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This paper studies on two-dimensional magnetohdrodynamics (MHD) boundary layer flow
of Carreau fluid towards a non-linear shrinking sheet with convective boundary condition
and non-linear thermal radiation. Appropriate similarity transformations are introduced to
convert the governing equations into non-linear ordinary differential equations. The equations
along with the transformed boundary conditions are then solved numerically using shooting
method in Maple. The effects of various parameters such as the shrinking parameter, the
suction parameter, the radiation parameter, the temperature ratio parameter, the magnetic
parameter, the Prandtl number and the Biot number on the skin friction coefficient, the heat
transfer rate, the fluid velocity and the fluid temperature are discussed and shown in tables
and graphs. It is found that dual solutions are obtained at certain values of parameters and
the higher the value of suction and magnetic parameter, the higher the heat transfer rate. As
the radiation parameter increases, the fluid temperature decreases.
Keywords: Carreau fluid, MHD, shrinking sheet, suction, thermal radiation.

I. Introduction

There has been a growing interest in the study
of fluid flow and heat transfer over a stretch-
ing/shrinking surface because of its wide appli-
cations in industry and engineering. According
to Miklavčič and Wang (2006), the velocity of
stretching sheet on the boundary is away from
a fixed point while for shrinking sheet the ve-
locity is towards a fixed point. The solution for
stretching sheet would produce far field suction
towards the sheet while shrinking sheet would
produce velocity away from the sheet. Thus,
the flow in shrinking sheet is unlikely to exist
because the vorticity is not confined within a
boundary layer. Miklavčič and Wang (2006)
found that the flow can be maintained by hav-
ing enough suction on the surface. Multiple so-
lutions were found at certain suction rates. In
a study by Fang (2008), it was found that the

solutions may be non-unique or does not exist
at larger shrinking rates. Later, in the study
by Fang and Zhang (2010) and Bhattacharyya
and Pop (2011) dual solutions were obtained at
certain ranges of parameters.

Carreau fluid is a generalized Newtonian
fluid that acts as power law fluid at high shear
rate and as Newtonian fluid at low shear rate.
Few studies have been carried out on Carreau
fluid flow over shrinking surfaces. One of the
studies was on stagnation point flow of MHD
Carreau fluid which was done by Akbar et al.
(2014). Hashim et al. (2017) extended this
study by considering thermal radiation. Then,
Hashim and Khan (2017) discussed the flow of
MHD Carreau fluid past a shrinking cylinder
where multiple solutions were found at certain
ranges of parameters. Recently, the flow of
Carreau fluid past an inclined shrinking surface
was studied by Khan et al. (2018).
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Due to the scarcity in the study of Carreau
fluid flow over a shrinking sheet, this paper will
study the flow of MHD Carreau fluid over a
shrinking sheet. Suction and non-linear ther-
mal radiation are considered in this problem.
The governing equations are solved along the
boundary conditions using shooting method in
Maple. The results are then discussed in table
and graphs.

II. Methodology

Consider a steady and incompressible two-
dimensional boundary layer flow of Carreau
fluid over a non-linear shrinking sheet with ve-
locity Uw = axm, as shown in Fig. 1. Non-
linear thermal radiation and convective bound-
ary condition are taken into account in the
heat transfer analysis. Cartesian coordinates
are used to represents the problem such that
the shrinking sheet is placed along the x-axis
and y-axis is normal to it. The fluid is assumed
to flow in the region y ≥ 0. Magnetic field of
strength B0 is applied in the direction normal
to the sheet and the induced magnetic field is
not considered as the magnetic Reynolds num-
ber is assumed to be very small.

Figure 1: Physical model of the problem.

The governing equations for the stated prob-

lems are given as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

[
1 + Γ2

(
∂u

∂y

)2
]n−1

2

+ ν(n− 1)Γ2∂
2u

∂y2

(
∂u

∂y

)2

[
1 + Γ2

(
∂u

∂y

)2
]n−3

2

− σB2
0

ρ
u,

(2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρcp

∂qr
∂y

, (3)

subject to the boundary conditions

u = Uw(x) = axm, v = vw,

− k∂T
∂y

= hf (Tf − T ) at y = 0, (4)

u→ 0, T → T∞ as y →∞, (5)

where u and v are the velocity components
along the x and y directions respectively, ρ is
the fluid density, ν = µ

ρ is the kinematic vis-
cosity of the fluid, Γ is the material constant
called relaxation time, σ is the electrical con-
ductivity of the fluid, n is the power law index,
T is the fluid temperature, qr is the radiative
heat flux, α = k

ρcp
is the thermal diffusivity

with cp represents the specific heat and k rep-
resents thermal conductivity of the fluid, Uw(x)
is the non-linear velocity with constants, a < 0
and m > 0 related to the shrinking speed, vw is
the mass transfer velocity, hf is the convective
heat transfer coefficient, Tf is the convective
fluid temperature below the moving sheet and
T∞ is the ambient fluid temperature.

In the above equations, the power law index,
n is used to determine the fluid behaviour. The
value of n = 1 describes the fluid as Newtonian
fluid. If the value of n is in the range of 0 <
n < 1, the behaviour of the fluid is of a shear-
thinning fluid and when the value is n > 1, the
fluid has the behaviour of a shear-thickening
fluid.
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Khan et al. (2016) stated that the radiative
heat flux expression in Eq. (3) can be simplified
using the Rosseland approximation,

qr = −4σ∗

3k∗
∂T 4

∂y
, (6)

where σ∗ is the Stefan-Boltzmann constant and
k∗ is the mean absorption coefficient. In con-
sidering the flow over a horizontal flat plate,
Eq. (6) can be written as follows
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3k∗
T 3∂T
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. (7)

By substituting Eq. (7) into Eq. (3), we
obtain,
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Next, the following non-dimensional vari-
ables are introduced to simplify the mathemat-
ical analysis using similarity transformations,
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where η is the similarity variable with b as a
constant and ψ is the stream function given by
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. (10)

From Eq. (9),
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where θw > 1 is the temperature ratio param-
eter.

By substituting Eqs. (9)-(11) into Eqs. (1),
(2), (4), (5) and (8), we obtain[
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where the prime represents ordinary derivative
with respect to η.

In the above equations, the local Weis-
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suction and s < 0 for injection.
The local skin friction coefficient, Cfx and

the local Nusselt number, Nux are given as fol-
lows
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, (16)

where τw and qw are the respective wall shear
stress and wall heat transfer given by
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Equation (17) is substituted into Eq. (16) to
obtain
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where Re = bxm+1

ν is the local Reynolds num-
ber.

III. Results and Discussion

Differential equations (12) and (13) with the
boundary conditions (14) and (15) are solved
numerically using the shooting method in
Maple. The equations and the method used
are validated by comparing the present results
of f ′′(0) and local Nusselt number, Re−1/2Nux
with other published results as shown in Ta-
ble 1 and Table 2, respectively. The results are
found to be in excellent agreement. Thus, it
can be said that the equations and the method
used in this study are accurate. In this prob-
lem, dual solutions are obtained at certain val-
ues of the parameters. Since we are only in-
terested in studying the dual solutions of the
problem, all the results shown in this paper are
of two solutions. The stability analysis of dual
solutions in Carreau fluid flow has been done
by Naganthran and Nazar (2016) and Hashim
et al. (2018). In these studies, the first solution
is found to be stable while the second solution is
unstable. Thus, the first solution is more realis-
able and physically meaningful than the second
solution. It is expected that these findings hold
in the present study. The behaviour of skin
friction coefficient, Re1/2Cfx and local Nusselt
number, Re−1/2Nux for various parameters in-
volved in the flow equations are shown in ta-
ble and graphs. The velocity profile and tem-
perature profile for various parameters such as
the shrinking parameter λ, suction parameter
s, the radiation parameter NR, the tempera-
ture ratio parameter θw, the magnetic param-
eter M , the Prandtl number Pr and the Biot
number γ are also discussed.

The first solution and second solution of
Re1/2Cfx and Re−1/2Nux for various values
of M, s and λ are shown in Table 3. The
first solution is chosen such that the solution
is the first to approach the ambient fluid con-
ditions asymptotically. In Table 3, the value of
Re1/2Cfx of the first solution tends to increase
when M increases while the opposite results

are obtained for the second solution. The same
behaviour is observed for Re−1/2Nux.

The behaviour of Re1/2Cfx against various
values of parameters are presented in Figs. 2-
4. It can be seen from these figures that dual
solutions exist when λ > λc, one solution at
λ = λc and no solution when λ < λc. The
critical point, λc is the point at which the solu-
tions are separated into two solutions. Figure
2 shows the variation of Re1/2Cfx with λ and
M . As M increases, the value of Re1/2Cfx in-
creases in the first solution and decreases in the
second solution. This agrees with the results
obtained in Table 3. In Fig. 3, the variation
of Re1/2Cfx with λ and n is shown. It can be
seen that the value of Re1/2Cfx for the first
solution reduces as n increases while the oppo-
site result is obtained for the second solution.
Next, the variation of Re1/2Cfx with λ and s is
illustrated in Fig. 4. The value of |Re1/2Cfx|
increases in the first solution and decreases in
the second solution as s increases.

The behavior of Re−1/2Nux against various
values of parameters are illustrated in Figs. 5-
7. In Fig. 5, the increase in M causes the value
of Re−1/2Nux to increase in the first solution.
This again agrees with the results obtained in
Table 3. In Fig. 6, the value of Re−1/2Nux for
the first solution decreases as n increases while
the opposite result is observed for the second
solution. The variation of Re−1/2Nux with λ
and s can be observed in Fig. 7. The value
of Re−1/2Nux in the first solution is noted to
increase with s due to the increasing wall shear
stress which increases the skin friction coeffi-
cient and then the heat transfer rate.

In Fig. 8, the increasing value of M causes
the dimensionless fluid velocity profile, f ′(η) to
increase in the first solution. In Fig. 9, the
value of f ′(η) increases in the first solution and
decreases in the other solution when the value
of s increases. Besides that, the momentum
boundary layer thickness for the first solution
is observed to be smaller than the second solu-
tion. This is because, according to Zaimi and
Ishak (2015), the increase in suction will in-
crease the wall shear stress which then causes
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the velocity gradient at the surface to increase.
The effect of M on the dimensionless temper-

ature profile θ(η) is illustrated in Fig. 10. In
general, the result for the first solution shows
that the fluid temperature drops as M in-
creases while the opposite behavior occurred
in the other solution. Meanwhile, the effect
of s on θ(η) is shown in Fig. 11 where the
increase in suction causes the temperature to
decrease in both of the solutions. Figure 12
shows that temperature profile decreases when
NR increases. Further, the effect of θw on tem-
perature is presented in Fig. 13 where the in-
crease in θw causes the fluid temperature pro-
file to increase in both of the solutions. This
is because when θw > 1, the wall temperature
is greater than the surrounding fluid temper-
ature. This will cause the fluid temperature
to arise. Furthermore, when γ is larger than
0.1, it indicates that heat convection occur be-
tween the shrinking sheet and the fluid. This
can be seen by the results obtained in Fig. 14
which shows that the fluid temperature profile
increases when the value of γ increases. Last
but not least, it can be noted in Fig. 15 that
the higher the value of Pr, the lower the tem-
perature profile. This is because fluid with high
Prandtl number has low thermal conductivity
and thinner thermal boundary layer structures
than fluid with low Prandtl number.

Table 1: Values of f ′′(0) when Pr = 1.5, We =
0.0, NR = 1.0, Tw = 1.0, γ = 0.3, s = 1.0,
M =

√
2, λ = −1 and n = 0.5

m f ′′(0)
Present Ali et al.

(2013)
Nadeem
and Hus-
sain (2009)

0.00 1.86201 1.86201 1.86201
0.25 1.76949 1.76949 1.76949
1.00 1.61803 1.61803 1.61804

IV. Conclusion

A steady, two-dimensional MHD flow of Car-
reau fluid over a non-linear shrinking sheet
with convective boundary condition and non-

Figure 2: Variation of Re1/2Cfx with λ and M .

Figure 3: Variation of Re1/2Cfx with λ and n.

Figure 4: Variation of Re1/2Cfx with λ and s.
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Figure 5: Variation of Re−1/2Nux with λ and
M .

Figure 6: Variation of Re−1/2Nux with λ and
n.

Figure 7: Variation of Re−1/2Nux with λ and
s.

Figure 8: Effect of M on f ′(η).

Figure 9: Effect of s on f ′(η).

Figure 10: Effect of M on θ(η).
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Figure 11: Effect of s on θ(η).

Figure 12: Effect of NR on θ(η).

Figure 13: Effect of θw on θ(η).

Table 2: Values of Re−1/2Nux when Pr = 1.5,
We = 2.0, NR = 1.0, Tw = 1.5, γ = 0.3, λ =
1.0 and m = 1.5

s M Re−1/2Nux
Present Khan et al. (2016)

n = 0.5 n = 1.5 n = 0.5 n = 1.5
0.0 0.0 0.585085 0.613287 0.585077 0.613299

0.5 0.565685 0.604028 0.565682 0.604028
1.0 0.513371 0.579934 0.513053 0.579931

Figure 14: Effect of γ on θ(η).

Figure 15: Effect of Pr on θ(η).

linear thermal radiation is studied. The gov-
erning equations and the boundary conditions
are transformed using similarity transforma-
tions and then solved using shooting method.
The effect of various parameters on the flow
and thermal fields are discussed and shown in
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Table 3: Values of Re1/2Cfx and Re−1/2Nux for various M , s and λ when We = 0.5, P r =
1.5, NR = 1.0, θw = 1.5, γ = 0.3, n = 0.5 and m = 1.5

M s λ Re1/2Cfx Re−1/2Nux
First solution Second solution First solution Second solution

0.1 2.50 -1.0 2.264106927 0.322118357 0.744427371 0.725897893
- - -1.3 1.592637751 0.562482462 0.741636791 0.724573939
- - -1.6 1.089932825 0.788926612 0.736574187 0.729458964

0.2 2.50 -1.0 2.285289766 0.289009753 0.744483679 0.724164111
- - -1.3 1.615126389 0.476845736 0.741772849 0.722853896
- - -1.6 1.135664725 0.736745912 0.737273604 0.727489710

0.3 2.25 -1.0 1.919315676 0.476845736 0.735587714 0.706494695
- - -1.3 1.190127002 0.776925855 0.727796062 0.715301859
- 2.50 -1.0 2.319334682 0.235297632 0.744568063 0.720501230
- - -1.3 1.650151260 0.486281010 0.741976504 0.719514253
- - -1.6 1.192490537 0.669590980 0.738140063 0.724187571
- 2.75 -1.0 2.678106048 -0.049254603 0.750437265 0.732248896
- - -1.3 1.973026608 0.298669092 0.749155560 0.729057014
- - -1.6 1.533875068 0.457725503 0.747742183 0.728518545

tables and graphs. The results can be summa-
rized as follows:

1. Dual solutions exist when λ > λc.

2. The wall shear stress and heat transfer in-
crease in the first solution, while decrease
in the second solution when M and s in-
crease.

3. The higher the value of M and s, the
higher the value of f ′(η) in the first so-
lution, while the opposite occurred in the
other solution.

4. The increase in s and NR cause the fluid
temperature to decrease.

5. Large value of γ indicates that heat trans-
fer occurred between the sheet and the sur-
rounding fluid that causes the fluid tem-
perature to increase.

6. Fluid with high value of Pr has low ther-
mal conductivity and thin thermal bound-
ary layer thickness.
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