
ASM Sc. J., 12, Special Issu 1e , 2019 for IQRAC2018, 182-190

Extended Locality Preserving Partial Least Squares with Class
Information

Muhammad Aminu∗1, Noor Atinah Ahmad2, and Norhashidah Awang3

1, 2, 3School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Penang,
Malaysia

∗Corresponding author: muhammadaminu47@gmail.com

Feature extraction techniques are methods widely used to reduce the dimensionality of a data
while retaining most of the relevant information in the original data. Locality preserving
partial least squares (LPPLS) is a recently developed feature extraction technique that aims
to preserve the local structural information of data. LPPLS seeks to preserve local structure
defined by nearest neighbors. However, the nearest neighbors may belong to different classes
which might lead to the poor performance of LPPLS in discriminating the different classes in
the data. In this paper, we propose an extension of LPPLS called extended locality preserving
partial least squares which consider class label information. The binary (0-1) weighting
technique together with label information is used to construct the similarity matrices that
determine local projection of the data. Therefore, our extended LPPLS does not simply
preserve local structure, but also has discriminating power to differentiate data from different
classes. Experimental results on various data sets demonstrate the effectiveness of the proposed
extended LPPLS. Two different evaluation metrics, normalized mutual information (NMI) and
Fowlkes-Mallow index are used to measure the accuracy of methods used in the experiments.
Keywords: Class labels, feature extraction, local information, similarity matrix.

I. Introduction

Most of the data obtained nowadays are high
dimensional in nature which often leads to
many challenging issues (Leskovec et al., 2014).
Therefore, dimensionality reduction techniques
are employed to determine a lower dimensional
representation of the data such that most of
the information in the data is preserved in the
lower dimensional space. Partial least squares
(PLS) (Rosipal and Krämer, 2006) and Princi-
pal component analysis (PCA) (Jolliffe, 2002)
are the most commonly used dimension reduc-
tion techniques. PCA finds a projection of the
data to lower dimensional subspace such that
the variance of the data is maximized in the
reduced space. While PLS finds a decomposi-
tion of two data matrices X and Y by max-
imizing the covariance between the two data
matrices. These methods have been applied to
many research fields such as machine learning,

computer vision, pattern recognition etc. How-
ever, both PCA and PLS see only the global
Euclidean structure of datasets which leads to
the poor performance of these methods when
the data lies on a nonlinear manifold.

In recent years, a lot of methods such as
Locally linear embedding (LLE) (Roweis and
Saul, 2000), Isomap (Tenenbaum et al., 2000)
and Laplacian Eigenmap (Belkin and Niyogi,
2002, 2003) have been proposed to discover
the manifold structure in which high dimen-
sional data lies in low dimensional space. Such
methods project the high dimensional data to
a lower dimensional subspace such that the in-
trinsic structure of the data is well preserved.
These methods has a lot of advantages which
include few parameters, computational effi-
ciency and ability to discover the intrinsic ge-
ometric structure of data manifolds. The Lo-
cally linear embedding (LLE) algorithm build
local linear models of high dimensional datasets
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and then try to find a lower dimensional rep-
resentation of the data such that the local dis-
tance relationships are preserved in the lower
dimensional space. However, LLE is nonlin-
ear and suffers from the out-of-sample prob-
lem (Shi et al., 2014). In order to extend
LLE to linear case and also to solve the out-
of-sample problem, a new dimension reduction
method called Neighborhood preserving pro-
jections (NPP) (Pang et al., 2005) was pro-
posed. NPP is derived from LLE and share
the neighborhood preserving property of LLE.
In NPP, a linear transformation matrix is ob-
tain by solving an objective function similar to
that of LLE. The transformation matrix is then
use to project the high dimensional data to a
lower dimensional subspace.

Locality preserving projections (LPP) (He
and Niyogi, 2004) is a recently proposed di-
mensionality reduction method which is de-
rived by finding the optimal linear approxima-
tions to the eigenfunctions of the Laplace Bel-
trami operator on the manifold. LPP also has
the ability to resolve the out-of-sample prob-
lem and can preserve the local neighborhood
information of data points to a higher extent.
These properties make LPP different and more
efficient than other dimension reduction tech-
niques such as PCA and PLS.

The PLS method in its traditional form does
not consider the local information of data. To
tackle this problem, a new dimension reduc-
tion method called Locality preserving partial
least squares (LPPLS) (Zhang et al., 2016) was
proposed. LPPLS is obtain by introducing lo-
cal information into the objective function of
PLS. Similarly, a modification of Fisher dis-
criminant analysis (FDA) called Locality pre-
serving fisher discriminant analysis (LPFDA)
(Zhao and Tian, 2009) was also proposed to
preserve local structure of data. This method
combines the idea of FDA and LPP to perform
dimension reduction. LPFDA has the discrim-
inating ability of FDA and the locality pre-
serving ability of LPP. This characteristics of
LPFDA makes it more efficient than FDA.

In this paper, we address an extension of LP-

PLS which utilize label information. We used
the binary weighting technique that is used in
graph based feature extraction methods to con-
struct the similarity matrices in LPPLS. This
approach makes LPPLS more suitable for dis-
crimination between classes in the data. The
rest of the paper is organized as follows. In sec-
tion 2, we first give a short review of LPP. In
section 3, we give a brief review of LPPLS and
the newly proposed extended LPPLS method
is presented in section 4. Some experimental
results were presented in Section 5 to demon-
strate the effectiveness of our proposed method.
Concluding remarks are given in section 6.

II. Locality Preserving
Projections

Locality preserving projections is a promi-
nent dimensionality reduction technique de-
rived based on the idea of Laplacian eigenmaps
(Belkin and Niyogi, 2003). Given a dataset
X = [x1, x2, . . . , xn] ∈ RN×n, where each data
point xi ∈ RN . LPP determines a low dimen-
sional representation, yi ∈ Rd (d � N) of the
data points in X by solving the following ob-
jective function:

min
∑

ij
(yi − yj)2Sij (1)

where Sij measures the similarity between xi
and xj . The way in which Sij is computed is
given below:

Sij =

exp(−
‖xi−xj‖

2

t
);

if xi and xj are
neighbors

0; Otherwise

where t is a user specified parameter. Sij incurs
a heavy penalty if points xi and xj are mapped
far apart. The minimization problem (Eq. 1)
can be reduced to the form:

arg min
u

uTXDXTu=1

uTXLXTu (2)

where X = [x1, x2, . . . , xn], D is a diagonal ma-
trix whose entries are column (or row) sum of
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S, i.e Dii =
∑
Sij and L = D−S is the Lapla-

cian matrix (Chung, 1996). The transforma-
tion vector u that minimizes the objective func-
tion is obtained as the minimum eigenvalue so-
lution to the following generalized eigenvalue
problem:

XLXTu = λXDXTu

The matrices XLXT and XDXT are symmet-
ric and positive semidefinite. Let the vectors
u1, u2, . . . , ud be the solutions to the general-
ized eigenvalue problem above, arranged ac-
cording to their eigenvalues λ1 < λ2 < . . . <
λd. Then, the transformation to lower dimen-
sional space can be performed as follows:

xi → yi = UTxi

where U = (u1, u2, . . . , ud) is a n × d matrix
and yi is a d-dimensional vector.

III. Locality Preserving
Partial Least Squares

(LPPLS)

Given two data matrices X = [x1, x2, . . . , xn] ∈
RN×n and Y = [y1, y2, . . . , yn] ∈ RM×n, LP-
PLS starts by finding the nearest neighbors
of each xi and yi based on the Euclidean dis-
tance measure. The similarities of data points
in each of the data matrices (X and Y ) is
then determined. The two similarity matrices
Sx = [Sxij ]n×n and Sy = [Syij ]n×n are then com-
puted as follows:

Sxij =

exp(−
‖xi−xj‖

2

tx
);

if xi ∈ N(xj) or
xj ∈ N(xi)

0; Otherwise

Syij =

exp
(−
‖yi−yj‖

2

ty
)
;

if yi ∈ N(yj) or
yj ∈ N(yi)

0; Otherwise

where N(xi) represents the k-nearest neighbors
set of the variable xi, and parameters tx and ty
are defined as:

tx =
∑n

i=1

∑n
i=1

2‖xi−xj‖2
n(n−1)

ty =
∑n

i=1

∑n
i=1

2‖yi−yj‖2
n(n−1)

Adding these similarity measures of data points
into the objective function of partial least
squares, a new objective function with locality
information is obtained as:

max
u,v

uTu=1,vT v=1

uTX(Dxy − Sxy)Y T v (3)

where
Sxy = Sx ◦ Sy (4)

the operator ◦ denotes the element wise prod-
uct of the two similarity matrices Sx and Sy

and Dxy is a diagonal matrix define as:

Dxy = diag(
∑

j S
xy
ij ) for i = 1, 2, ..., n

The optimization problem (Eq. 3) is further
reduced to:

MMTu = λ2u

MTMv = λ2v
(5)

where M = X(Dxy − Sxy)Y T . A solution to
Eq. 5 is M = uλvT where u and v can be de-
termined as the right and left singular vectors
of M and λ denotes the corresponding singu-
lar value. After computing the vectors u and v
using SVD, power method is employed to de-
termine the transformation matrices U and V .

IV. Extended locality
preserving partial least

squares

In classification tasks, the class labels of data
points are given. The LPPLS method in its
original form does not uses this class labels in-
formation, it constructs the adjacency graph
based on nearest neighbors. In this section, we
proposed a different way of computing the sim-
ilarity matrices in LPPLS such that the class
labels information is utilized. The class la-
bel information is used to guide the process of
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constructing the adjacency graph. We define
the two similarity matrices Sx = [Sxij ]n×n and
Sy = [Syij ]n×n using the binary weighting tech-
nique as:

Sxij =

1;
if xi and xj both belong to the
same class

0; Otherwise

Syij =

1;
if yi and yj both belong to the
same class

0; Otherwise

These new definitions of the similarity matrices
takes into consideration the class label informa-
tion of the data points which makes our pro-
posed method more powerful most especially
in classification tasks than LPPLS. The objec-
tive function of this new method remains the
same with that of the original LPPLS

max
u,v

uTu=1,vT v=1

uTX(Dxy − Sxy)Y T v (6)

except that now, the matrix Sxy is obtained
by taking the element wise product of the two
similarity matrices Sx and Sy obtained using
the binary weighting technique as defined in
this section. We further solved the minimiza-
tion problem (Eq. 6) using Lagrange multiplier
method and obtained a generalized eigenvalue
problem:

XLY TY LXTu = λ2u

The vector u is then computed as the eigen-
vector corresponding to the smallest eigenvalue
and vector v is computed from the relation:

v = 1
λY LX

Tu

The vectors u and v can also be computed as
the right and left singular vectors of the matrix
XLY T . Transformation of the data points into
lower dimensional space can then be performed
as:

xi → pi = UTxi
yi → qi = V T yi

where U = (u1, u2, . . . , ud) and V =
(v1, v2, ..., vd) are n× d matrices.

V. Experimental Results

In this section, experiments with real-world
data sets are carried out to demonstrate the
effectiveness of our proposed extended LP-
PLS. More specifically, the extended LPPLS
method was used in class discrimination. We
present two metrics for measuring the accu-
racy of our proposed and the LPPLS methods
in our experiments. The performance of our
proposed method compared to that of the LP-
PLS method was evaluated using these metrics.
Since the LPPLS and extended LPPLS meth-
ods are related to the output data matrix Y , we
set Y to be the same as the input data matrix
X in all our experiments.

A. Evaluation metrics

The discriminating results of our experiments
are evaluated by comparing the actual labels
of the datasets with that obtained by the al-
gorithms. After transforming the datasets into
lower dimensional space using the LPPLS and
Extended LPPLS, we used Kmeans to obtain
labels for the data points in the reduced space.
the performance of the methods is then evalu-
ated by comparing the labels obtained in the re-
duced space using Kmeans and and the actual
label of the data points. Two standard met-
rics, normalized mutual information (NMI) and
Fowlkes-Mallow index (FMI) are used to de-
termine the accuracies of the algorithms. The
NMI measure the similarity between two ma-
trices of partitions A and B as (Alexander-
Bloch et al., 2012, Kuncheva and Hadjitodorov,
2004):

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1Nij log(

NijN

NiNj
)∑CA

i=1Nilog(
Ni
N

)+
∑CB

j=1Nj log(
Nj
N

)

where CA denotes the number of modules in
partition A, CB denotes the number of modules
in partition B, N denotes the total number of
nodes, Ni denotes the number of nodes in A’s
module i, Nj denotes the number of nodes in
B’s module j and Nij denotes the number of
nodes common in both A’s module i and B’s
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module j. The NMI(A,B) ranges from zero to
one, where zero indicates that the partitions are
totally independent and one indicates that the
partitions are identical. Larger value of NMI
(values close to one) denotes the good perfor-
mance of a clustering technique.

Apart from NMI, we also used the Fowlkes-
Mallows index (Fowlkes and Mallows, 1983) to
evaluate the discriminating ability of our pro-
posed method and that of the original LPPLS
method. The Fowlkes-Mallows index is also a
metric used to determine the similarity between
two partitions. Like NMI, the Fowlkes-Mallows
index ranges from zero to one, the higher the
value is, the more similar the two partitions are.
The formula for the Fowlkes-Mallows index is
defined as:

FM =
√

TP
TP+FP ·

TP
TP+FN

where TP denotes the number of true positives,
FP denotes the number of false positives and
FN denotes the number of false negatives.

B. Real world datasets

The proposed extended LPPLS method is ap-
plied to class discrimination problem using
real-world data sets. We compared the per-
formance of LPPLS with that of the proposed
extended LPPLS. The actual labels of the data
points in all the experiments are given. After
dimensionality reduction using the LPPLS and
extended LPPLS methods, we used Kmeans to
partition the data and obtain labels for the
data points in the lower dimensional space.
The obtained labels and the actual labels are
then compared to determine the accuracy of
the two methods in discriminating the differ-
ent classes in the data.

1. The Iris plant dataset

An experiment was conducted with the Iris
dataset (Dheeru and Karra Taniskidou, 2017).
The dataset contains 3 classes with 50 samples
each. Each class refers to a particular type
of iris plant (Iris Setosa, Iris Versicolor and
Iris Virginica). Four features, the length and

width of the sepals and petals were measured
in centimeters for each sample. The iris plant
dataset is a good data for testing the perfor-
mance of a newly developed classification algo-
rithm. The data contains two clusters, one of
the clusters contains samples for the iris setosa
species while the other cluster contains sam-
ples from both iris versicolor and iris virginica
species. The cluster containing the iris setosa
specie is well separated from the other clus-
ter. A good discrimination algorithm will try to
separate the two classes (iris versicolor and iris
virginica) from each other. We mapped the iris
data to two-dimensional space using both LP-
PLS and the extended LPPLS. In the LPPLS
method, the number of nearest neighbors used
for constructing the graph is set to be 5 and
the parameters tx and ty in the Gaussian heat
kernel similarity are set to be 1. The projection
results of LPPLS and the Extended LPPLS are
shown in Figure 1 and Figure 2 respectively.

Figure 1: The LPPLS method applied to the
iris plant data.

As can be seen from these figures, samples
from different classes heavily overlapped in the
projection result of LPPLS while samples be-
longing to the same class are mapped close to
each other in the projection result of Extended
LPPLS. The newly proposed extended LPPLS,
performs much better than LPPLS in discrim-
inating the classes in the data. This is con-
firmed by the NMI and Fowlkes-Mallows index
obtained for the results of the two methods.
the NMI value for the LPPLS method in this
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Figure 2: The extended LPPLS applied to the
iris plant data.

experiment is 0.80, while the NMI value for
the extended LPPLS method is 0.86. Also, the
Fowlkes-Mallows value for the result obtained
using LPPLS is 0.87 while the Fowlkes-Mallows
value for the result obtained using the extended
LPPLS is found to be 0.92. As can be seen
from the NMI and the Fowlkes-Mallows values,
the extended LPPLS outperforms the LPPLS
method.

2. The banknote authentication
dataset

Another experiment was conducted on the
banknote authentication dataset (Dheeru and
Karra Taniskidou, 2017). This data was ex-
tracted from images taken from genuine and
forged banknote-like specimens. The images
were taken for the evaluation of an authenti-
cation procedure for banknotes. The size of
each image is 400 × 400 pixels. wavelet trans-
formation tools are used to extract Features
from the images. The extracted features are
the variance, skewness, kurtosis and entropy
of the images. The number of samples in this
dataset is 1372. We used LPPLS and the ex-
tended LPPLS methods to project the data to
two-dimensional space. The projection results
of both the LPPLS and the extended LPPLS
methods are shown in Figure 3 and Figure 4
respectively. Similar to the experiment con-
ducted on the iris plant species, we set the

number of nearest neighbor for the graph con-
structed in LPPLS to be 5 and the parameters
tx and ty in the Gaussian heat kernel similarity
are set to 1.

Figure 3: The projection result of the LPPLS
method applied to the banknotes data.

Figure 4: The projection result of the extended
LPPLS method applied to the banknotes data.

As can be seen from these figures (Fig 3 and
4), the extended LPPLS perform much better
than LPPLS. The two classes are well sepa-
rated from each other in the result obtained
using extended LPPLS, while samples from the
two classes heavily overlapped in the LPPLS
case. A lot of samples have been misclassified
in the LPPLS result. To further show the bet-
ter performance of our proposed method, we
compute the NMI and Fowlkes-Mallow index
for the partition results of the two methods.
The NMI value for the result of LPPLS is 0.20
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while that of the extended LPPLS is found to
be 0.61. A Fowlkes-Mallow value of 0.66 was
found for the LPPLS result while a much higher
Fowlkes-Mallow value of 0.93 was obtained us-
ing the extended LPPLS method. These ex-
cellent results for the NMI and the Fowlkes-
Mallow index shows the excellent performance
of our proposed method.

Figure 5: Performance of LPPLS with different
neighborhood size on the Iris dataset

VI. Parameter selection

For the Extended LPPLS method, the only pa-
rameter is the subspace dimension. For LP-
PLS, there are two extra parameters, the neigh-
borhood size k and the the heat kernel width
t. In our experiments, we set the value of these
parameters by searching from a wide range of
values and report the best results. In partic-
ular, for the Iris and Banknote datasets, we
fix the value of the parameters tx and ty to

Figure 6: Performance of LPPLS with different
neighborhood size on the Banknote dataset

tx = ty = 1 and search for the neighborhood
size within the range k = 2, 3, ..., 10. We also
fix the neighborhood size in the Iris and Ban-
knote datasets to k = 2 and k = 5 respectively,
and search for the heat kernel width tx and ty
within the range tx = ty = 0.1, 0.2, ..., 1

As can be seen from Fig. 5 to 8, the perfor-
mance of the Extended LPPLS is consistently
better than the performance of the original LP-
PLS method. Our proposed method does not
involve the use of any parameter while constrct-
ing the adjacency graph. Thus, it can be seen
from these figures that the performance of our
method is fix.

VII. Conclusion

This work introduces a new novel approach to
LPPLS. When dataset contain class informa-
tion, LPPLS does not make use of that class
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Figure 7: Performance of LPPLS with different
heat kernel width on the Iris dataset

information. Studies have shown that, the class
information of dataset can be used to improve
the discriminating power of algorithms. There-
fore, this study aims at finding the best way
of improving the discriminating performance
of LPPLS by making use of the class infor-
mation of dataset if available. We used the
simplest possible weighting technique (Binary
weighting) to compute the similarity matrices
in LPPLS. This new definition of the similarity
matrices incorporates class information which
helps in improving the discriminating ability of
the LPPLS method. Experimental results on
various datasets shows that the extended LP-
PLS method is more efficient, most especially
in classification tasks than the original LPPLS
method.

Figure 8: Performance of LPPLS with different
heat kernel width on the Banknote dataset
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