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This case study seeks to examine the fluid flow over shrinking sheet towards suction. This
works also investigate the heat transfer in the present of magnetic parameter, heat generation
and Lewis number. The basic governing partial differential equations are reduced to a set of
ordinary differential equations by using appropriate similarity transformation. To obtain the
numerical results, we used MATLAB software. We notice the dual similarity solutions are
available in certain range of shrinking sheet parameter. Thus, this results make us continue
further in perform the stability analysis by using bvp4c solver in MATLAB software. As
expected, our study proved that the solution is stable only the first one and the second solution
is not.
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I. Introduction

The term of boundary layer was introduced
by German engineer named Ludwig Prandtl in
1904. According to Prandtl theory, when a flow
past an object, the flow region can be divided
into two regions. The first region is a thin
layer adjoining the solid boundary where the
viscous force and rotation cannot be neglected
while the second region is an outer region where
the viscous force is very small and can be ne-
glected. The analysis of boundary layer flow
and heat transfer passing stretching/shrinking
sheets has gained attention of many researchers
in a few years ago due to the importance in
engineering applications. (Sakiadis, 1961) was
the first researcher that studied the problem of
boundary layer flow on a surface of continuous.
Then, (Crane, 1970) obtained an exact solu-
tion of the boundary layer flow of the Newto-
nian fluid caused by the stretching of an elastic

sheet moving in its own plane linearly. Very re-
cently, (Zaimi and Ishak, 2015) investigated the
problem of boundary layer flow with convec-
tive boundary condition and they found that
there exist dual solutions for both stretching
and shrinking parameter.

Stability analysis is a method that evaluate
the most stable solution among dual solutions.
According to (Merkin, 1986), the solution with
positive eigenvalues indicate stability and the
solution with negative eigenvalues imply oth-
erwise. (Junoh et al., 2018) investigated the
problem of magnetohydrodynamic flow on non-
linear passing shrinking sheet in the present of
radiation. They found that there exist dual
solutions. Hence, they continued to perform
stability analysis to identify which solution is
stable and unstable. Finally, they found that
the first solution is stable and physically real-
izable. The stability analysis is done here by
the following works of (Sharma et al., 2014),
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(Hamid and Nazar, 2016), (Najib et al., 2017)
and (Salleh et al., 2018). The aim of the current
paper is to investigate numerically the problem
of MHD boundary layer flow and heat transfer
towards shrinking with stability analysis.

II. Mathematical Formulation

Let us consider an incompressible and two di-
mensional laminar boundary layer flow over a
permeable shrinking sheet. The boundary layer
approximations is employed and the equations
of the governing problem are as follows:
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where u and v are velocity component of the
fluid along the x and y directions, respectively.
ν = µ/ρ is the kinematic viscosity where µ is
the fluid viscosity and ρ is the fluid density.
σ is the electrical conductivity while β0 is the
constant applied magnetic field. T represents
temperature and C is the cocentration. Fur-
ther, κ refer to thermal conductivity, Cp refer
to specific heat of the fluid, Q refer to volu-
metric rate of heat generation and DB refer to
Brownian diffusion coefficient. And the appro-
priate boundary conditions are given by

u = Uw(x) = cx, v = vw,

T = Tw, C = Cw at y = 0

u→ 0, T −→ T∞,

C −→ C∞ at y −→∞ (5)

Here, c denotes the stretching/shrinking rate
where c > 0 refers stretching plate while c < 0
refer to shrinking plate. Mass tranfer velocity,

v = vw where vw < 0 refers injection and vw >
0 refer suction and we assumed vw as below:

vw = −
√
aνS (6)

Now, we introduced stream function which are
defined as u = ∂ψ/∂y and v = −∂ψ/∂x. The
continuity equation (1) is satisfied by stream
function. Then, we assume the similarity trans-
formations that defined as follow:

η = y
( c
ν

)1/2
, ψ =

√
aνxf (η) ,

T = T∞ + (Tw − T∞) θ (η) ,

C = C∞ + (Cw − C∞)φ (η) (7)

Using equation (7), equations (2), (3) and (4)
transformed into nonlinear ordinary differential
equations as below:

f ′′′ + ff ′′ − f ′2 −Mf ′ (8)

θ′′ + Pr
(
fθ′ + ∆θ

)
= 0 (9)

φ′′ + Lefφ′ = 0 (10)

where prime indicates differentiation with re-

spect to η. M =
σβ2

0
aρ refer to the magnetic

parameter and Pr =
µCp

κ denotes the Prandtl

number. Then, ∆ = Q
ρaCp

is the heat source

(∆ < 0) or sink (∆ > 0) parameter while Le =
ν
DB

is Lewis number. The transformed bound-
ary conditions are:

f (0) = S, f ′ (0) = λ, θ (0) = 1, φ (0) = 1

and f ′ (∞)→ 0, θ (∞)→ 0, φ (∞)→ 0
(11)

where S is the constant mass transfer parame-
ter with S > 0 is for suction and S < 0 is for
injection. λ = c

a is the velocity ratio param-
eter. The main physical quantities of interest
are the value of f ′′ (0), being measure of the
skin friction, the temperature gradient, −θ′ (0)
and the concentration gradient, −φ′ (0).
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III. Stability Analysis

In order to perform stability analysis, we need
to consider the unsteady problem. Equation
(1) holds, while equations (2)-(4) are replaced
by
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where t denotes the time. Then, based on simi-
larity transformations in (7), we introduced the
new dimensionless variables as follow:

η = y
( c
ν

)1/2
, ψ =

√
aνxf (η, τ) ,

T = T∞ + (Tw − T∞) θ (η, τ) ,

C = C∞ + (Cw − C∞)φ (η, τ) , τ = ct (15)

Thus, equations (2)-(4) changed to the follow-
ing equations:
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alongside boundary conditions as follows:

f (0, τ) = S,
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To test the stability of the solution f (η) =
f0 (η), θ (η) = θ0 (η) and φ (η) = φ0 (η) satis-
fying the boundary value problem (8)-(11), we
write:

f (η, τ) = f0 (η) + e−γτF (η, τ) ,

θ (η, τ) = θ0 (η) + e−γτH (η, τ) , (20)

φ (η, τ) = φ0 (η) + e−γτG (η, τ) ,

where γ is an unknown eigenvalue. F (η), H (η)
and G (η) are small relative to f0 (η), θ0 (η) and
φ0 (η). Next, differentiate equation (20) and
the substitute into equations (16)-(18) to ob-
tain eigenvalue problem as below:

F ′′′0 + f0F
′′
0 + f ′′0F0 − 2f ′0F

′
0 −MF ′0 + γF ′0 = 0,

(21)
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together with the new boundary conditions

F0 (0) = 0, F ′0 (0) = 0, H0 (0) = 0, G0 (0) = 0,

F ′0 (η)→ 0, H0 (η)→ 0, G0 (η)→ 0
(24)

To be noted, the stability of the problem can be
determine by the smallest eigenvalue γ. There-
fore, the condition F ′0 (η) → 0 as η → ∞ has
been put at rest as suggested by (Harris et al.,
2009) and for fixed value of eigenvalue, γ.

IV. Results and Discussion

The system of equations (8)-(10) with the
boundary conditions in (11) is solved using an
implemented bvp4c package in MATLAB soft-
ware. If the profiles satify the far field bound-
ary conditions (11) asymptotically, the numeri-
cal results obtained are considered correct. Be-
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sides, to support the results obtained, we com-
pared our results with those reported by (Za-
imi et al., 2014) and (Yasin et al., 2016) as il-
lustrated in Table 1 by considering the values
of ∆ = S = M = Le = 0 and λ = 1. The
comparison shows very good agreement. The
respective results are given to carry out the in-
fluences of several kind of parameters on the
parametric study such as magnetic parameter,
M , heat source or sink parameter, ∆ and Lewis
number, Le.

Table 1: Comparison of the values of −θ′(0)
Pr Zaimi et al. Yasin et al. Present

0.72 0.463145 0.4631 0.463145
1 0.581977 0.5820 0.581977
3 1.165246 1.1652 1.165246
7 1.895403 - 1.895403

Figure 1: Velocity profile for various values of
M

We now consider velocity profiles f ′(η) as illus-
trated in Figure 1 for selected values of mag-
netic parameter, M when we consider the value
of Pr = 1, ∆ = 0.1, S = 3, λ = −2 and
Le = 1. From Figure 1, as magnetic pa-
rameter, M increase, the momentum bound-
ary layer thickness decrease. This is due to the
magnetic force acting on the sheet increases as
well, causing the boundary layer thickness to
become smaller. In addition, Figure 2 shows
the various values of heat source/sink param-
eter, ∆ on temperature profile θ(η). Increas-
ing heat generation (∆ > 0) significantly ac-

Figure 2: Temperature profile for various val-
ues of ∆

Figure 3: Concentration profile for various val-
ues of Le

celerates the flow and also increases tempera-
ture magnitudes. Conversely, with a heat sink
(∆ < 0) present, the flow is retarded which
means that momentum boundary layer thick-
ness is lowered. Then, thermal boundary layer
thickness is reduced. Next, as shown in Figure
3, when Lewis number, Le increase, the bound-
ary layer thickness decrease.

Figure 4-6 shows the numerous values of
suction parameter, S on velocity profile,
temperature profile and concentration profile.
All these three figures show that the reduction
in boundary layer thickness with the increase
of suction parameter, S. This happened
because suction reduces drag force in order to
avoid boundary layer separation. From Figure
5, we can say that the viscosity of the fluid
increases as suction parameter, S increase.
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Figure 4: Velocity profile for various values of
S

Figure 5: Temperature profile for various val-
ues of S

Figure 6: Concentration profile for various val-
ues of S

On other hand, the thickness of the thermal
boundary layer is decreasing when we increase
the value of suction parameter, S. Hence,

suction parameter, S with larger value will
enhance the heat transfer rate more quickly
compared to smaller suction parameter, S.

Figure 7: Skin friction coefficient for various
values of M

Figure 8: Local Nusselt number for various val-
ues of M

Figure 9: Concentration gradient for various
values of M

The changes of skin friction coefficient, lo-

105



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

cal Nusselt number and concentration gradient
with magnetic parameter, M are show in Fig-
ure 7-9. Based on Figure 7, it is seen that upon
increasing of magnetic parameter, M , the skin
friction coefficient is increase. In fact, the value
of f ′′(0) is positive when λ < 1. Physically
positive value of f ′′(0) means the fluid exerts
a drag force on the solid boundary. Normally,
when λ = 1, f ′′(0) = 0. This is due to the fact
that there is no friction at the friction at the
fluid-solid interface when the fluid and the solid
boundary move with the same velocity. Be-
sides, from Figure 8, the local Nusselt number
increase when the increasing of the magnetic
parameter, M . It is also good to know that an
increment of magnetic parameter, M leads to
a increase in the ratio of thermal conductivity.
Next, Figure 9 also shows that concentration
gradient increase as the magnetic parameter,
M is increase. These Figures admit dual so-
lution when λ > λc while when λ < λc, no
similarity solutions exist for equations (8)-(10).
From Figure 1-9, it is shown that there exist
dual solutions for this current problem. Hence,
an analysis of stability is performed in order to
identify which solution is most stable between
two solutions. The results displayed in Table
2 states that first solution is in positive value
while second solution in negative value. Hence,
we can finally conclude that the first solution
is stable and significantly realizable meanwhile
the second solution is in opposite manner.

Table 2: Smallest eigenvalues
λ First solution Second solution

-2.445 0.1038 -0.0147
-2.44 0.1282 -0.0393
-2.43 0.1625 -0.0740
-2.42 0.1888 -0.1007

V. Conclusion

The study of a stability analysis on MHD
boundary layer flow and heat transfer towards
shrinking sheet with suction has been nu-
merically analyzed and discussed in detail in

this paper. It was found that the involv-
ing parameters-specifically magnetic parame-
ter, heat generation parameter, suction param-
eter and Lewis number significantly affected
the flow field. Then, we noticed that there
are dual solutions. Hence, we continue further
in perform stability analysis to identify which
solution is stable. It is found that dual solu-
tion exist when λ > λc. The λc = −2.3500
when magnetic parameter, M = 0.1 while when
we consider for M = 0.2, the λc = −2.4499.
Lastly, we can conclude that the first solution
is always in stable state while the second solu-
tion is not.
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