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Shock instabilities in the numerical sense include the carbuncle phenomenon and the slowly
moving shocks. The carbuncle phenomenon is a term referred to the protruding formation at
the stagnation region in addition to the continuous bow shock when simulating a high-speed
flow over a blunt body. Most schemes formulated to cure this problem only focus on the
dissipation methods without properly indulged into the real cause, which could also be the
root problem for the slowly moving shock. Therefore, this paper attempted to find the source
of the problem by firstly analyzing the governing equations starting from 1D case. After
using perturbation mechanism on the conservative variables, several factors were found and
one of them is caused by perturbation in density. Then, a dissipation was added to the
RHS (right-hand side) of the continuity equation to remove the perturbation. This artificial
dissipation has shown stable solutions for both stationay and slowly moving shock problems.
Keywords: artificial dissipation, carbuncle phenomenon, shock anomaly, slowly moving shock.

I. Introduction

Three inevitable shock anomalies throughout
the last three decades in studying the com-
pressible flow are hypersonic wall heating by
Noh (1987), slowly moving shocks by Wood-
ward and Colella (1984) and carbuncle phe-
nomenon by Peery and Imlay (1988). Even
though the system of governing equations for
each problem is the same, many approaches
of fixing them are uniquely schemed to solve
a particular problem. For example, in car-
buncle phenomenon, Liou and J.R (1993) used
a definition of separating pressure term from
the mass flux but when Kitamura and Shima
(2012) used the AUSM+-up scheme on the
slowly moving shock, the instability is still con-
trived. Many previous works concluded that
there are many underlaying factors and sources
that contributed to the anomalous behavior
and each of them are intricately emerged de-

pending on the type of the problems. Fur-
thermore, a stability analysis by Agrawal and
Srinivasan (2017) also focused on the numeri-
cal schemes that are carbuncle prone, therefore,
the root can only be found from that particular
scheme instead of looking at the bigger picture.

The carbuncle is apparent in a fully 2D case
where it manifested visibly by the naked eyes
from its protruding behavior. On the hands,
several works by Ismail and Roe (2009), Ki-
tamura et al. (2007), Zaide and Roe (2011)
and Wahi and Ismail (2012) have shown that
the underlying problem is substantial in 1D
case. Their evisceration in 1D using interme-
diate perturbation from Ismail and Roe (2009)
in many carbuncle prone schemes found that
the problem in 1D is caused by the inaccount-
ability in internal shock structure that is in-
herent in Godunov-type schemes compared to
the other schemes such as HLLE built by Wen-
droff (1999). This internal structure perhaps
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seems to not adhere to the second law of ther-
modynamics. Even though more precise dis-
crete entropy control were introduced, some
schemes still show signs of instability as stated
by Agrawal and Srinivasan (2017). Conse-
quently, a somewhat 2D case was introduced
by Kitamura et al. (2007) and it is called 1.5D
to further study the behavior if any additional
factors play into the role. Any schemes that
fails to stabilize in 1D also fails to stabilize in
1.5D. Moreover, some schemes that is strongly
stable in 1D have started to show signs of insta-
bility under extreme perturbation in 1.5D such
as the AUSM’s type flux schemes by Liou and
J.R (1993). For 1.5D case, an extreme pertur-
bation would be the intermediate point pertur-
bation taken from Ismail and Roe (2009) and
Wahi and Ismail (2012) of 1D case. On the
other hand, most schemes in CFD would pro-
duce spurious post-shock oscillations when sim-
ulating a slowly moving shock, first reported
by Woodward and Colella (1984). These no-
torious oscillations would grow over time and
may lead to instability as reported by Roberts
(1990) and Stiriba and Donat (2003). In fact,
it worsen with minimally dissipative schemes
such as the Roe-flux as reported by Arora and
Roe (1997). Johnsen and Lele (2008) reported
that most fixes include adding imprecise nu-
merical dissipations to remove the oscillations
usually do not work when dealing with the car-
buncle phenomenon.

Since all the numerical calculations started
from the exact same governing equations, we
believe that if we can find one source of the
problem from its origin and using a scheme that
can handle the source, at least a reasonable ex-
planation of the erratic behavior can be made
thus possibly a robust scheme can be formu-
lated. The analysis from this paper took the
liberty from the works by D’iakov (1958), Kon-
torovich (1957) and Swan and Fowles (1975)
that gives an idea that the small perturbation
in the variables from the Euler equations may
be one of the culprits for carbuncle. Further-
more, Dumbser et al. (2004) also used this type
perturbation to use it in their matrix stability

analysis.

This paper is organized such that in the
first section, a review on the previous study
about the shock anomalies in the shock cap-
turing schemes. These reviews included pos-
sible causes of the problem as well as critics
regarding the causes. Then in the next section,
a perturbation analysis is conducted on 1D and
2D Euler equations. The purpose of this part
is to study any possible sources of the prob-
lem. The third section is the numerical exper-
iment to mimick the perturbation done in the
previous section to potray the issue. Then, the
fourth section is the numerical experiment with
the addition of artificial dissipation to remove
the main cause found in perturbation analy-
sis. Solutions before and after the fix will be
compared. The last section is the conclusion
followed by acknowledgment.

II. Perturbation Analysis on
the System of Euler

Equations

The von Neumann’s stability analysis is essen-
tial yet insufficient on non-linear discretized
schemes as mentioned in Hirsch (1988). For
example a stable scheme from the linear equa-
tion may produced an unstable solution from
its non-linear version. This behavior is appar-
ent in neutrally stable scheme and additional
dissipation is necessary to stabilize it. This is
also applied to our case. Hence, we linearized
the Euler equations by using the definition of
’small disturbance’ as done by D’iakov (1958)
such that

φ = φ+ φ′ , (1)

where φ is the any quantity to be linearized, φ is
the mean value and φ′ is the small disturbance.

A. The Work of Dyakov and
Previous Researchers

The work by D’iakov (1958) was based on very
small arbitrary perturbation on the system of
steady Euler equations using the method of
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characteristics based on linearizing the primary
variables. In short, D’iakov discovered the con-
ditions of instability of shock waves:

m2(
∂V2
∂P2

)H < −1, and m2(
∂V2
∂P2

)H > 1+2M2 ,

(2)
where m is the mass flux, and M2, V2, P2 are
the Mach number, specific volume and pressure
of the fluid behind a shock. The derivatives
are calculated along the Hugoniot curve in the
pressure-volume plane.

Kontorovich (1957) then provided a more ac-
curate stability requirement,

1−M2
2 −XM2

2

1−M2
2 +XM2

2

< m2(
∂V2
∂P2

)H > 1 + 2M2 ,

(3)
where X = V1

V2
is the gas compression at a

shock. In short, shock instability depends on
the jump conditions imposed by the shock,
which in turn depend on the equation of state.
This implies that all shocks are stable in ideal
gas conditions.

However, Robinet et al. (2000) discovered
that an unstable mode does exist even for the
ideal gas for a particular value of the upstream
Mach number M1. We intend to explore more
on the discovery of Robinet. They are other ex-
tensive research work done in this shock insta-
bility analysis which we shall not discuss herein
but the details can be obtained in Lubchich
(2004).

B. Stability Analysis Using
Conservative Variables

The first approach of our analysis is to perturb
1D Euler equations defined as ρ

ρu
ρE


t

+

 ρu
ρu2 + p
ρuH


x

= 0. (4)

where E = e + u2

2 is the total energy per
unit volume and p = ρe(γ − 1) is the pressure
from equation of state in ideal gas. H = E+ p

ρ

is the total enthalphy. The arbitrary distur-
bance in Equation (1) may be resolved into
independent modes with corresponding wave
numbers, frequencies and eigenvectors which
express into

φ′ = exp[(ikx− ωt)]R (5)

Noted that the above equation is slightly dif-
fer with D’iakov (1958) and Swan and Fowles
(1975) because we followed the assumption
made by Ismail and Roe (2005) such that so-
lution oscillates only in space. Nonetheless,
the Equation (5) is plugged into Equation (4)
to find the possible unstable mode. This un-
stable modes are calculated by the singularity
of determinant of the eigenvector matrix. In
our analysis, we shall assume that the Jaco-
bian of Equation (4) would include perturbed
values about a linearized state, similar to the
approach of Rayleigh (1894, 1964) and Mc-
Cartin (2009) in understanding the vibration
of a Hamiltonian system and Schrodinger’s ma-
trix perturbation theory in Schrodinger (1982)
and the work inspired by them after that such
as Stewart and Sun (1990) and Cui and Liang
(1993). This is where our work differs from pre-
vious work in studying shock-instability of the
system of Euler equations in which the entries
within the Jacobian are averaged states with-
out any perturbation.

C. Analysis on 1D Euler Equations

The perturbed Euler equations in Equation (4)
are written into quasi-linear form given by

Ut + ÃUx = 0 , (6)

where U = U + U′ = [ρ + ρ′, ρu + (ρu)′, ρE +
(ρE)′] and Ã is the Jacobian matrix evaluated
from the linearized (with perturbation) conser-
vative variables. We then define the ratio of
each conservative variable linearization to the
density linearization. The first is the momen-
tum ratio as ju, secondly the energy ratio as
je, then the enthalphy ratio as jh and finally
the the inverse of the density linearization as
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jr. The expression for these ratios are given in
Equation (7).

ju =
ρu+ (ρu)′

ρ+ ρ′
,

jr =
1

ρ+ ρ′
,

je =
ρE + (ρE)′

ρ+ ρ′

=
p

(γ − 1)(ρ+ ρ′)
+

1

2

(ρu+ (ρu)′)2

(ρ+ ρ′)2

=
pjr
γ − 1

+
1

2
j2u ,

jh =
H + (H)′

ρ+ ρ′
= je + pjr.

(7)

Thus, Ã can be written as

0 1 0

γ − 3

2
j2u (3− γ)ju γ − 1

ju

(
γ − 1

2
j2u − jh

)
jh − (γ − 1)j2u juγ


.

(8)
The Equation (5) is plugged into Equation (6)
giving an expression of

[ikÃ− ωI]U′ = 0. (9)

For nontrivial solutions, we set the determinant
of the coefficient matrix in Equation (9) above
to be zero with the resulting eigenvalues are
listed as follows,

det(ikÃ− ωI)

= [(ikju − ω)2 − k2a2](ikju − ω)

= 0.

(10)

The above expression presents that we have
three expression of roots that are ω = ikju and
ω = ik(ju±a). For 1D case, we can see that the

shear wave factor is absent but there is still the
entropy wave and the other roots correspond
to the acoustic wave. The value when ω = ikju
will result into three repeated roots. That is
to say the entropy and the acoustic waves are
similar. After that, we check the determinant
of right eigenvectors and putting them into a
square matrix given by

R =


1 1 1

ju − a ju ju + a

jh − aju
1

2
j2u jh + aju

 . (11)

Problems would arise when the eigenvectors
above are linearly dependent, particularly
when there is a dependent mode in the form
of resonance which may give birth to growth
and instability.

det(R) = 2aγ

(
j2u
2
− je

)
= 2aγ

(
pjr
γ − 1

)
= 0, (12)

or when det(R)→∞ which is true when

1. The acoustic waves coincide with the
entropy wave.

2. The pressure or speed of sound → 0, i.e
approaching vacuum state

3. The fluids specific heat ratio γ → 1

4. The inverse of density linearization jr =
1

ρ+ ρ′
→ ε, where ε is a small number.

The first three conditions have been reported
before in Ismail and Roe (2005), but to the
authors’ best of knowledge, the last condition
has never been found until now. In other
words, mathematically speaking, the continu-
ous growth of the density fluctuation within the
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system may drive the inverse of mass lineariza-
tion to a very large number in which will even-
tually lead to instability. Even though one may
argue that in numerical calculation, the accre-
tion of disturbance of the density is finite hence
its inverse is impossible to become zero, the
conclusion made here is based on the expres-
sion given by the determinant as a guideline
in understanding any possible explanations for
the anomalous behavior in the shock problem.
Therefore, from this analysis alone, we can try
to initiate a method to reduce the growth for-
mation from the density.

III. Numerical Experiments

This section is divided into two parts which
are the 1D stationary shock followed by 1D
slowly moving shocks. The numerical schemes
used are four: Roe’s flux from Roe (1981),
AUSM+ from Liou (1996), AUSM+-up from
Liou (2006) and Entropy Consistent(EC) flux
from Ismail and Roe (2009).

A. Initial Conditions

In the first case, the stationary shock took the
Rankine-Hugoniot jump condition for ∆F = 0.
Then, after derivation using the condition, the
pre-shock and post-shock profiles are expressed
as follow:

U0 =
[
1.0 1.0 1/2 + η

]
U1 =

[
f(Mpre) 1.0 g(M0)η +

1

2f(M0)

] ,
(13)

where

f(M0) =

 1
2

(γ + 1)M2
0

+
γ − 1

γ + 1

 ,

g(M0) =
2γM2

0

γ + 1
− γ − 1

γ + 1
,

η =
1

γ(γ − 1)M2
0

.

(14)

The incoming Mach number was taken to be
M0 = 5.0, with CFL condition of ν = 0.2 and
25 computational square grid cells. The 1D
slowly moving shock numerical setup is from
Jin and Liu (1996) such that the left and the
right conservative variables’ profiles are given
as follow:

U0 =
[
3.86 −3.1266 27.093

]
,

U1 =
[
1.0 −3.44 8.4168

]
.

(15)

The subscript 0 and 1 refer to the pre-shock
and post-shock profile respectively. 200 grid
cells were used with CFL number of 0.1. In
addition, all types of limiters were excluded in
all cases in order to follow as close as possible
to the Euler equations.

B. Boundary Conditions

In stationary carbuncle, the boundary con-
ditions for inlet and outlet for all variables
were being kept constant at the exact Rankine-
Hugoniot relation using the ghost cells on the
left and on the right. This conditions followed
the configuration of stability analysis numerical
setup by Dumbser et al. (2004). Whereas, for
the second case, the left and right boundaries
were set to zero gradient.

C. Perturbation Procedures to
Induce Shock Instability in 1D

stationary shock

The random perturbation as done by Dumbser
et al. (2004) as expressed below

Us = U + εU. (16)

This method mimics the fluctuations from its
mean value which is in good agreement with
the linearization process. The ε has an interval
of [10−3, 10−6] as practised by Kitamura and
Shima (2012). In addition, a second test is also
being administered by introducing an interme-
diate point at the shock location to mimic the
fully 2D grid orientation as done by Ismail et al.
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(2006) unbiasedly on all conservative variables
such that

Us = δU0 + (1− δ)U1. (17)

where the subscript s, 0 and 1 refer to the shock
location, pre-shock and post-shock profile re-
spectively. The range of δ is from 0.0 to 1.0.
The perturbations will be done with various
combinations. We start with perturbations to
only the density, followed by momentum, en-
ergy, combinations of any two conserved vari-
ables and finally all conserved variables.

D. Observations on Shock
Instability

The results of the anomalous behavior are
already established in their respective litera-
tures. However, they are still to be included in
Section(IV.) for comparison. The tests begin
with 1D stationary carbuncle then 1D slowly
moving shocks. Furthermore, the perturbation
using intermediate point has shown much se-
vere instability compared to the random per-
turbation for the stationary shock.

1. 1D Stationary Shock

We present two sample figures as a sample of
results for Mach 5 shock profile that leads to
shock instability from the initial conditions as
expressed in Equation (13,14) with boundary
conditions as explained in Section (B.). It is
worth to highlight that any perturbation which
involves the density variable (either alone, or
combined with other conserved variables) will
lead to shock instability. From our experience,
perturbing just the momentum variables alone
will not yield instability. Perturbations to the
energy variable will yield instability after a very
long time. Once instability kicks in, there is
a distinct evolutionary pattern for almost all
conditions.

(a) Mach profile

(b) Residual error

Figure 1: Solution for Mach number using δ =
0.7

Figure(1) present the results of perturbing
the shock using intermediate perturbation of
value δ = 0.7. All schemes were showing simi-
lar behavior where the intermediate shock pro-
file is moving between the left and right as
indicated by the arrows in Figure(1a). This
motion is evidently represented by the uniform
pulsation of the residual error in Figure(1b).
Even after 10, 000 timesteps, the solution never
shown any sign to attenuate.

2. 1D Moving Shocks

The results for Roe’s flux, two AUSM’s family
flux and the EC’s flux are displayed in Figure
(2).
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(a) Roe (b) AUSM+

(c) AUSM+-up (d) EC

Figure 2: The results of slowly moving shock
in 1D taken at 1000 timesteps.

All the solutions in Figure(2) presented the
instability in the slowly moving shock cases
where oscillation near the jump is apparent.
The EC’s flux scheme has shown the best result
among others where the amplitude of the oscil-
lation is much less and occasionally showing a
small overshoot.

IV. Adding Dissipation

Adding an artificial dissipation is widely prac-
ticed such as in von Neumann and Richtmyer
(1950) as well as in Noh (1987). This practiced
is exploited by Rodionov (2017) who used a
modified von Neumann and Richtmeyer arti-
ficial viscosity on the right hand equations to
suit any given schemes. The fix in this paper
however, is based on the founded cause on the
governing equations and to focus on eradicat-
ing the source perhaps for both the stationary
and slowly moving shock problems.

We attempted to remove the instability by
adding a diffusive factor on the right-hand-side
of Equation (6) only to the mass equation such

that

ς(ρxx). (18)

Then, a pure central-differencing was used to
evaluate ρxx. The purpose of adding this diffu-
sion to the density equation is to show that we
can focus on a problematic factor in one vari-
able instead of the whole system; thus, keep-
ing the dissipation minimal. This dissipation
addendum is merely to prove our point that
density is one of the potential reasons of shock
instability and not necessarily the best method
for the carbuncle problem. Moreover, adding
diffusion on all conservative equations would
be overkill.

A. 1D Stationary Shock

We found that the range value of ς = 0.06 is
ample to resist the recurring instability for all
schemes in this stationary case. The computed
solutions in the following figures are being com-
pared to the state before and after the inclusion
of density dissipation.
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(a) Mach profile

(b) Residual error

Figure 3: The results of stationary shock af-
ter adding artificial dissipation on density using
Roe’s flux scheme.

Figure (3) shows the Mach’s profile using
ς = 0.06. The dissipation addition is quite evi-
dent especially at the pre-shock location. How-
ever, the pulsation is quickly ceased after 1000
timesteps as demonstrated in Figure (3b). Fur-
thermoret, we have explored adding the same
dissipation technique to only momentum (or
energy or both) equation(s) but the instabil-
ity still persists for both shocks. This perhaps
explain why the carbuncle is not removed for
Navier-Stokes calculations as reported in Pan-
dolfi and D’Ambrosio (2001). Nonetheless, the
results for other schemes are presented by fol-
lowing figures.

(a) AUSM+ (b) Residual error

(c) AUSM+−up (d) Residual error

Figure 4: The Mach’s profiles and their
respective residual error after adding artifi-
cial dissipation on density using AUSM+ and
AUSM+−up.

Figure(4) above display the Mach’s pro-
file and residual error for AUSM+ and
AUSM+−up. Both solutions stabilize at simi-
lar timesteps as Roe’s scheme. The last scheme
is the Entropy-Consistent and its solutions are
displayed in the following figures.
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(a) Mach pofile

(b) Residual error

Figure 5: The profile of Mach number and its
corresponding residual error using E-C scheme.

Figure(5a) shows similar Mach’s profile com-
pared to the previous three schemes. However,
the residual error from Figure(5b) differs from
the others. To confirm that the solution is sta-
ble, we perused its animated solution which did
not show any sign of instability. Therefore, we
concluded that the solution is indeed stable. At
the moment, the only explanation of its resid-
ual behavior is due to its consistent entropy
production which is absent from other schemes.

B. 1D Slowly Moving Shocks

The dissipation ς is ranging from 0.2 to 0.4.
These values are quite higher than the sta-
tionary tests, but they gave the best solu-
tions among others. Moreover, the unstable

solutions for all schemes are similarly formed,
therefore only the unstable from Roe’s flux
scheme will be displayed for reference. The so-
lutions are being displayed as follow.

(a) Solution without ς (b) Roe’s Flux, ς = 0.2

(c) AUSM+,ς = 0.35 (d) AUSM+-up, ς = 0.35

(e) EC’s flux,ς = 0.3

Figure 6: Comparison of the three different
schemes after being introduced the density dis-
sipation factor of various values.

Figure (6a) shows the oscillation near the
jump for slowly moving shock using Roe’s flux
(other schemes also experienced a similar be-
havior) when dissipative factor was inserted.
Though imperfect, this oscillatory behavior is
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removed when density dissipation was inserted
as can be seen from the other figures.

Conclusion

For the systems of Euler equations, we have
found that the growth of density fluctuations is
one possible root of shock instability. This cru-
cial and necessary discovery in analyzing the
anomalies in shock capturing schemes which
has not been found in the previous studies. In
one dimension, other than approaching vacuum
state, instability is solely due to the growth in
density fluctuations. This can be depicted nu-
merically in the form of slowly moving shocks.
Applying the artificial dissipation to the den-
sity equation seems to remove the post shock
oscillations and hence the instability. This is
significant contribution to initiate a proper cure
to the carbuncle phenomena and the slowly
moving shocks especially in higher dimension.
All in all, we would like to highlight the fact
that by using the linearized analysis on the sys-
tem of Euler equations, we have found a com-
mon factor contributing to the shock instabil-
ity and the problem is solved by treating the
proper source.
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