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A linear stability analysis is applied to study the stationary thermal convection in a horizontal
system consist of binary fluid saturated an anisotropic porous medium in the presence of
nonlinear temperature profile and vertical magnetic field. The problem is solved numerically
using the method of Galerkin with respect to rigid-rigid isothermal boundary condition.
The effects of magnetic field, mechanical and thermal anisotropic parameter, solute Rayleigh
number and Lewis number on the onset of stationary convection in the system for six models
of basic state temperature profile are shown graphically. We found that the system can be
stabilize by the effect of magnetic field, thermal anisotropic parameter, solute Rayleigh number
and Lewis number and destabilize by mechanical anisotropic parameter.

I. Introduction

The studies of thermal convection based on mi-
croscopic point of view in a fluid saturated a
porous medium has attracted the attention of
scientist and researchers due to its innumerable
applications in the real fields such as geophys-
ical system, petroleum reservoir, storage and
recovery of thermal energy system and etc. A
comprehensive studies based on the convection
problem in a fluid saturated an isotropic porous
medium has been considered by (Knoblach,
1986), (Goyeau et al., 1996), (Hill, 2005), (Shiv-
akumara et al., 2006) and (Mokhtar et al.,
2009).

Most of the studies has assumed the porous
medium to hold an isotropic properties but this
assumption is rather unphysical. This is be-
cause natural phenomena such as sedimenta-
tion, frost action, compaction and reorientation
of solid matrix or artificial porous like pelleting

used in chemical engineering will become the
main reason for the porous medium to hold
an anisotropic properties. The experimental
and theoretical studies of thermal convection
in an anisotropic porous medium was first in-
troduced by (Castinel and Combarnous, 1974).
(Epherre, 1975) studied the instability prob-
lem in a porous layer with thermal anisotropy
properties. (Malashetty, 1993) examined the
onset of double diffusive convection in a bi-
nary fluid saturated a porous medium in the
presence of anisotropic thermo-convective cur-
rent, found that the anisotropic parameter can
affect the stability of the system under small
amplitude of the convection. Later, (Degan
et al., 1995) explored the thermal convection in
a fluid saturated an anisotropic porous medium
bounded vertically and horizontally. He found
that the permeability ratio and thermal con-
ductivity ratio can have a powerful influence
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on the stability of the system. (Malashetty
and Swamy, 2010) investigated the threshold of
double diffusive convection in a binary fluid sat-
urated an anisotropic porous medium with re-
spect to free-free conducting boundary by con-
sidering a uniform temperature profile. Their
results showed that the effect of Lewis number
is to destabilize the oscillatory convection and
stabilize the stationary convection. (Capone
et al., 2012) studied the effect of linear and non-
linear permeability and thermal diffusivity on
the onset of convection in a fluid saturated an
anisotropic porous medium. (Bhadauria, 2012)
studied the effect of internal heat generation
on the onset of double diffusive convection in
a binary fluid saturated an anisotropic porous
medium. He showed that the combined effect
of increasing mechanical anisotropic and inter-
nal heat parameter can enhance the onset of
convection. (Bhadauria and Kiran, 2013) have
explored the threshold of convection in a tem-
perature dependent viscous fluid saturated an
anisotropic porous medium in the presence of
temperature modulation. They revealed that
the presence of mechanical anisotropic param-
eter is to delay the onset of convection for the
modulated cases. In other work, (Altawall-
beh et al., 2012) investigated the effect of in-
ternal heating and soret effect on the double
diffusive convection in a binary fluid saturated
anisotropic porous medium.

The presence of magnetic field in study-
ing the convection problem both in a fluid an
porous medium can give many fundamental im-
portance in many fields of science, chemical en-
gineering, and technology such as mobile, satel-
lite and microwave communication. (Rudraiah,
1986) concerned about the effect of magnetic
field on the double diffusive convection in a
binary fluid layer. (Alchaar et al., 1995) in-
vestigated the effect of magnetic field on the
threshold of convection in a fluid saturated an
isotropic porous medium subject to a uniform
temperature gradient. (Bhadauria and Srivas-
tava, 2010) have carried out a linear stabil-
ity analysis on the double diffusive convection
in an electrically conducting binary fluid satu-

rated porous medium in the presence of mag-
netic field and temperature modulation. (Sri-
vastava et al., 2012) studied the effect of mag-
netic field on the arrival of steady and oscilla-
tory convection in a binary fluid saturated an
anisotropic porous medium in the presence of
Soret effect. They showed that the increase in
magnetic field, thermal anisotropic and Soret
parameter can stabilize the stationary convec-
tion in the system. (Sekar et al., 2013) ex-
amined the effect of magnetic field on the on-
set of convection in a ferrofluid saturated an
anisotropic porous medium in the presence of
soret effect. (Khalid et al., 2013) develop the
linear stability analysis on the convection prob-
lem in a micropolar fluid in the presence of
magnetic field and internal heat generation.

Nowadays, the studies of non-uniform tem-
perature gradient on the onset of convection
has been consider more by some researchers in
the last few years. (Siddheshwar and Paranesh,
1998) had made a numerical studies on the
stationary thermal convection in a micropolar
fluid with nonlinear temperature profile sub-
jected to various boundaries conditions. Their
results revealed that the stability of system
can be controlled using appropriate nonlinear
temperature profile. (Char and Chen, 2003)
have carried an analytical study on the on-
set of oscillatory Benard-Marangoni convection
under the influence of magnetic field and elec-
tric subjected to nonlinear temperature pro-
file. (Idris et al., 2009) investigated the on-
set of Benard Marangoni convection in a mi-
cropolar fluid subjected to nonlinear temper-
ature profile. (Mokhtar et al., 2009) have
observed the onset of thermal convection in
porous medium by considering the presence
of non-uniform temperature profile and mag-
netic field with respect to free-free and rigid-
free adiabatic boundaries. They conclude that
the presence of magnetic field together with cu-
bic temperature profile plays an important role
in stabilizing the system. The effect of cubic
temperature profile on the threshold of Benard
Marangoni convection in a ferrofluid with the
presence of feedback control has been investi-
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gated by (Idris and Hashim, 2010). (Shivaku-
mara et al., 2012) investigated the effect of non-
linear temperature profile on the threshold of
thermal convection in a couple stress fluid sat-
urated porous medium. (Paranesh and Baby,
2012) further the studies of (Siddheshwar and
Paranesh, 1998) with the presence of electric
field. (Nanjundappa et al., 2014) consider the
studies of (Idris and Hashim, 2010) under the
influence of magnetic field dependent viscos-
ity. (Azmi and Idris, 2014) studied the effect
of nonuniform temperature gradient and con-
troller on the Benard Marangoni electroconvec-
tion in a micropolar fluid.

The purpose of this paper is to investigate
the effect of magnetic field on the onset of ther-
mal convection in a binary fluid saturated an
anisotropic porous medium subjected to non-
linear temperature profile with respect to up-
per rigid conducting and lower rigid conducting
boundary condition. The linear stability anal-
ysis is used to solve the system and the result-
ing eigenvalue obtained is solved numerically
by Galerkin method.

II. Methodology

We consider a binary fluid layer saturated
an anisotropic porous medium with depth, d
which are bounded vertically between two hor-
izontal plate at z = 0 and z = 1 and un-
bounded in x—direction. The system is heated
from below and subjected to a uniform vertical
magnetic field, H, = |I1_fb| with gravity force,

= (0,0, —g) acting vertically downward on
it. Let AT and AC be the temperature and
concentration difference between the lower and
upper layer of the system respectively. We as-
sume that the mechanical and thermal proper-
ties are anisotropy in the vertical direction and
isotropy in the horizontal direction. The gov-
erning equation based on the Boussinesq ap-
proximation in the presence of magnetic field
are given by

V-u=0,

V.H=0,

ngt +Vp+% U= pg—pmtl-VH =0, (3)
7% + (- V)T = rp(V?T),  (4)
¢68Ctj + (G- V)C = ko (V20), (5)
85:[ + (@ V)H = (H - V)i + 3 (V2H), (6)

p=po[l —a(T =Tp) +B(C - Co)], (7)

where @ = (u,v,w) is the velocity vector, p is
the pressure, ¢ is the porosity, K = K, (zz +
j]) + Kz(kk) is the permeability tensor, p is
the dynamic viscosity, u,, is the magnetic per-
meability, v is the ratio of heat capacity, T is
the temperature, kp = ki, (114 7) + k1, (kk) is
the anisotropic thermal diffusivity tensor, S is
the solute concentration, . is the solute diffu-
sivity, v, is the magnetic viscosity, pg and Tj is
the reference density and temperature respec-
tively and « and S is the coefficient of thermal
and solute expansion respectively.

The basic state of the fluid is assumed to be
motionless which takes the form

iy = (0,0,0),p =p(2), p = pp(2), T = Tp(2),

= (2) H = Hi(2),C = Cy(2),
Q

where f(z) is a non-dimensional temperature
gradient which hold the following condition

/01 f(z)dz = 1.

Using Eq.(8) in Egs.(1)-(7) to get

d2Tb d>C,,
— g =g =Y

—Tp) + B(Cy — Co),

where subscript b represent the basic state.
The conduction state solution are given by

(9)

dpy
dz
Py = po[l — Oé(Tb

(10)

Ty = Ty + AT(1 - 2), Cy=Co+AC(1— 2).

(11)

We superpose the basic state of the fluid sub-
jected to an infinitesimal perturbation by
ﬁ:ﬁb—l—ﬁ/,T:Tb—FT’,H:Hb—l—Hl,

— / _ / _ / (12)
C=C,+C p=pp+p,p=p,+p,
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where primes represent the perturbation quan-
tities. Introducing Eq.(12) into Egs.(1)-(7) and
using the basic state solution, we obtain

V.i@ =0, (13)

@%+V '+ L "+ (T — BC)g
¢ Ot K (14)

—pmHyVH' =0,

oT’ AT

Tor T (@ - V)T" — wljf(z) = rr(V2T'),
(15)

80/ — / dCb 2
¢6t + (@ V)" +w = = k(V*C"), (16)
p' = po[—aT’ + BC']. (17)

/

o 2 — Wi (), (1)

The pressure term is eliminate by applying
curl twice on Eq.(14) and then the resulting
equation together with Egs.(15)-(18) by the fol-
lowing transformations

d?t*
(z*d,y*d, 2*d),t = 12

RT,

/ / AN K/Tzu* K’Tzv* 'chrz,u}ﬂ<
(u,v,w)— d ’ d ) d ’

T = (AT)T*,H' = H,H* C' = (AC)C*,
(19)

(.’El7 y/’ Z/)

to obtain the non-dimensional equations of the
form

1 a 1 82 * 2 ek
H*
+Ra5VhS*+H—V2 aa =0,
(20)
) 2
lat*—nv,%—azﬂ+u V T —f(Z)’LU =
(21)
9 1via.v|s —w =0 (22)
ot Le -
0 o| ;e PmOwx
[at*_v B =55 =0 (23)

where Pr = POZT is the Prandtl number,
Pm = I;mi is the magnetic Prandtl number,

Ra = 29ATdE: iy the thermal Rayleigh num-

VKT,

ACIK, - .
ber, Ras = ﬂgyT is the solute Rayleigh
number, v = Iﬁt) is the kinematic viscosity,

292
H = ’”Z%M is the Chandrasekhar number,
Le = = % and n =
Z& is the mechanical and thermal anisotropy
parameter respectively, ¢, = % is the normal-
ized porosity and V2 88;2 + g 22

We applied the linear stablhty analysis on
Egs.(20)-(23) in order to predict the onset of
stationary convection in the system. We solved
the linearized version of Egs.(20)-(23) by nor-
mal mode expansion which defined as

(’LU, T, C) :<W(Z>a 6(2)7 (I)(z))
expli(mz + ny) + ot], (24)
and obtain
o D?
[.P’I”(D2 —a?) + <€ - a2> W + a*Ra®

— a*Ra,® — H}f—m(D2 —a*>)DH =0,

(25)
9 Pm

[a—(D )]H—P—DW—O (26)
[a —(D? - mﬂ)} O— f(x)W =0, (27)
[0— i(zﬁ —a2)}q>—w =0,  (28)

where m, n represent the horizontal wave num-
ber in z— and y— direction respectively, o is
the growth rate parameter, D = d/dz and
a? =12 +m?.

Substituting Eq.(26) into Eq.(25) and yield

Pr ¢
+ a’Ra® — a’Ra,®

2
(D2 —a?) + (D - a2> + HD2] W

=0,
(29)

Equations (27)-(29) are to be solved sub-
jected to upper rigid conducting and lower rigid
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conducting boundary condition which are given
by

W=DW=0=&=0 at z=0,1. (30)

The resulting eigenvalue obtained from
Eqgs.(27)-(29) with respect to boundary condi-
tions (30) are solved numerically using the sin-
gle term Galerkin technique. The basis func-
tions of the variables are given by

N N N
W=> AW, 0=> B,0,,&=) Cpd,
n=1 n=1 n=1

(31)
where A,,, B,, and C,, are constants and W,,,
©,, and ®,, are the trial functions that satisfies
the respective boundary conditions. Eq.(27),
Eq.(28) and Eq.(29) are multiplied by ©,,, ®,,
and W,, respectively. The resulting equations
are integrate by part with respect to z between
z = 0 and z = 1, we obtained the following
equation

C4[C1Cs — C2C5]

= 2
o= ewsaon
where
2
__ 9 2 00 2
Ch = Pr<(DW) > -5 <W*>
1
—g<(DW)2>—a2<W2> (33)
—H < (DW)? >
Cy = —a’Ras < ®-W > (34)
C3=—<f(z)lW -0 > (35)

Ci=0<0?>+ < (DO)? > +na® < 0? >

(36)
Co=—<W-o> (37)

1 2
06:a<<I>2>+E<(D<I>)2>+a—<<I>2>
(38)

where < ... > represent the integration with
respect to z from 0 to 1. We set ¢ = 0 in order
to observe the onset of stationary convection in
the system.

We consider six models of f(z) as shown in
Table 1.

We solved Eq.(32) using a MAPLE software
and obtained the critical Rayleigh number, Ra.
with respect to rigid-rigid conducting boundary
conditions.

III. Results and Discussion

The aim of this paper is to study the ther-
mal instability in the binary fluid saturated
an anisotropic porous medium in the presence
of nonlinear temperature profile and magnetic
field. The problem is solved analytically us-
ing linear stability analysis and numerically us-
ing Galerkin method. We have obtained the
function of Ra in terms Prandtl number, so-
lute Rayleigh number, Lewis number, mechan-
ical anisotropy parameter, thermal anisotropy
parameter, Chandrasekhar number and f(z).
The critical value of thermal depth which de-
pend on the parameters of the problem, € for
model 5 and 6 is 0.71 for Rs = 10, Pr = 10,
Le =5, &6 =05 n7n=03and H =5 We
showed graphically in Figs. 1 - 5 the effects
of various parameter on the critical Rayleigh
number, Ra, for all the six model of basic state
temperature profiles.

For the validity of the present studies, we
have done the comparison studies between
the present work and the result obtained by
(Paranesh and Baby, 2012). We observed that
the pattern of critical Rayleigh number, Ra.
are Ra.g = Rac.; < Racsr = Raes, which showed
a good agreement with the result obtained by
(Paranesh and Baby, 2012). In this studies, we
also consider the effect of Cubic 1 and Cubic
2 temperature profile on the onset of convec-
tion. We identified that the pattern of critical
Rayleigh number, Ra. obtained in this stud-
ies are in the form of Rac. = Raes < Raeg =
Rac < Racs < Raes.

Figure 1 indicates the effect of solute
Rayleigh number, Ra; for the six models of ba-
sic state temperature profile on the value of
Ra, by keeping others parameter fixed H = 5,
Pr =10, Le =5, £ = 0.5 and n = 0.3. We
have observed that as Ras increase, Ra. also
increases for all the six models of basic state
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Table 1: Six models of basic state temperature profiles

Model Basic state temperature profile f(2)

1 Linear (Rac) fl=1

2 Inverted parabola (Rae2) f2=2(1-2)

3 Cubic 1 (Rae3) f3=3(z—1)

4 Cubic 2 (Racy) f4=0.6+1.02(z—1)2

5 Heating from below (Racs) fo=elfor0<z<e

fA5=0fore<z<1
6 Cooling from above (Raeg) f6=0for0<z<1l-—¢
f6=clforl—e<z2<1

temperature profile. This is because, increase 110
in Ras correspond to increase in the concen-
tration difference between the upper and lower 100 Roes
layer of the fluid. As AS > AT, the fluid den-
sity will become greater causes the fluid at the 30
bottom layer to be heavy. Therefore, the move- Racs
ment of warmer fluid vertically upward due to R %
density difference is hindered, thus slow down Roc:= Roz
the transfer of heat in the system or in other 70
word convection is delayed. We found that, P Ao
Ra.s = Racsg and Ra.; = Racs, which means &0
the effect of heating from below temperature
profile is similar to the effect of cooling from ° . . . . . . .
above temperature profile on the system and Ras

the effect of linear temperature profile is simi-
lar to the effect of inverted parabola tempera-
ture profile on the system. Rac.s = Racg is the
most unstable and Ra.3 is the most stable for
every fixed value of Ras in the system. Racs
and Ra.4 are more stable as compared to the
linear temperature profile, Ra.;.

Figure 2 gives the Ra. versus Lewis
number,Le for the different models of basic
state temperature profile. The value of other
parameters are kept at Ras = 10, H =5, Pr =
10, ¢ = 0.5 and n = 0.3. Increasing the Le
causes the Ra. to increase, thus delay the onset
of steady thermal convection for all the basic
state temperature profile models, which show a
good agreement with (Malashetty and Swamy,
2010) for the case of convection in a binary fluid
saturated an anisotropic porous medium sub-
jected to a uniform temperature profile with
respect to free-free conducting boundary condi-

Figure 1: Variation of Ra. with Rag for differ-
ent temperature profile.

tion. This is because increase in Le correspond
to decrease in solute diffusivity,x.. Thus, slow
down the heat transfer on the system. Along
with the increasing value of Le, it is found that
Ra.3 is the most stable and Ra.; = Racg is the
most unstable as compared with other models
in the system. When Le = 0, it is found that
the system are at the most unstable condition
for all the six models of basic state temperature
profile.

Figure 3 presents the effect of increasing me-
chanical anisotropy parameter,§é with respect
to six models of basic state temperature profile
for fixed value of H = 5, Ras = 10, Pr = 10,
Le = 5 and n = 0.3. The value of Ra. de-
crease with increasing value of £. Since & is
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Figure 2: Variation of Ra. with Le for different
temperature profile.
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Figure 3: Variation of Ra, with £ for different
temperature profile.

directly depend on K, increasing the value of
K, larger the cell size of the porous medium
and advance the heat transfer vertically upward
through the porous medium. Hence the sys-
tem become destabilize with increasing £. It is
found that, Ra.y = Raee and Ra.s = Racg at
the fixed value of £&. This indicate that, heat-
ing from below and cooling from above tem-
perature profiles have the same effect on the
onset of convection and same with the case of
linear and inverted parabola temperature pro-

file. The combination of Ra.; or Ra.s with the
increasing value of £ hasten the onset of sta-
tionary convection in the system. The value of
Ra, fall drastically from £=0.1 to £ = 0.2 and
gradually from £=0.2 to £ = 0.5 for all the six
models of basic state temperature profile.
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Figure 4: Variation of Ra. with n for different
temperature profile.
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Figure 5: Variation of Ra. with H for different
temperature profile.

The influence of thermal anisotropy
parameter,7 on the Ra,. for various mod-
els of basic state temperature profile at fixed
value of H = 5, Ras = 10, Pr = 10, Le = 5
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and & = 0.5 is revealed in Figure 4. Increasing
n will increase the value of Ra.. Since 7
is inversely proportional to vertical thermal
diffusivity k7., which means decrease in
k1, correspond to increase in 1. When kr,
decreases, it make the system to conduct
heat slowly in the vertical direction and thus
convection is delayed. The combination of
model 3 and the increasing n can stabilize the
system. The system for Ra.; = Rac are the
most unstable as compared to other models.
For every fixed value of 7, it is observe that
Racs = Racs < Racp = Raes < Raeq < Raes.

Figure 5 depicted the influence of Chan-
drasekhar number,H on the Ra. for different
models of basic state temperature profile at
fixed value of Rags = 10, Pr = 10, Le = 5,
& = 0.5 and n = 0.3. It is observe that, in-
creases H will lead to increase in Ra.. Since H
is directly proportional to the strength of mag-
netic field,H,. Therefore, increase in Hp will
delayed the onset of stationary thermal con-
vection in the system. At the every fixed value
of H, it is observe that Ra.s = Racs < Rac =
Raso < Raes < Racg. That is, the onset of
convection is delayed for model 3 and advance
for model 5 and model 6. The combination of
model 3 and increasing H can makes the sys-
tem become more stable. Ra.3 and Ra.4 are
more stable as compared to the linear temper-
ature profile,Ra.; and Ra.; = Rac for every
fixed value of H.

IV. Conclusion

The linear stability analysis has been used
to investigate the effect of nonlinear temper-
ature profile on the threshold of steady ther-
mal convection in a binary fluid saturated an
anisotropic porous medium in the presence of
magnetic field. The problem is solved nu-
merically using single-term Galerkin method
with respect to upper and lower rigid isother-
mal boundary condition. The effect of solute
Rayleigh number and Lewis number is to de-
lay the onset of convection in the system. The
mechanical anisotropy parameter act as desta-

bilizer while thermal anisotropy parameter act
as stabilizer in the system. The increasing
value of magnetic field can make the system
become more stable. We can summarize that
for each varying value of H, Ras, Le, £ and 7,
Racg = Racs < Rae1 = Raes < Racy < Raes.

(The contribution of the work to the over-
all knowledge of the subject could be shown.
Relevant conclusions should be drawn, and the
potential for further work indicated where ap-
propriate)
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Footnotes, spelling and
measurement units

d depth
f(2) non-dimensional temperature gradient
g gravity force, (0,0, —g)
umH2d2
H Chandrasekhar number, o 7’;
H, magnetic field strength, |Hp|
K permeability tensor,
Le Lewis number, %
m, n horizontal wave number
D pressure
Pm  magnetic Prandtl number, =
Pr Prandt]l number, —£ ’
PORT,
Ra  thermal Rayleigh number, %TTG[KZ
Ras  solute Rayleigh number, %STCEKZZ
S solute concentration
T temperature
Ty reference temperature
U velocity vector, @ = (u, v, w)
Q coefficient of thermal expansion
154 coefficient of solute expansion
o growth rate parameter
0 ratio of heat capacity
Ym magnetic viscosity
€n normalized porosity, %
n thermal anisotropy parameter, 2;2
Ke solute diffusivity
KT anisotropic thermal diffusivity tensor
kr,  horizontal thermal diffusivity
kr,  vertical thermal diffusivity
I dynamic viscosity
L magnetic permeability
v kinematic viscosity, p%
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Po

AT
AS

c/

mechanical anisotropy parameter, %
reference density

porosity

temperature difference between the wall
concentration difference between the
wall

basic state

critical value

perturbation quantities
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