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Accuracy and reliability are fiery issues in Structural Equation Modeling (SEM). The single
bootstrap method was outstanding, but the double bootstrap method was overlooked. The
aim of this paper is to propose the usage of double raw data bootstrap method in SEM (double
BOOT SEM). Double BOOT SEM is an enhanced version of raw data bootstrap method in
SEM (BOOT SEM), where we resample raw data with replacement from each of the bootstrap
samples repeatedly for a number of times. The performance of double BOOT SEM, BOOT
SEM and SEM are evaluated through several summary statistics and confidence intervals.
Results indicate that the performance of double BOOT SEM is more efficient compared to
BOOT SEM and SEM in terms of smaller summary statistics values and narrowed bootstrap
intervals.
Keywords: accuracy, confidence intervals, double bootstrap, Structural equation modeling.

I. Introduction

Missing data remain a thorny issue in Struc-
tural Equation Modeling (SEM), but the ac-
curacy and reliability of SEM are no excep-
tion. In spite of debate over accuracy and re-
liability in SEM, research about it has con-
tinued (Bentler, 2010, Boucard et al., 2007,
Cheung and Lau, 2017, Hox and Maas, 2001,
Lai and Kelley, 2011, Yang and Green, 2010).
Commonly in accuracy and reliability issues,
small sample sizes always lingering around as
one of the factors contributed (Chumney, 2013,
Ievers-Landis et al., 2011, Jung, 2013, Krebs-
bach, 2014).

As the sample size decreases and non nor-
mality increases, the increasing part of SEM
analyses is incapable to converge (improper
result may be found) (Kline, 2015). In the
same way for small samples, maximum like-
lihood and generalized least squares estima-
tors tend to produce slightly inflated χ2 val-
ues, even though multivariate normality ex-
ists (Ievers-Landis et al., 2011). Significantly,

one can use a bootstrap method to treat small
sample sizes and/or multivariate non normal
data (Byrne, 2001, Ievers-Landis et al., 2011,
Krebsbach, 2014). Also, the bootstrap method
is used to assess the statistical accuracy and
improve the performance of the model (Choi
et al., 2015, Fitrianto and Midi, 2010, Lola and
Zainuddin, 2016, Roberts and Martin, 2009).

The first systematic study of the bootstrap
method was originally documented by Efron
(1979) in The Annals of Statistics, ‘Bootstrap
methods: another look at the jackknife’. The
bootstrap is a data-based simulation method
for statistical inference, which works by resam-
pling from the original data set with replace-
ment to create a new data set (also known as a
phantom data set) and can be used to produce
inferences (Efron, 1979). The estimation of
standard error may fluctuate extensively when
the sample size is small. Hence, the bootstrap
method is practiced to derive a more accurate
estimation than is found through traditional
methods (any estimation method before boot-
strapping) (Lockwood and MacKinnon, 1998).
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Not only the bootstrap method becomes a nat-
ural enhancement to statistical parameter esti-
mation, but also supplementary potential small
sample concerns (Efron, 1979).

There is a vast amount of literature on
the implementation of SEM and the boot-
strap method. Several studies have been pub-
lished on dissimilarity and comparison of sev-
eral bootstrap performances through a well-
designed simulation study (Bollen and Stine,
1990, Fitrianto and Midi, 2010, MacKinnon
et al., 2002, Ory and Mokhtarian, 2010,
Preacher and Selig, 2012, Sharma and Kim,
2013, Zhang and Savalei, 2016, Zhang and
Wang, 2008). Several critical issues are being
raised and tackled such as sample size, normal-
ity, mediation effect, outliers, effect size, boot-
strap performance, and confidence intervals.

The concept of bootstrapping in SEM was
well covered by Ievers-Landis et al. (2011) and
Streukens and Leroi-Werelds (2016). Also,
several studies of the bootstrap method in
other models were reported by Assaf and Ag-
bola (2011), Kounetas and Papathanassopou-
los (2013), Lola and Zainuddin (2016), Pascual
et al. (2006) and Roberts and Martin (2009).
Improving the bootstrap method were carried
out by Davidson and MacKinnon (2007) and
McCullough and Vinod (1998). Here, we elab-
orated some former research of SEM with or
without the bootstrap method.

Ory and Mokhtarian (2010) studied the im-
pact of non-normality, sample size and esti-
mation technique on goodness-of-fit measures
in structural equation modeling. Four estima-
tion methods are used a) maximum likelihood
(ML), b) asymptotic distribution free (ADF),
c) bootstrapping and d) Mplus method. Over-
all, when sample sizes are small and/or the high
multivariate kurtosis, these methods yielded
different outcomes pattern.

Zhang and Wang (2008) have conducted
a simulation study to evaluate and compare
the performance of three methods; a) Nor-
mal Approximation Method b) Bootstrapping
Raw Data Method and c) Bootstrapping Er-
ror Method on mediation effects. Several fac-

tors were simulated including sample size, ef-
fect size, distribution of residual errors, cov-
erage probability, power and confidence inter-
vals. In short, the error bootstrap and raw data
bootstrap methods each showed the ultimate
different results on different factors.

Fitrianto and Midi (2010) proposed a
Rescaled Studentized Residual Bootstrap using
Least Squares (ReSRB) method. The ReSRB
method works by resampling the residuals from
the original data. The performance of ReSRB
measured via bias and root of mean square er-
ror (RMSE) performances. The performances
of ReSRB is compared with Raw Residual
Bootstrap (RRB), Studentized Residual Boot-
strap (SRB) and Jackknifed Residual Boot-
strap (JRB). To sum up, the performances of
ReSRB is superior to the competing method, as
the performance of the bootstrapped estimates
was well boosted.

Streukens and Leroi-Werelds (2016) were
practically guiding in details the procedure of
extracting more information from the boot-
strap output. Focusing on European manage-
ment research, this paper covered numerous is-
sues of bootstrap in SEM such as bootstrap-
ping and partial least squares-SEM (PLS-SEM)
utilization. Some reviews of applied bootstrap
methods also included, which including a) di-
rect effect, b) non-direct effect, c) comparison
coefficients and d) coefficients of determination
(R2).

In the hospitality industry, the Data En-
velopment Analysis (DEA) double bootstrap
method was used to evaluate the technical effi-
ciency among Australian hotels (Assaf and Ag-
bola, 2011). This research aims to a) examine
empirically the performance of Australian ho-
tels and b) studies the main factors of the tech-
nical efficiency of hotels in Australia. A com-
bination of two outputs and six inputs data set
were used. As a result, the DEA double boot-
strap model fixes the bias in the estimation of
technical efficiency, compared to the traditional
DEA model.

Roberts and Martin (2010) conducted re-
search on bootstrap-after-bootstrap model av-
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eraging for time series studies. The simula-
tion study was run on four methods; dou-
ble BOOT, BOOT, Bayesian model averaging
(BMA) and a standard Akaike’s information
criterion (AIC). On the whole, double BOOT
produced smaller root mean squared error
(RMSE) compared to BOOT, BMA, and stan-
dard AIC. The performance of double BOOT
also is far better from BOOT and BMA due to
smaller variance value of estimates.

Most studies tend to focus on the single boot-
strap (also known as an ordinary bootstrap)
method in SEM, but not on the double boot-
strap method. As a matter of fact, the double
bootstrap method has a greater convergence
property and the double bootstrap confidence
interval typically has a higher order of accu-
racy (McCullough and Vinod, 1998). Chernick
(2007) describes the double bootstrap as an ap-
proach to boost the bootstrap bias correction
of the superficial error rate of a linear discrim-
inant law.

As have been elaborated above, there is a
lavish amount of bootstrapping method being
implemented in SEM, or on the other model
undoubtedly, each with remarkable estimation
and outstanding contributions. Despite this in-
terest, no one to the best of our knowledge
has used double raw data bootstrap method
in SEM. Hence, this paper aims to propose the
implementation of a double raw data bootstrap
method in SEM by using a Monte Carlo simu-
lation and a set of real data and assessing the
performance of the suggested method.

Given this aim, this paper is structured as
follows. Section 2 set out the details of the
single and double raw data bootstrap method
used in SEM. A detailed Monte Carlo simula-
tion design is detailed in Section 3. Section 4
is an encore of this paper, discussing the re-
sults of the simulation study and application
on a real data set. The performance of the
proposed method will be fully stressed in this
special part. Lastly, our conclusions are drawn
in the final section; which is Section 5

II. Methodology

Let M represents a mediation variable (also
known as a mediator), X is an independent
variable and Y is a dependent variable. Sym-
bols of a0 and b0 represent the intercepts, a, b
and c are the parameters, whereas eM and eY
both are residuals. The Structural Equation
Modeling (SEM) can be expressed as follows:

M = a0 + aX + eM (1)

Y = b0 + bM + cX + eY (2)

The double raw data bootstrap method will
be implemented on paired raw data X, M and
Y. Note that, this method is an extended ver-
sion of the single raw data bootstrap method
by Zhang and Wang (2008). Also, bear in mind
that all the single bootstrap estimations are ex-
ecuted before estimating the double bootstrap.

The first stage is to ‘shuffle’ or sample the
original data set (M,X and Y ) with replace-
ment to obtain a single set of bootstrap sample,
denote as M b,Xb,Y b. Estimate the parameters
â0 â, b̂0, b̂ and ĉ by using ordinary least squares
method and statistic of interest, θ̂b is estimated
from this bootstrap sample. The first stage of
resampling is repeated for a number of repe-
titions. From this bootstrap samples, single
bootstrap SEM is estimated, M b

i = â0 + âXb
i

and Y b
i = b̂0 + b̂M b

i + ĉX b
i for i = 1, . . . , N .

The second stage of resampling is to obtain
a double bootstrap sample. Replace the orig-
inal data set M,X and Y with the bootstrap
samples M b,Xb,Y b and use this pseudo data
set as a new population study. Double boot-
strap samples is obtained by resampling with
replacement from each of the bootstrap sam-
ples, denote as M bb,Xbb,Y bb. Calculate the
parameter estimates and statistic of interest
from this new double bootstrap sample. Sim-
ilarly, the resampling process for double boot-
strap is repeated for several times. Use the
new double bootstrap sample obtained to com-
pute Double BOOT SEM, M b

i b = â0 + âXb
i b

and Y b
i b = b̂0 + b̂M b

i b + ĉX b
i b for i = 1, . . . , bb.

Estimate the performance measures of SEM,
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BOOT SEM and double BOOT SEM by using
calculation formula in Table 1 and confidence
intervals in Table 2.

A. Performance measures

For the purpose of performance measures, for
each of the model (SEM, BOOT SEM and Dou-
ble BOOT SEM), we focus on the Standard Er-
ror (SE), Mean Square Error (MSE) and Root
Mean Square Error (RMSE) to measure the ef-
ficiency of models and also on the bias to es-
timate its accuracy. Coupled with that, we
construct the 95% of normal and t-distribution
confidence intervals (CIs), and width of CIs
will be evaluated. Assessment of all reliabil-
ity of models is verified over the generated
data once the new sample data, N , are applied
to the SEM, BOOT SEM and double BOOT
SEM. Table 1 summarized the statistical in-
dicators for the evaluation of the performance
measures from Walther and Moore (2005), AL-
Lami et al. (2017) and Choi et al. (2015).

Likewise, the construction of 95% standard
normal and t-distribution confidence intervals
for SEM, BOOT SEM, and double BOOT SEM
are constructed from Table 2. For 95% stan-
dard normal confidence interval, the lower CI
is computed by this formula; θ̂−1.96 s√

n
, and as

for upper CI, the formula is θ̂+1.96 s√
n

in which

θ̂ and s√
n

each is the sample statistics estimate

and standard error of sample statistics estimate
of model (SEM-N, BOOT SEM-N and Double
BOOT SEM-N). Also, the 1.96 value is the ap-
proximate value of the 97.5 percentile point of
the normal distribution. Lastly, the CI width
can be derive from the upper CI minus with
the lower CI.

Meanwhile, the lower t-distribution CIs is
computed by this formula; t = θ̂ − 1.96 s√

n
,

and upper t-distribution CIs is represent by
t = θ̂ + 1.96 s√

n
, in which t-distribution with

n − 1 degrees of freedom is the sampling dis-
tribution of the t-value when the samples com-
prise of independent identically distributed ob-
servations from a normally distributed popu-
lation. Note that, for t-distribution CIs, the

sample statistics estimate of model (θ̂) are rep-
resenting three models; SEM-t, BOOT SEM-t
and Double BOOT SEM-t.

III. Simulation design

The R programming language used to run
the statistical simulations. The data were
simulated using Equations (1) and (2), with
sample data of M,X and Y are generated
randomly from Gaussian distribution, with a
mean of zero and one of standard deviation,
∼ N(0, 1), i = 1, . . . , n. The path coefficients
are set as a = b = 0.39 and c = 0.35. The val-
ues are motivated by the research of Preacher
and Selig (2012). Four different sample sizes
were generated N = 30, 50, 75 and 100, for
each sample size, 50 different sets of data were
simulated. This results in a 1(X) x 1(M) x
1(Y ) x 4(N) x 50 (sets on N) design, by which
produced a total of 200 different combinations.

In this simulation study, for each of the com-
binations run, we only focus on the SE, MSE,
RMSE, the bias and also construction of 95%
of normal and t-distribution confidence inter-
vals (CIs). One thousand (B = 1000 bootstrap
resamples) replication were run for each of the
combinations. Number of bootstrap repetition
is suggested by Efron and Tibshirani (1985) as
the number of bootstrap repetition should be
at least 1000 when constructing confidence in-
tervals around θ̂.

The assumptions about nature and data set
properties used in this study are based on
Hallgren (2013) simulation. Data are gener-
ated by following the Ordinary Least Square
(OLS) regression assumptions; random vari-
ables are sampled from populations with nor-
mal distributions, residual errors are normally
distributed (mean is zero), and the residual
errors are homoscedastic and serially uncorre-
lated.

IV. Results and Discussion

The implementation of double raw data boot-
strap method in SEM is demonstrated via sim-
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Table 1: Summary statistics
Statistical indicator Calculation formula

Standard Error s√
n

; s =

√∑n
i=1

(Ŷi−µ)2
n−1

Mean Square Error 1
n

∑n
i=1(Ŷi − Yi)2

Root Mean Square Er-
ror

1
n

√∑n
i=1(Ŷi − Yi)2

Bias 1
n

∑n
i=1(Ŷi − Yi)

where Yi and Ŷi denotes the observed and the estimated model for i = 1, 2, . . . , n, and n is the number
of samples.

Table 2: 95% standard normal and t-distribution CIs
Standard normal bootstrap CIs t-distribution CIs

C.I = θ̂ ± (Z(1−α/2) · ŜE) C.I = θ̂ ± (t
(1−α/2)
n−1 · ŜE)

where θ̂ is the sample statistics estimate of SEM, BOOT SEM and double BOOT SEM. ŜE is the
standard error of sample statistics estimate and (1−α/2) is 95% critical value of the standard normal
distribution and t-distribution.

ulation study in Subsection 4.1 and application
on real data in Subsection 4.2.

A. Simulation study

The sets of (M,X, Y ) data were randomly gen-
erated in line with the traditional SEM, M =
a0 + aX + eM and Y = b0 + bM + cX + eY .
The performance of the Double Bootstrap SEM
is evaluated with its competing method, SEM
and Bootstrap SEM through the SE, MSE,
RMSE and the bias. The results for each model
are presented in Table 3.

Remarkably that the summary statistics of
Double BOOT SEM were always lower than
the competing methods, BOOT SEM and tra-
ditional SEM; for all sample sizes involved. For
instance, when n = 30, the SE values are de-
creasing from 0.098697→ 0.097062→ 0.00302,
which from traditional SEM to Bootstrap SEM
and lastly to Double BOOT SEM. Importantly,
the same decreasing pattern occurred for MSE
and RMSE values. For example, for n = 30,
the MSE value for SEM is 1.10359, BOOT
SEM is 1.071198 and Double BOOT SEM is
0.042189. Also for RMSE, like when n=50, the
RMSE values decrease from 1.043647 (SEM)
to 1.029303 (BOOT SEM) to 0.14175 (Double
BOOT SEM).

As well as the bias values, bias values de-
cline when double bootstrap method was ap-
plied onto the traditional SEM. As when n
= 75, bias value for Double BOOT SEM is
0.093188, compared to the BOOT SEM and
traditional SEM each is 0.835252 and 0.841151.
Worth noting, the same declining pattern also
spotted in other sample sizes. Lower bias value
is always favorable as it indicates a higher ac-
curacy of models. The most striking result
from the simulation study is that the rapid
changes detected between double BOOT SEM
and BOOT SEM, for all sample size generated.
In short, for all four performance measures,
Double BOOT SEM notably outperform than
BOOT SEM and SEM, which indicate the ro-
bustness of the proposed method.

Further, we report the estimated confidence
intervals (CIs) width with the lower bound and
upper bound for 95% standard normal and t-
distribution CIs in Table 4. Note that, SEM-
N and SEM-t represent standard normal and
t-distribution CIs for SEM. The BOOT SEM-
N and BOOT SEM-t represent standard nor-
mal and t-distribution CIs for Bootstrap SEM
and lastly, Double BOOT SEM-N, and Dou-
ble BOOT SEM-t is for standard normal and
t-distribution CIs for Double Bootstrap SEM.
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Table 3: Average SE, MSE, RMSE and bias
n Model SE MSE RMSE Bias

30 SEM 0.098697 1.10359 1.040704 0.831949
BOOT SEM 0.097062 1.071198 1.016814 0.816881
Double BOOT SEM 0.00302 0.042189 0.173714 0.170045

50 SEM 0.07276 1.101301 1.043647 0.835322
BOOT SEM 0.072187 1.081449 1.029303 0.828087
Double BOOT SEM 0.0021 0.030232 0.14175 0.137206

75 SEM 0.05923 1.109048 1.049454 0.841151
BOOT SEM 0.058605 1.094747 1.039288 0.835252
Double BOOT SEM 0.001825 0.014444 0.098753 0.093188

100 SEM 0.048938 1.178374 1.082792 0.863396
BOOT SEM 0.048482 1.167457 1.075154 0.859487
Double BOOT SEM 0.001512 0.01125 0.093165 0.087164

A narrow confidence interval is much more
desirable than a wide one (Rumsey, 2007).
Interestingly, the CI width for both Dou-
ble BOOT SEM-N and Double BOOT SEM-
t remarkably narrower compared to the other
model’s CIs, regarding for all sample sizes. For
example, at 95% standard normal CIs, when
n = 30, CI width for Double BOOT SEM-N
is 0.011836, which narrower than the SEM-N
and BOOT SEM-N, each with 0.386886 and
0.380474.

Besides, at 95% t-distribution CIs, when n =
30, the CI width for Double BOOT SEM-t is
0.012351, while CI width for SEM-t and BOOT
SEM-t are 0.403717 and 0.397026 each. The
most remarkable result emerging from the t-
distribution CIs result is that this result was in
line with the standard normal CIs results. The
CI width narrowed when the bootstrap method
was applied to the traditional SEM.

Overall, for all the models involved, the CI
width shows a consistent pattern, which is nar-
rower as the sample size increase. Another
key point is, CI width for double BOOT SEM
is always remarkably showed the narrowest
width compare to the other competing meth-
ods, particularly between double BOOT SEM
and BOOT SEM. The summary result from Ta-
ble 4 is visualized in Graph 1 and Graph 2.

We have clearly shown that double Boot-
strap SEM can offer more advantages over the

rival methods through the simulation study.
Important to realize that the performance of
double Bootstrap SEM are particularly no-
ticeable compare to Bootstrap SEM. As sup-
ported by Roberts and Martin (2009), the im-
proved performance of double Bootstrap SEM
is caused by a reduction in the variance of the
estimates.

Figure 1: 95% normal CIs

Figure 2: 95% t-distribution CIs
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Table 4: 95% standard normal and t-distribution confidence intervals
n Model Lower bound Upper bound CI width

30 SEM -0.21747 0.169413 0.386886
BOOT SEM-N -0.21372 0.166757 0.380474
Double BOOT SEM-N -0.03303 -0.0212 0.011836
SEM-t -0.22589 0.177828 0.403717
BOOT SEM-t -0.22199 0.175033 0.397026
Double BOOT SEM-t -0.03329 -0.02094 0.012351

50 SEM -0.14581 0.139402 0.285215
BOOT SEM-N -0.14565 0.137314 0.282966
Double BOOT SEM-N -0.00995 -0.00172 0.008232
SEM-t -0.14942 0.143012 0.292434
BOOT SEM-t -0.14923 0.140895 0.290129
Double BOOT SEM-t -0.01005 -0.00161 0.008441

75 SEM -0.11255 0.11963 0.232179
BOOT SEM-N -0.11154 0.11819 0.229726
Double BOOT SEM-N 0.000826 0.007981 0.007156
SEM-t -0.11448 0.121559 0.236038
BOOT SEM-t -0.11345 0.120099 0.233545
Double BOOT SEM-t 0.000766 0.008041 0.007275

100 SEM -0.09232 0.099514 0.191834
BOOT SEM-N -0.09181 0.098235 0.190047
Double BOOT SEM-N 0.001723 0.007651 0.005928
SEM-t -0.09351 0.100701 0.194208
BOOT SEM-t -0.09299 0.099411 0.192399
Double BOOT SEM-t 0.001686 0.007688 0.006002

B. Application on real data

The same procedure of double raw data boot-
strap method described in Section 2 was imple-
mented to the real data. The secondary data
set (24 samples) is obtained from the Institute
of Marine Biology (IMB), Universiti Malaysia
Terengganu. Data consists of three variables
which consist of one treatment group of 100
mg/kg (seahorse extract), also known as food
consumption and denoted as X variable. The
mediator is the body weight, denoted as M
variable and diameter of lumen denoted as Y
variable.

These results indicate that the standard er-
ror value for double BOOT SEM is 2.252811e-
05, which much smaller than BOOT SEM and
SEM, each with 2.841251e-04 and 4.915769e-
04.Also, CIs width for Double BOOT SEM-N
is 8.830858e-05, much narrower than BOOT

SEM-N and SEM-N, each with 1.113750e-
03 and 1.926946e-03. The same pattern
also occurred for Double BOOT SEM-t, the
CIs width is 0.0000932059, way better than
the SEM-t (0.0020338086) and BOOT-SEM-
t (0.0011755153). Notably, the performance
of the double raw data bootstrap method also
works well on real data.

With attention to both simulation study and
application on real data outcomes, positively,
the double raw data bootstrap method works
well and be able to offer advantages over sin-
gle raw data bootstrap method or traditional
method. While the performance of BOOT
SEM is much better than SEM, the bizarrely
noticeable performance is from double BOOT
SEM. The double raw data bootstrap method
in SEM can offer extra benefits in terms of
smaller summary statistics and narrower confi-
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dence intervals.
With attention to both simulation study and

application on real data outcomes, positively,
the double raw data bootstrap method works
well and be able to offer advantages over sin-
gle raw data bootstrap method or traditional
method. While the performance of BOOT
SEM is much better than SEM, the bizarrely
noticeable performance is from double BOOT
SEM. The double raw data bootstrap method
in SEM can offer extra benefits in terms of
smaller summary statistics and narrower confi-
dence intervals.

V. Conclusion

We have illustrated the implementation of dou-
ble raw data bootstrap procedure in SEM. The
analysis was performed by Monte Carlo simu-
lation on X,M and Y set of raw data and a
set of real data. Through the simulation study,
the performance of double BOOT SEM, BOOT
SEM and SEM are evaluated not only through
the SE, MSE, RMSE, bias but also by con-
structing confidence intervals. Formally, our
simulation and implementation on real data re-
sults directly showed that the performance of
the proposed method, double raw data boot-
strap method is more competent compared to
the traditional SEM, in terms of smaller sum-
mary statistics values and narrowed bootstrap
intervals. In short, the double raw data boot-
strap method does improve statistical efficiency
measured. In essence, if improving the ac-
curacy and reliability of the model is a con-
cern, then double raw data bootstrap method
in SEM (double BOOT SEM) offers a practical
alternative to BOOT SEM and SEM.
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