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A steady Marangoni convection in a horizontal double diffusive binary fluid is considered.
Present study investigated the effects of temperature dependent viscosity, Coriolis force
and internal heat generation to the onset of convection. The bottom boundary was set
to be insulating or conducting to temperature. A detailed numerical calculation of the
marginal stability curves were performed by using the Galerkin method and it is shown that
temperature dependent viscosity, internal heat generation and Soret number destabilize the
binary fluid layer system while Taylor number and Dufour number act oppositely to the
system. Keywords: binary fluid, double diffusive, variable viscosity, coriolis force, heat
generation.

I. Introduction

The theory of double diffusive convection has
been studied by researchers as it has many
important applications in astrophysics, engi-
neering and geology. One of the most re-
lated phenomena is oceanography where Stom-
mel et al. (1956) start to study on their cu-
riosity in this field. However, Huppert and
Turner (1981) explain it thoroughly based on
theoretically, experimentally and in sea-going
oceanographers. Double diffusive is a problem
when there exist two competing diffusive ele-
ments which are the temperature and salinity
gradients. Effects that exist in a double diffu-
sive binary fluid convection are called the Soret
effect (thermo-diffusion) and the Dufour ef-
fect (diffusion-thermo). Bergman (1986) stud-

ied double diffusive in a Marangoni convection
where the results show that convection may oc-
cur even when the Marangoni number is zero.
Other researchers also studied the inclusion of
other effects in a binary fluid (Bergeon et al.
(1998); Slavtchev et al. (1999); Saravanan and
Sivakumar (2009); Abidin et al. (2017); Abidin
et al. (2017)). The first linearly stability analy-
sis was started by Nield and Kuznetsov (2011)
where they studied the effect of thermosolutal
in both stationary and oscillatory mode in a
nanofluid.

In earlier research, fluid is assumed to have
a constant viscosity whereby we knew that vis-
cosity may vary depending on other factors
such as the temperature. Ramı́rez and Sáez
(1990) stated that temperature dependent vis-
cosity should be taken into account for every
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case studied since the effect has a huge im-
pact on the instability of a convection. Grif-
fiths (1986) mentioned that viscosity decreas-
ing exponentially with temperature in some
oils. Booker (1976) had done an experiment
to study large temperature dependent viscos-
ity where he states that mean temperature on
the upper rigid and lower rigid boundaries re-
moves the effect of a strong temperature de-
pendent but the results are significant as it fol-
lows previous studies on this effect. Trompert
and Hansen (1998) also analyzed a fluid with a
strongly temperature dependent viscosity but
the study was done numerically. White (1988)
studied the planform of a convection with this
effect theoretically and experimentally. Manga
et al. (2001) investigated the effect experimen-
tally on Benard convection. Sparrow et al.
(1964) and Roberts (1967) analyze the non-
linear temperature distribution that is caused
by the internal heat generation in a horizon-
tal fluid layer. Gasser and Kazimi (1976) and
Kaviany (1984) include the internal heat gen-
eration effects in a porous medium.

McDonald (1952) state that Coriolis effect is
perpendicular to the rotating object’s axis and
the speed of the rotating obejct will define the
magnitude. The importance of Coriolis effects
in a Marangoni convection was presented nu-
merically by Vidal and Acrivos (1966) where
they found that the system stability is caused
by the uniform rotation. Meanwhile, the study
also shows the same correlation with previous
experimental studies where the direction of the
flow is downward along the cell boundaries and
upward in the core in Marangoni convection.
In 2014, Yad (2014) have carried out a study
on the coupled effect of rotation (Coriolis) and
magnetoconvection in a nanofluid. The study
shows that rotation stabilizes the system. How-
ever, for the slip conditions, free-free boundary
enhanced rapidly compare to rigid-rigid bound-
aries. Mcconaghy and Finlayson (1969) stud-
ied the Coriolis effect in a Marangoni oscilla-
tory instability using smaller Prandtl number
and shows similar results as Vidal and Acrivos
(1966) and Yad (2014).

In this research paper, we are interesting to
study the effect of temperature dependent vis-
cosity in a double diffusive binary fluid layer to-
gether with the coupled effects of Coriolis force
and internal heat generation. We have not
come across any literature that combines all the
effects in one dynamical system. The Soret and
Dufour effects are taken into account as these
effects were often being ignored in previous re-
search problem due to their small magnitude.
This model aims to be beneficial for problems
in oceanography or in other geophysics areas.

The upper boundary were set to be free and
insulating. Meanwhile, the lower boundary is
set to be rigid. However, the temperatre con-
ditions were set to be insulating or conducting.
We assume that the upper surface to be non-
deformable and employed the stability analy-
sis theory. The resulting eigenvalue problem is
solved numerically using Galerkin method.

II. Mathematical Formulation

A system where a horizontal Boussinesq bi-
nary fluid with a depth d with a temperature
difference of 4T between the lower and up-
per boundary is considered. The layer rotates
about the vertical axis with angular velocity
and is heated from below. The physical prop-
erties of the fluid are assumed constant except
the surface tension, density and kinematic vis-
cosity. The surface tension at the upper-free
undeformable surface is assumed to vary lin-
early with temperature and solute concentra-
tion gradient in the form

σ = σ0 + σt(T − T0) + σc(C − C0) (1)

where σ0 is the unperturbed value, T0 is the
reference value of temperature, C0 is the ref-
erence value of concentration, σt is the rate of
change of surface tension with temperature and
σc is the rate of change of surface tension with
concentration. The fluid density, ρ takes the
form

ρ = ρ0[1− α(T − T0) + αc(C − C0)] (2)

where ρ0 is the reference value of density at
T = T0 , α and αc are the coefficients of ther-
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mal and solute expansion respectively. The vis-
cosity, µ of the binary fluid vary exponentially
with temperature and solute concentration gra-
dients in the form

µ = µ0 exp [µt(T − T0) + µc(C − C0)] (3)

where µ0 is the reference value at the refer-
ence temperature T0. µt and µc are both posi-
tive constant. With this assumption and by fol-
lowing Nield and Kuznetsov (2011), Mokhtar
et al. (2017), Nan (2013) and Yadav et al.
(2016), the governing equations of mass, mo-
mentum and energy used for Marangoni con-
vection is as below

∇ · −→v = 0 (4)

ρ[
∂−→v
∂t

+ (−→v · ∇)−→v ] + 2Ωv = −∇p+ µ∇2−→v

+ ρ−→g (5)

ρc[
∂T

∂t
+ (−→v · ∇)T ] = κ∇2T + q + ρcDTC∇2C

(6)
∂C

∂t
+ (−→v · ∇)C = Ds∇2C +DCT∇2T (7)

where −→v is the velocity, ρ is the density, Ω is
the Coriolis, p is the pressure, −→g is the gravity,
α is the thermal volumetric coefficient, αc is
the solutal volumetric coefficient, κ is the ther-
mal diffusivity, DTC is the Dufour diffusivity,
q is the uniformly distributed volumetric inter-
nal heat generation, Ds is the solutal diffusivity
and DCT is the Soret diffusivity.

In order to study the system stability us-
ing linear stability theory, equations (4)-(7) are
non-dimensionalize using the following defini-
tions:

(x, y, z) =
(x′, y′, z′)

d
, (u, v, w) =

d(u′, v′, w′)

κ
,

t =
t′κ

d2
, p =

p′d2

µκ
,C =

C ′ − C ′0
∆C ′

, f =
µ(z)

µ0
,

Ψ = d2 Ψ′(z)

κ
(8)

where t is time, f is the z component of viscos-
ity due to the temperature dependent viscosity

and Ψ is the z component of vorticity due to
the rotation.

The quiescent basic state of the fluid is given
by

(u, v, w) = (0, 0, 0), ρ = ρb(z), C = Cb(z),

Ψ = Ψb(z),

p = pb(z) = p0 − ρ0gz −
1

2
ρ0gβz(z − d),

T = Tb(z) = − q

2κ
z2 + (

qd

2κ
− ∆T

d
)z + T0

=
Tl + Tu

2
− β(z − d

2
) (9)

where β = ∆T
d is the temperature gradient,

Tl is the lower temperature, Tu is the upper
temperature and subscript b denotes the basic
state.

The superpose perturbations on the basic so-
lution is in the following form

(u, v, w, p, ρ, C, T,Ψ) =

(0 + u′, 0 + v′, 0 + w′, pb(z) + p′, ρb(z) + ρ′,

Cb(z) + C ′, Tb(z) + T ′,Ψb(z) + Ψ′)

(10)

The perturbed non-dimensional governing
equations can be obtained as

∇ · −→v ′ = 0 (11)

1

Pr

∂−→v ′

∂t
= −∇p′+∇2−→v ′+RaT ′Ê+RsLeC ′Ê+

√
Ta(−→v ′ × Ê) (12)

∂T ′

∂t
− [Q(1−2z)−1]w′ = ∇2T ′+Df∇2C ′

(13)

∂C ′

∂t
− w′ = Le∇2C ′ + Sr∇2T ′ (14)

where Ra = αgd3∆T
µκ (Rayleigh number),

Rs = αcgd3∆C
µDs

(Solutal Rayleigh number),

Le = Ds
κ (Lewis number), Sr = DCT ∆T

κ∆C (Soret

parameter), Df = DTC∆S
κ∆T (Dufour parameter),
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Pr = µ
ρκ (Prandtl number) , Ta = d44Ω2

µ2
(Tay-

lor number) and Q = qd2

2κ∆T is the dimensionless
heat source strength (Sparrow et al., 1964).

Applying the curl operator twice on equa-
tion (12) and using equation (11), we obtained
equation (15)

[∇4 − 1

Pr

∂

∂t
∇2]w′ +RsLeC ′∇2

d +RaT ′∇2
d−

√
Ta

∂Ψ′

∂z
= 0 (15)

and the z-component of equation (15) is rep-
resented by equation (16).

[∇2 − 1

Pr

∂

∂t
]Ψ′z +

√
Ta

∂w′

∂z
= 0 (16)

The perturbation quantities in a normal
mode are in the form

(w′, T ′, C ′,Ψ′) =

[W (z),Θ(z),Φ(z),Γ(z)]ei(axx+ayy) (17)

Equation (17) is being substituted into equa-
tions (13)-(16), to obtain the linearized form

f(D2 − a2)2W +D2f(D2 − a2)W+

2Df(D2 − a2)DW − a2RaΘ− Lea2RsΦ−
√
TaDΓ = 0 (18)

(D2 − a2)Θ + [1−Q(1− 2z)]W+

Df(D2 − a2)Φ = 0 (19)

W + Sr(D2 − a2)Θ + Le(D2 − a2)Φ = 0 (20)

(D2 − a2)Γ +
√
TaDW = 0 (21)

where a =
√
a2
x + a2

y, D = d
dz ,

f(z) = exp[B(z − 1
2) + (T0−Ts)

βd ] where

B = (µt+µc2 )βd is the dimensionless viscosity
parameter and Ts = Tl − βd.

The boundary conditions at the upper free
surface (z = 1) are

W = D2W = Φ = Γ = 0 (22)

DΘ = 0 (23)

(D2 + a2)W +Ma a2Θ = 0 (24)

The boundary condition at the lower surface
(z = 0) are

W = DW = Φ = Γ = 0 (25)

and the temperature is set to be conducting

Θ = 0 (26)

or insulating

DΘ = 0 (27)

Equations (18)-(21) are solved depending on
the boundary conditions (22)-(27) to obtain the
eigenvalue Ma.

III. Methodology

Governing equations (18)-(21) together with
the boundary conditions (22)-(27) constitute a
linear eigenvalue problem of the system and be-
ing solved by using the Galerkin-type weighted
residuals method. A trial based function was
composed based on the boundary conditions.

W =

N∑
n=1

AnWn,Θ =

N∑
n=1

BnΘn,

Φ =

N∑
n=1

CnΦn,Γ =

N∑
n=1

DnΓn (28)

where An, Bn, Cn and Dn are unknown co-
efficients. To approximate the solutions,
Wn,Θn,Φn and Γn are chosen generally based
on the boundaries conditions. Using expres-
sion for W,Θ,Φ and Γ in the linearized equa-
tions as well as multiplying all equations with
the base functions respectively and integrating
the functions, a system of 4 × 4 linear alge-
braic equations in 4 unknowns An, Bn, Cn and
Dn, n = 1, 2, 3, ..., N , where N is the natural
number is obtained. Marangoni number, Ma
act as the eigenvalue when the determinant of
the coefficient matrix is vanished to obtain a
system with a non-trivial solution.
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IV. Results and Discussion

The Rayleigh number, Ra was set to zero
(Ra = 0) since in this paper, only the steady
Marangoni convection is considered. By using
the Galerkin method, we present the marginal
stability parameters, Ma and the correspond-
ing critical wave number, a numerically. Two
cases were studied where the lower boundary is
set to be conducting or insulating. Ignoring all
the effects, we recover the classical Marangoni
problems by Pearson (1958) where the critical
Marangoni number is 79 for conducting case,
and 48 for the insulating case.

Figure 1 shows the marginal curves of
Marangoni number, Ma as a function of
wavenumber, a for several values of Taylors
number, Ta. Ta represents the Coriolis ef-
fect on the system. The critical Marangoni
number which is the minimum value of the
Marangoni number increases as Ta increases.
When Ta = 100, we can see that the criti-
cal Marangoni number is higher compared to
Ta = 1 and Ta = 10. This indicate that Cori-
olis force is a stabilizing factor where it sur-
press the convection. This condition is due to
the force effect in the vertical movement and
hence, restrict the movement of thermal con-
vection to the horizontal plane (Yadav et al.
(2016)). In the insulating case, since both
boundaries are insulated to temperature, we
can found that the critical Marangoni number
is at a = 0. Figure 2 is a plot of Ma ver-
sus a for different values of temperature de-
pendent viscosity, B. It shows that for both
cases, the marginal stability curve decreases as
the temperature dependent viscosity number,
B increases. In the insulating case, the result
shows a good agreement with previous findings
(Kalitzova-Kurteva et al. (1996); Abidin et al.
(2018)). Kalitzova-Kurteva et al. (1996) also
study the temperature dependent viscosity ef-
fect in a conducting case where they state that
temperature dependent viscosity has a stabi-
lizing effect for a moderate viscous fluids and
a destabilizing effect for a strong viscous fluid.
However, their finding was done in a regular liq-

uid layer instead of a binary fluid layer where
commonly binary fluids are more stable com-
pared to a regular fluid. The same destabiliz-
ing effect was presented by Abidin et al. (2017)
in a binary fluid.

Figure 3 represent Ma against a with values
of internal heat generation Q = 1, 5 and 10. It
is found that the marginal stability curves shift
downwards as the internal heat generation, Q
increase. Results are similar with Char and
Chiang (1994) where the authors present their
finding for Q = 0, 1 and 5 in a regular fluid. We
obtain the same critical values and same signif-
icant influence on the system. It shows that in-
ternal heat generation is a destabilizing factor
to make the system more unstable. The ther-
mal mode being transformed into the surface
tensile mode as Q increases making the system
destabilized. Figure 4 and Figure 5 shows the
trends of stability for two parameter that ex-
ists due to the double diffusive problem which
are the Soret number, Sr and Dufour number,
Df . Soret analyzes the thermodiffusion and
Dufour analyzes the diffusion thermos effect on
the flow. As seen clearly in the figures, the crit-
ical Marangoni number decreases as Soret num-
ber increases. The temperature flux increase
when the system is heated from below and this
contributes to the initiation of natural convec-
tion in a binary fluid. Meanwhile, the Dufour
number shows the opposite reaction where the
critical Marangoni number decreases as Dufour
number increases. The energy flux from lower
and higher solute concentration is driven by the
mass gradient in the binary system.

Figure 6 and 7 represent the variation of crit-
ical Marangoni number, Mc for different values
of B and Ta for the conducting case. The plots
in Figure 6 represent the values of temperature
dependent viscosity, B = 1, 2, 3 on the criti-
cal Marangoni number, Mc against the Solutal
Rayleigh number, Rs. As Rs increases, the Mc
also increases. In Figure 7 shows the coupled
effect of Df and Ta. When Df increase, the
Mc will also increase. However, the stability
effect is more obvious for a higher Ta value
compared to a lower Ta.

96



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

V. Conclusion

The stability analysis of the Marangoni convec-
tion in a double diffusive binary fluid with Cori-
olis force, temperature dependent viscosity and
internal heat generation has been studied the-
oretically. The Coriolis force and the Dufour
number are clearly a stabilizing factor to make
the system more stable. Meanwhile, tempera-
ture dependent viscosity, internal heat genera-
tion and Soret number destabilize the system
where the marginal shift downwards as we in-
crease the effects.
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Figure 1: Variation of Ma for Ta

Figure 2: Variation of Ma for B

Figure 3: Variation of Ma for Q

Figure 4: Variation of Ma for Sr
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Figure 5: Variation of Ma for Df

Figure 6: Mc vs. Rs for various values of B

Figure 7: Mc vs. Df for various values of Ta
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