditions on
F0(η) or G0(η). In current study, we relax the
condition F0(η)→ 0 as η →∞ and then, solve
the system of eigenvalue problem (18) and (19)
subject to (20) together with the new condi-
tion F ′′0 (c) = 1. It should be note that, if the
smallest eigenvalue γ is negative, the flow is
unstable and there exists an initial growth of
disturbances. In contrast to that, if the small-
est eigenvalue γ is positive, the flow is stable
and there is an initial decay of disturbances in
the system.

IV. Numerical Approach

The bvp4c solver is one of the technique used to
solve the boundary value problems that imple-
mented in MATLAB software. This technique
applies the finite difference method, where the
solution can be obtained using an initial guess
supplied at an initial mesh point and change
step size to get the specified certainty. Never-
theless, to compute these boundary value prob-
lems, we must reduce it to a system of first
order ordinary differential equations.

Now, we introduce the following variables

y1 = f(η), y2 = f ′(η), y3 = f ′′(η),

y4 = θ(η), y5 = θ′(η). (21)

where

y′1 = y2, y
′
2 = y3, y

′
4 = y5. (22)

Thus, Equations (8) and (9) can be rewrite as

y′3 = −1

η

[
y3 +

A1

2
y1y3

]
(23)

y′5 = −1

η

[
y5 +

Pr

2

A3

A2
y1y5

]
(24)

with the transformed boundary conditions

ya1 −
εc

2
− 2σcya3 = 0,

ya2 −
ε

2
− 2σya3 = 0, ya4 − 1 = 0,

yb2 −
1− ε

2
= 0, yb4 = 0, (25)

where a and b correspond to the conditions on
the surface η = 0 and far field η = η∞, respec-
tively. In this work, a suitable finite value of
η∞ is taken as η = 60 which depend on the
values of the parameters used.

V. Results and Discussion

The ordinary differential equations (8) and (9)
together with the conditions (10) are computed
numerically using MATLAB bvp4c solver. The
obtained results are presented for various val-
ues of the slip parameter σ, velocity ratio pa-
rameter ε, nanofluid volume fraction parameter
φ when needle size c = 0.1 or c = 0.2 in some
figures with the Prandtl number Pr = 6.2 (wa-
ter). We let the range value of φ is between 0
(regular fluid) to 0.2. In addition, the thermo-
physical properties of solid nanoparticles and
base fluid are given in the work of Oztop and
Abu-Nada (2008).

Figures 1 and 2 illustrate the variations of
the shear stress f ′′(c) and local heat flux −θ′(c)
with velocity ratio parameter ε for several val-
ues of slip parameter σ. It is noticed from the
figures that as the slip parameter increases, the
numerical value of shear stress and local heat
flux also increases. This shows that the pres-
ence of the slip on the needle surface widens
the range of the possible solutions exist. How-
ever, an increase in the slip parameter reduces
the critical point by which the upper branch
and lower branch solutions intersected. Note
that, the dual solutions are likely to exist when
the needle moves in the opposite way of the
free stream flow ε < 0. It follows from Fig-
ures 1 and 2 that the dual solutions exist is in
the range of εc < ε ≤ −0.5. From these fig-
ures, the existence of unique solutions occurs
for ε > −0.5.

Figures 3 and 4 present the effect of the nee-
dle sizes c on the variation of the shear stress
and local heat flux with ε for Al2O3. As we can
see, the values of f ′′(c) and −θ′(c) is higher for
the thinner surface compared to that of thicker
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Figure 1: Effect of slip parameter σ on the vari-
ation of f ′′(c) with velocity ratio parameter ε.

Figure 2: Effect of slip parameter σ on the vari-
ation of −θ′(c) with velocity ratio parameter ε.

surface. Observation from Figure 3 yields that
the thinner surface of the needle decreases the
drag force occurs between the needle and the
fluid flow and consequently, increases the shear
stress on the surface. Interestingly, it is seen
from Figure 4 that the process of heat trans-
fer takes place quickly for c = 0.1. From
the perspective of physics, thin surfaces allow
heat to diffuse quickly through it. Besides, the
graphs also shown that the range of the solu-
tions obtained widens as the size of the needle
decreases. However, the range of the dual so-
lutions exist is between εc < ε ≤ −0.7 for both

Figure 3: Effect of needle size c on the variation
of f ′′(c) with velocity ratio parameter ε.

Figure 4: Effect of needle size c on the variation
of −θ′(c) with velocity ratio parameter ε.

values of c = 0.1 and c = 0.2.

The influence of the nanoparticles on the
variation of the shear stress and local heat flux
is illustrated in Figures 5 and 6 with velocity
ratio parameter when σ = 0.01. It is noticed
from the figures that range of the solutions ex-
ist is more pronounced for Al2O3 compared to
others. Furthermore, the existence of the dual
solutions for Equations (8) and (9) is observed
in the range of εc < ε ≤ −0.7. Within a cer-
tain range, say −2.3 < ε ≤ 0.5, the magni-
tude of the shear stress and local heat flux on
the needle surface is higher for Cu followed by
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Figure 5: Effect of nanoparticles on the varia-
tion of f ′′(c) with velocity ratio parameter ε.

Figure 6: Effect of nanoparticles on the vari-
ation of −θ′(c) with velocity ratio parameter
ε.

TiO2 and Al2O3. It follows Oztop and Abu-
Nada (2008) that the highest heat transfer is
obtained for Cu due to the higher thermal con-
ductivity compared to TiO2 and Al2O3.

Figures 7 and 8 depict the numerical val-
ues of the skin friction coefficient (Rex)1/2Cf
and local Nusselt number (Rex)−1/2Nux with
nanoparticle volume fraction φ for several val-
ues of slip parameter. The graphs yields that
the skin friction coefficient and the heat trans-
fer rate on the needle surface increases, as the
slip parameter increase. This flow pattern im-
plies that an increment in the slip parameter
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Figure 7: Effect of slip parameter σ on the vari-
ation of skin friction coefficients with nanopar-
ticle volume fraction φ.
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Figure 8: Effect of slip parameter σ on the vari-
ation of local Nusselt number with nanoparticle
volume fraction φ.

causes the momentum and thermal boundary
layer to decrease. As a consequence, increases
the shear stress and local heat flux, as well as
the skin friction coefficients and heat transfer
rate on the surface. Furthermore, the higher
rate of a nanoparticle volume fraction leads to
an increase in the skin friction coefficient as
presented in Figure 7. Physically, the presence
of nanofluid in the flow allows the nanoparti-
cles and base fluid particles collide with each
other, and this will enhance the friction occur-
ring on the needle surface. As can be seen in
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Figure 9: Effect of slip parameter σ on the vari-
ation of velocity profiles.
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Figure 8, the rate of heat transfer decreases as
the size of the nanoparticle increase. To prove
this statement, we can look at Figure 12 where
the temperature gradient increases, as the φ in-
crease. It follows that the higher temperature
gradients reduce the heat transfer rate occurs
between the surface and the fluid flow.

Figures 9–12 depict the influence of the slip
parameter and nanoparticle volume fraction
parameter on the sample velocity and temper-
ature profiles. It is noticed that the momen-
tum and thermal boundary layer thickness for
the lower branch solution is always thicker than
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Figure 11: Effect of nanoparticle volume frac-
tion φ on the variation of velocity profiles.
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Figure 12: Effect of nanoparticle volume frac-
tion φ on the variation of temperature profiles.

the upper branch solution. It is worth know-
ing that, all the profiles obtained in Figures 9–
12 has qualified the boundary conditions (10)
asymptotically. Note that, the dual velocity
and temperature profiles obtained in these fig-
ures also supported the existence of the dual
solutions gained for Figures 1–6.

Furthermore, the determination of the sta-
ble solutions has been done using a stability
analysis. The purpose of this analysis is to ver-
ify which of the upper or lower branch solution
is linearly stable and physically realistic. This
analysis is performed by substituting Equations
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Table 1: Smallest eigenvalues γ for some values
of slip parameter σ and velocity ratio parame-
ter ε when φ = c = 0.1 for Cu-water nanofluid.

σ ε Upper Lower
branch branch

0 -3.4306 0.0288 -0.0084
-3.4304 0.0369 -0.0163
-3.4302 0.0434 -0.0226
-3.4300 0.0465 -0.0256

0.01 -3.9518 0.5701 -0.0040
-3.9502 0.5777 -0.0104
-3.9498 0.5794 -0.0120
-3.9452 0.5999 -0.0294

(18) and (19) along with the conditions (20)
into the bvp4c function in MATLAB software.
The stability of the solutions depends on the
sign of the eigenvalues γ obtained. Table 1
displays the smallest eigenvalue γ for different
values of σ and ε. The table clearly indicates
that the negative value of γ represents an ini-
tial growth of disturbance and the flow is un-
stable. In the meantime, the positive value of
γ represents an initial decay of disturbance and
the flow is stable. It should be noted that, the
stable solution offers a good physical meaning
which can be realized.

VI. Conclusion

In this work, the effects of partial slip on
the boundary layer flow and heat transfer of
a nanofluid past a thin needle moving in a
parallel stream is analyzed. The reduced set
of nonlinear ordinary differential equations is
computed numerically using bvp4c function in
MATLAB. The stability analysis is considered
to find the stable solution. The results of the
current study can be concluded as follows:

• The existence of the dual solutions is found
to exist when the needle moves in the op-
posite way of free stream direction ε < 0,
meanwhile the solution is unique when
they move in the same way ε > 0.

• An increment in the slip parameter and
the reduction of the needle size has
widened the range of the solutions exist.

• The stability analysis has confirmed that
the upper branch solution is stable solu-
tion, while the lower branch solution is un-
stable solution.

• Increases the slip and nanoparticle volume
fraction parameter causes the skin friction
coefficients on the needle surface to in-
crease. Meanwhile, the opposite trend is
observed for higher values of needle size.

• An increment in the needle size and the
nanoparticle volume fraction leads to de-
crease the rate of heat transfer occur on
the surface, while the opposite effect notes
for higher values of slip parameter.

• Cu has a higher magnitude of the local
heat flux in a certain range, say −2.3 <
ε ≤ 0.5 because it has higher value of ther-
mal conductivity compared to TiO2 and
Al2O3.

Overall, the presence of the slip effect in this
work has contributed to an increment of heat
transfer rate between the needle and the free
stream flow due to the slip length. This incre-
ment of heat transfer is appropriate for some
applications that required high heat transfer
rate especially in the cooling process.
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