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Numerical solutions for an elastic half plane with circular arc cracks subjected to uniaxial ten-
sion σ∞

x = p is presented. The free traction on the boundary of the half plane is assumed.
Based on the modified complex potential and superposition method, the problem is formulated
into a singular integral equation with the distribution dislocation function as unknown. Nu-
merical examples exhibit the behavior of the stress intensity factor at the cracks tips for various
positions. Our numerical results are in agreement with the existence one.
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I. Introduction

The influences between cracks is one of the
main factors in determining the component life
of structures since the interaction of the cracks
can significantly affect the stress intensity fac-
tors of the cracks. The stress intensity factor
may increases or decreases. Due to this reason
many researchers give a significant to develop
the analytical methods to evaluate the stresses
around multiple interacting cracks. Kachanov
(2003) presented a short overview of several ap-
proaches for two and three dimensional crack
interaction problems. Li et al. (2008) proposed
a fast and accurate solution for crack interac-
tion problems in infinite and half plane. Based
on the method of complex potentials, the fi-
nal solution is obtained via a perturbation ap-
proach.

A series of papers have been published to
study the problem of three cracks as a special
case of multiple cracks for several plane and
different crack configurations. Three collinear,
parallel, Griffith cracks problems are proposed

for dissimilar piezoelectric materials, infinite
and orthotropic elastic plane by Lam and Phua
(1991), Itou and Haliding (1997), Das and Pa-
tra (1998), Das et al. (2001), Choi and Chung
(2013), Itou (2016), Sadowski et al. (2016), and
Akhtar and Hasan (2017). Chen and Hasebe
(1997) and Yan (2010) proposed three circular
arc cracks problem in an infinite plate by using
Fredholm integral equation and boundary ele-
ment method, respectively. Moreover, Bagheri
(2017) determined the dynamic field stress in-
tensity factors for three horizontal cracks by us-
ing the numerical Laplace inversion and dislo-
cation densities. In addition Elfakhakhre et al.
(2018) solved the interaction of two curved
cracks problem in half plane elasticity.

In this paper, a numerical approach for an-
alyzing interacting three circular arc cracks in
an elastic half plane is considered. The behav-
ior of the stress intensity factor at the crack
tips subjected to uniaxial tension σ∞x = p with
free traction boundary condition in half plane
elasticity. The problem is formulated into sin-
gular integral equations with the distribution
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dislocation function as unknown. In the for-
mulation, we make use the modified complex
potential. The appropriate quadrature formu-
las together with a suitable choice of colloca-
tion points, the singular integral equations are
reduced to the system of linear equations for
the unknown coefficients. Numerical examples
exhibit the values of stress intensity factor are
influenced by the distance between the cracks.

II. The problem formulation

Assume that three circular arc cracks lie on the
upper half plane with the same radius R sub-
jected to uniaxial tension σ∞x = p as shown
in Figure 1. To solve this problem, Muskhel-
ishvili’s method for plane elasticity is utilized
(Muskhelishvili (1953)). Based on this method,
the stresses (σx, σy, σxy), the resultant forces
(X,Y ) and the displacements (u, v) can be de-
scribed used two complex potentials Φ(z) =
φ

′
(z) and Ψ(z) = ψ

′
(z) as

σx + σy = 4Re[Φ(z)], (1)

σy − iσxy = 2ReΦ(z) + zΦ′(z) + Ψ(z), (2)

f = −Y + iX = φ(z) + zφ′(z) + ψ(z), (3)

2G(u+ iv) = κφ(z)− zφ′(z)− ψ(z), (4)

where G is shear modulus of elasticity, κ =
(3 − v)/(1 + v) in the plane stress problem,
κ = 3 − 4v in the plane strain problem, v is
the Poisson’s ratio, and a bar over a function
denotes the conjugated value for the function.
The derivative in a specified direction (abbre-
viated as DISD) is defined as

N + iT =
d

dz
(−Y + iX)

= Φ(z) + Φ(z) +
dz̄

dz

(
zΦ′(z) + Ψ(z)

)
,

(5)

where N + iT denotes the normal and tangen-
tial tractions along the crack segment z, z + dz.
The value of N + iT depends on the positions
of point z as well as on the direction of the
segment dz̄/dz.

The problem is formulated as a spe-
cial case for multiple curved cracks problem
(Elfakhakhre et al. (2018)). By consider the
distribution dislocation functions g′1(t1), g

′
2(t2),

and g′3(t3), respectively, for crack-1 (L1), crack-
2 (L2), and crack-3 (L3). Let Nk(tk0)+iTk(tk0)
be the tractions applied on the crack-k at the
point tk0 for k = 1, 2, 3, then the equations for
the three cracks subjected to traction can be
written as follow

1

π
−
∫
Lk

g′k(tk)dtk
tk − tk0

+
1

2π

(∫
Lk

B1(tk, tk0)g
′
k(tk)dtk+

∫
Lk

B2(tk, tk0)g
′
k(tk)dt̄k

)
+

3∑
j=1

′[
1

π

∫
Lj

g′j(tj)dtj

tj − tk0

+
1

2π

(∫
Lj

B1(tj , tk0)g
′
j(tj)dtj+∫

Lj

B2(tj , tk0)g
′
j(tj)dt̄j

)]
= Nk(tk0) + iTk(tk0),

(6)

where the function g′(tk) is defined as

g′(tk) = − 2Gi

κ+ 1

d

dtk

{
(u(tk) + iv(tk))+

− (u(tk) + iv(tk))−
}
,

(7)

where tk ∈ Lk, the subscript (+) (or (-)) mean
the upper (or lower) face of each crack, and
((u(tk)+iv(tk))+−(u(tk)+iv(tk))−) represents
the displacements at a point tk of the upper and
lower faces of each crack Lk. In Equation (7)
the expression d {} /dt should be defined as in
Muskhelishvili (1953) and Chen et al. (2003).
In Equation (6) the kernels are expressed as
follow

B1(tj , tk0) = A1(tj , tk0) +A3(tj , tk0) +A5(tj , tk0),

B2(tj , tk0) = A2(tj , tk0) +A4(tj , tk0) +A6(tj , tk0),

for k, j = 1, 2, 3,
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Figure 1: Three collinear circular arc cracks in an elastic half plane.

and

A1(tj , tk0) = − 1

tj − tk0
+

1

tj − tk0
dtk0
dtk0

,

A2(tj , tk0) =
1

tj − tk0
− tj − tk0

(tj − tk0)
2

dtk0
dtk0

,

A3(tj , tk0) = − 1

tj − tk0
+

tj − tj
(tj − tk0)2

,

A4(tj , tk0) = − 1

tj − tk0
+

tj − tj
(tj − tk0)

2 ,

A5(tj , tk0) =
dtk0
dtk0

(
2tk0(tj − tj)
(tj − tk0)3

+

(3tk0 − tj)
(tj − tk0)2

+
2tk0(tk0 − tj)

(tj − tk0)3

)
,

A6(tj , tk0) =
dtk0
dtk0

(
tj − tk0

(tj − tk0)2

)
.

Note that in Equation (6) the symbol
∑′ de-

notes the terms corresponding to j = k are ex-
cluded, and the first three integrals represent
to the effect on crack-k caused by the disloca-
tions on the crack-k itself, whereas the other
three integrals denote the effect of the disloca-
tions on crack-j where j = 1, 2, 3, j 6= k. In ad-
dition, the single-valuedness conditions of dis-
placement dislocation functions g′k(tk) are de-
fined as∫

Lk

g′k(tk)dtk = 0, for k = 1, 2, 3. (8)

In solving Equation (6) subjected to Equa-
tion (8), we map the cracks on a real axis by
sk with intervals of 2bk for crack-k, k = 1, 2, 3.
The mappings are expressed as (Chen (2004))

g′k(tk)|tk=tk(sk) = hk(sk) =
Hk(sk)√
b2k − s2k

,

where Hk(sk) = Hk1(sk) + iHk2(sk).

(9)

The following Gauss integration rules ( Erdo-
gan et al. (1973)) are also used in solving the
integral equations

1

π

∫ b

−b

F (s)√
b2 − s2(s− s0,m)

ds =
1

M

M∑
i=1

F (si)

(si − s0,m)
,

(10)

1

π

∫ b

−b

F (s)√
b2 − s2

ds =
1

M

M∑
i=1

F (si), (11)

where M is some integer, and

si = b cos
(i− 0.5)π

M
,

s0,m = b cos
mπ

M
,

for i = 1, 2, . . . ,M, and m = 1, 2, . . . ,M − 1.

(12)
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III. NUMERICAL
EXAMPLES

The stress intensity factor (SIF) at the crack
tips C1 and D1 of crack-1, C2 and D2 of crack-
2, and C3 and D3 of crack-3 (Figure 1) can be
evaluated as follow (Chen (2004))

(K1 − iK2)Ck
=
√

2π lim
t→tCk

√
|t− tCk

|g′k(t)

=

√
π

bk
Hk(−bk), k = 1, 2, 3,

(13)

(K1 − iK2)Dk
= −
√

2π lim
t→tDk

√
|t− tDk

|g′k(t)

= −
√
π

bk
Hk(bk), k = 1, 2, 3.

(14)

A. Example 1

Assume that three collinear circular arc cracks
of angle 2γ lie in upper half plane as seen in
Figure 1 with radius R and free traction on the
boundary. The cracks subjected to the remote
tension σ∞x = p. The SIFs at the cracks tips
are expressed as

K1Ck
= F1Ck

(a/R, 2b/h)σ∞x
√
πb,

K2Ck
= F2Ck

(a/R, 2b/h)σ∞x
√
πb,

K1Dk
= F1Dk

(a/R, 2b/h)σ∞x
√
πb,

K2Dk
= F2Dk

(a/R, 2b/h)σ∞x
√
πb,

where b = R sin (γ) for k = 1, 2, 3.

(15)

The calculated SIFs at the cracks tips C1,
D1, and C2 are listed in Table 1, which illus-
trates the variation of the SIFs with a/R =
0.2, 0.4, . . . , 2.0 and the dimensionless distance
2b/h = 0.1, 0.5, 0.9 for γ = 90◦, where a is
the distance between the cracks tips and the
boundary of half plane. Note that, F1C1 =
F1D3 , F1D1 = F1C3 , F1C2 = F1D2 , F2C1 =
−F2D3 , F2D1 = −F2C3 , and F2C2 = −F2D2 .
In the case 2b/h = 0.1, the data in Table 1

are compared with those of Elfakhakhre et al.
(2018) for a half circular arc crack, it is found
to be in good agreement. It indicates that in
the case 2b/h = 0.1 the interaction between
three circular arc cracks is negligible, and our
numerical results are reliable. Observed that
the SIFs at crack tips C1 and C2 decrease as the
2b/h increases but at D1 there is slightly distur-
bance. Whereas the SIFs increase as a/R de-
creases. Figure 2 shows that the SIFs increases
as the half opening crack angle (γ) increases for
a/R = 0.2 and 2b/h = 0.9.

B. Example 2

Assume that three collinear circular arc cracks
of angle 2γ lie in upper half plane as seen in
Figure 3 with the same radius R and free trac-
tion on the boundary. The cracks subjected to
the remote tension σ∞x = p. The SIFs at the

Figure 2: Nondimensional SIFs for three cir-
cular arc crack in an elastic half plane when
a/R = 0.2 and 2b/h = 0.9 (Figure 1).
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Table 1: Nondimensional SIFs for three circular arc cracks in an elastic half plane (Figure 1).

a/R

2b/h 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

F1C1

0.1 0.7563 0.7164 0.6945 0.6797 0.6703 0.6644 0.6605 0.6581 0.6564 0.6551

0.5 0.6908 0.6676 0.6494 0.6338 0.6225 0.6150 0.6096 0.6059 0.6031 0.6007

0.9 0.5706 0.5370 0.5090 0.4868 0.4713 0.4611 0.4544 0.4501 0.4473 0.4452

F1D1

0.1 0.7559 0.7159 0.6938 0.6788 0.6692 0.6632 0.6592 0.6566 0.6549 0.6534

0.5 0.6716 0.6529 0.6472 0.6439 0.6421 0.6412 0.6405 0.6401 0.6398 0.6393

0.9 0.6665 0.6685 0.6710 0.6705 0.6687 0.6665 0.6637 0.6609 0.6583 0.6556

F1C2

0.1 0.7531 0.7135 0.6917 0.6770 0.6675 0.6617 0.6579 0.6554 0.6538 0.6525

0.5 0.6415 0.6343 0.6270 0.6184 0.6112 0.6058 0.6015 0.5983 0.5958 0.5935

0.9 0.5426 0.5246 0.5049 0.4871 0.4739 0.4649 0.4587 0.4547 0.4519 0.4499

F2C1

0.1 0.0100 0.0215 0.0334 0.0439 0.0517 0.0570 0.0602 0.0621 0.0631 0.0635

0.5 0.0070 0.0167 0.0262 0.0346 0.0413 0.0462 0.0497 0.0521 0.0537 0.0547

0.9 0.0208 0.0581 0.0772 0.0886 0.0962 0.1017 0.1058 0.1090 0.1115 0.1136

F2D1

0.1 -0.0101 -0.0216 -0.0336 -0.0441 -0.0520 -0.0574 -0.0607 -0.0626 -0.0636 -0.0641

0.5 -0.0088 -0.0201 -0.0308 -0.0394 -0.0453 -0.0489 -0.0508 -0.0517 -0.0520 -0.0520

0.9 -0.0054 -0.0146 -0.0238 -0.0312 -0.0361 -0.0389 -0.0404 -0.0412 -0.0416 -0.0419

F2C2

0.1 0.0088 0.0204 0.0323 0.0428 0.0507 0.0560 0.0593 0.0612 0.0622 0.0627

0.5 0.0075 0.0171 0.0254 0.0318 0.0364 0.0395 0.0417 0.0433 0.0445 0.0454

0.9 0.0201 0.0557 0.0702 0.0774 0.0823 0.0864 0.0902 0.0939 0.0972 0.1003

F ∗1C 0.7611 0.7205 0.6981 0.6831 0.6733 0.6672 0.6632 0.6605 0.6586 0.6572

F ∗2C 0.0089 0.0206 0.0326 0.0432 0.0511 0.0564 0.0597 0.0616 0.0626 0.0631

* The SIFs value for a half circular arc crack (Elfakhakhre et al. (2018))

Figure 3: Three circular arc cracks in upper elastic half plane.
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Table 2: Nondimensional SIFs at the crack tips C1 and D1 for three circular arc cracks in
an elastic half plane (Figure 3).

γ(◦)

2b/h 15 30 45 60 75 90

F1C1

0.1 1.3586 1.0720 0.6662 0.2213 -0.1569 -0.1901
0.5 1.3275 0.9994 0.6057 0.2078 -0.1557 -0.1901
0.9 1.2750 0.9310 0.5515 0.1622 -0.1267 -0.1901

F1D1

0.1 1.0946 0.9078 0.6449 0.3524 0.0545 -0.0255
0.5 1.0676 0.8305 0.5325 0.2328 0.0163 -0.0255
0.9 1.0262 0.7703 0.4730 0.2068 -0.0533 -0.0255

F2C1

0.1 0.4008 0.7472 0.9373 0.9553 0.7744 0.2045
0.5 0.4032 0.6725 0.7867 0.7664 0.5999 0.2045
0.9 0.3769 0.6010 0.7258 0.7272 0.6096 0.2045

F2D1

0.1 -0.2675 -0.5092 -0.6544 -0.6999 -0.6334 -0.2023
0.5 -0.2787 -0.4992 -0.6222 -0.6106 -0.4583 -0.2023
0.9 -0.2847 -0.4994 -0.5890 -0.5591 -0.4076 -0.2023

cracks tips are expressed as

K1Ck
= F1Ck

(γ, 2b/h)σ∞x
√
πb,

K2Ck
= F2Ck

(γ, 2b/h)σ∞x
√
πb,

K1Dk
= F1Dk

(γ, 2b/h)σ∞x
√
πb,

K2Dk
= F2Dk

(γ, 2b/h)σ∞x
√
πb,

where b = R sin (γ) for k = 1, 2, 3.

(16)

The calculated SIFs at the cracks tips are
given in Table 2, Table 3, and Table 4 in
which illustrate the variation of the SIFs with
γ = 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ and dimension-
less distance 2b/h = 0.1, 0.5, 0.9 for a =
0.2R sin(γ), where a is defined as in Figure 3.
In the case 2b/h = 0.1 and γ = 15◦, the data
in Tables 2, 3, and 4 are compared with those
of Chen et al. (2009) for an arc crack, and it is
found that the agreement is very good. Note
that, in the case of an arc crack in an infinite

plate we have

F1C(a/R)a/R=0.2 = 1.3609,

F2C(a/R)a/R=0.2 = 0.4154,

F1D(a/R)a/R=0.2 = 1.0953

F2D(a/R)a/R=0.2 = −0.2792.

It indicates that in the case 2b/h = 0.1 the
interaction between three circular arc cracks
is negligible, and our numerical results are re-
liable. Note that the effect of interaction is
nonexistent between the cracks when γ = 90◦.

C. Example 3

Consider three circular arc cracks of angle 2γ lie
in upper half plane (Figure 4) with the radius
R1, R2, and R3, and R1/R2 = R2/R3 = λ. The
cracks subjected to the remote tension σ∞x = p
and free boundary condition. The SIFs at the
cracks tips are expressed as
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Table 3: Nondimensional SIFs at the crack tips C2 and D2 for three circular arc cracks in
an elastic half plane (Figure 3).

γ(◦)

2b/h 15 30 45 60 75 90

F1C2

0.1 1.3582 1.0684 0.6592 0.2084 -0.1843 -0.1901
0.5 1.3058 0.9348 0.5240 0.1939 0.0409 -0.1901
0.9 1.2750 0.9310 0.5515 0.1622 -0.1267 -0.1901

F1D2

0.1 1.0937 0.9055 0.6419 0.3553 0.0964 -0.0255
0.5 1.0546 0.8206 0.5633 0.3125 0.1288 -0.0255
0.9 1.0021 0.7786 0.5224 0.2921 0.0617 -0.0255

F2C2

0.1 0.4146 0.7445 0.9301 0.9353 0.7220 0.2045
0.5 0.3987 0.6545 0.7506 0.7289 0.5884 0.2045
0.9 0.3726 0.5854 0.6880 0.6790 0.5063 0.2045

F2D2

0.1 -0.2787 -0.5067 -0.6482 -0.6855 -0.6157 -0.2023
0.5 -0.2690 -0.4638 -0.5722 -0.5456 -0.3889 -0.2023
0.9 -0.2569 -0.4375 -0.4967 -0.4484 -0.3414 -0.2023

Table 4: Nondimensional SIFs at the crack tips C3 and D3 for three circular arc cracks in
an elastic half plane (Figure 3).

γ(◦)

2b/h 15 30 45 60 75 90

F1C3

0.1 1.3587 1.0716 0.6633 0.2065 -0.2293 -0.1901
0.5 1.3250 0.9717 0.5303 0.1634 0.0351 -0.1901
0.9 1.2647 0.8751 0.5250 0.3066 0.1002 -0.1901

F1D3

0.1 1.0946 0.9085 0.6495 0.3742 0.1530 -0.0255
0.5 1.0717 0.8706 0.6385 0.4155 0.2422 -0.0255
0.9 1.0419 0.8524 0.6407 0.4415 0.2591 -0.0255

F2C3

0.1 0.4057 0.7477 0.9391 0.9593 0.7725 0.2045
0.5 0.4078 0.7044 0.8310 0.7945 0.7116 0.2045
0.9 0.4011 0.6647 0.7573 0.7575 0.7110 0.2045

F2D3

0.1 -0.2713 -0.5085 -0.6523 -0.6972 -0.6450 -0.2023
0.5 -0.2676 -0.4579 -0.5697 -0.6000 -0.5712 -0.2023
0.9 -0.2453 -0.4143 -0.5155 -0.5530 -0.5627 -0.2023
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Table 5: Nondimensional SIFs for three circular arc cracks with different
radius in an elastic half plane (Figure 4).

λ

γ(◦) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 0.9

F1C1 30 0.0262 0.0212 0.0204 0.0244 0.0339 0.0506 0.0758 0.1036 0.1394

60 0.2276 0.2313 0.2453 0.2634 0.2798 0.2909 0.2990 0.3095 0.3126

90 0.5545 0.5533 0.5585 0.5654 0.5648 0.5520 0.5319 0.5195 0.5154

F1C2

30 0.0697 0.0653 0.0619 0.0592 0.0578 0.0610 0.0734 0.0944 -0.0751

60 0.3564 0.3503 0.3465 0.3385 0.3265 0.3132 0.3020 0.2926 0.2587

90 0.6623 0.6422 0.6195 0.5884 0.5508 0.5137 0.4857 0.4643 0.4136

F1C3

30 0.1940 0.1930 0.1906 0.1858 0.1769 0.1621 0.1431 0.1299 0.1841

60 0.5138 0.5103 0.5041 0.4944 0.4799 0.4576 0.4234 0.3789 0.3622

90 0.7572 0.7468 0.7308 0.7098 0.6838 0.6510 0.6074 0.5503 0.5026

F2C1

30 0.1302 0.1366 0.1465 0.1582 0.1717 0.1849 0.1904 0.1780 0.1461

60 0.2285 0.2175 0.2014 0.1865 0.1743 0.1668 0.1668 0.1747 0.1764

90 0.1134 0.1002 0.0742 0.0492 0.0286 0.0173 0.0167 0.0294 0.0596

F2C2

30 0.1552 0.1618 0.1725 0.1854 0.1979 0.2052 0.1982 0.1703 0.1518

60 0.2104 0.1951 0.1827 0.1736 0.1682 0.1677 0.1713 0.1662 0.1374

90 0.0526 0.0411 0.0280 0.0190 0.0136 0.0124 0.0164 0.0219 0.0127

F2C3

30 0.2360 0.2352 0.2334 0.2301 0.2240 0.2138 0.1993 0.1842 0.2120

60 0.2262 0.2245 0.2219 0.2184 0.2137 0.2071 0.1969 0.1787 0.1520

90 0.0089 0.0090 0.0095 0.0105 0.0124 0.0150 0.0168 0.0097 -0.0276

K1Ck
= F1Ck

(γ, λ)σ∞x
√
πb,

K2Ck
= F2Ck

(γ, λ)σ∞x
√
πb,

K1Dk
= F1Dk

(γ, λ)σ∞x
√
πb,

K2Dk
= F2Dk

(γ, λ)σ∞x
√
πb,

where b = R sin (γ) for k = 1, 2, 3.

(17)

The calculated SIFs at the cracks tips are
given in Table 5, which illustrates the varia-
tion of the SIFs with γ = 30◦, 60◦, 90◦ and
λ = 0.1, 0.2, . . . , 0.9 for a = 0.2, where a is de-
fined as in Figure 4. Observed that at the crack
tip C3 for λ = 0.1 and γ = 90◦ the data in Ta-
ble 5 are compared with those of Elfakhakhre

et al. (2018) for a half circular arc crack (see Ta-
ble 1), and it is found to be in good agreement.
It indicates that in the case λ = 0.1 the inter-
action between three circular arc cracks is neg-
ligible, and our numerical results are reliable.
Note that the SIFs increase as γ increases.

IV. CONCLUSION

Several situations in fracture mechanics involve
a complicated arrangement of cracks that is not
easy to analysis due to the interaction between
the cracks with each other. However, the singu-
lar integral equations were formulated for three
circular arc cracks in an elastic half plane. For
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Figure 4: Three circular arc cracks in upper
elastic half plane with different radius.

numerical purpose we apply the curve coordi-
nate method and appropriate quadrature rules.
The several numerical results exhibit the effec-
tiveness of this approach and also illustrate the
effect of the cracked geometry on the stress in-
tensity factor. We can conclude that the stress
intensity factor is influenced by the distance
between cracks, distance between cracks and
boundary, and the position and configurations
of the cracks.
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