
ASM Sc. J., 12, Special Issu 1e , 2019 for IQRAC2018, 276-284

Dynamical Process On Growing Geometrical Network Based
On Modular Group

N. N. A. Kamal1, K. T. Chan1,2*, N.M. Shah1,2, and H. Zainuddin1,2

1Laboratory of Computational Sciences and Mathematical Physics, Institute for
Mathematical Research (INSPEM), Universiti Putra Malaysia, Malaysia

2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia

∗Corresponding author: chankt@upm.edu.my

Many network models have been proposed and constructed to mimic the underlying features
of complex networks. Studying the dynamical process of a network gives a good platform to
understand how the underlying geometrical and structural features influence various transport
properties. In this study, the dynamical process on the network is described by using random
walks. From this process, some of the random walk transport properties are determined such
as relaxation time, mean first passage time (MFPT), random walk centrality (RWC), average
trapping time (ATT) and global mean first passage time (GMFPT). We find that GMFPT
grows exponentially when the network grows. This is mainly due to some central nodes that
have high RWC, which tends to attract the random walker more compared to a node with
a lower RWC. This study plays an important role in determining the performance of the
network.
Keywords: Complex networks, Mean first passage time, Random walk, Random walk
centrality

I. Introduction

The world is abundant of complex networks in
various field from biology, physics to computer
science. One of the earliest network models is
introduced by Watts and Strogatz (1998) which
shows that most of the real-world networks ex-
hibit features like small-world network that has
high clustering coefficient. Another type of net-
work model is scale-free (SF) network based
on Albert et al. (1999) that follows power-law
degree distribution Pdeg(K) ∼ K(−γ) where
Pdeg(K) is the fraction of nodes with the num-
ber of links attached to it known as degree, K.
To have a scale-free property, usually the power
law exponent, γ is at the range of 2 6 γ 6 3.
SF network is an example of heterogeneous
network and it has significant effect on phys-
ical problems where it is stable in opposition
to the removal of nodes but fragile under at-

tacks aiming on nodes with high degree (Co-
hen et al., 2000). Some of the real-life exam-
ples of SF network are the World Wide Web
(WWW) and the Internet. Other types of net-
work models that are prepared to mimic the
real-world system are the hyperbolic network
model (Aste et al., 2005) and the growing geo-
metrical network (Wu et al., 2015). Although
the study on these models is mainly focusing
on the static properties of the networks, the
interest in the dynamical part is growing. The
dynamical process can be described using ran-
dom walk on the network since they have been
used in the dynamic of many natural and arti-
ficial systems such as fluctuations in stock mar-
ket (Fama, 1995) and natural disasters (Wije-
sundera et al., 2016). Random walk (RW) is
basically a Markov process where each step is
independent of the previous event. Some of
the properties of RW that have been studied
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broadly are relaxation time (τ), mean first pas-
sage time (MFPT) from one node to another
node and the random walk centrality (RWC).

MFPT, 〈Tij〉 is defined as the time needed for
a walker to reach a node from a starting point
and this property is widely used in character-
izing transport efficiency (Kozak and Balakr-
ishnan, 2002, Zhang et al., 2009, 2010) It was
shown that MFPT behaves differently depend-
ing on the topology. For example, it behaves
sublinearly with the size of network, N in some
scale-free networks while behaves very differ-
ently in standard regular fractals (Bentz et al.,
2010, Lin et al., 2010) where it scales superlin-
early with N . MFPT plays an important role
in determining the RWC which describes cen-
tralization of information travelling over net-
works and also the average trapping time 〈Tj〉,
which is the average of MFPT to the trap node
j taken over all starting point. Besides, with
the calculation of MFPT, global mean first pas-
sage time (GMFPT) for the whole network can
also be determined.

In this paper, we compute MFPT on a grow-
ing geometrical network (GGN) constructed
from tessellation of modular group (Taha et
al., 2016). Based on the calculated MFPT
value, we can explain how the walker behaves
in GGN via the study of transport properties
such as RWC, relaxation time, ATT as well as
GMFPT. Besides, by studying these transport
properties, we can shed some light about the
structure of the network either it being a ho-
mogeneous or a heterogeneous network.

A. Random Walks on Network

To apply the RW, first, we consider the GGN
network, represented as G(V,E) where V is
the set of nodes while E is the set of undi-
rected edges. The connection of two nodes i
and j can be represented by adjacency matrix,
A which equals to 1 if there is a relation be-
tween them and 0 if otherwise. Since the GGN
is an undirected network, it has the property
of Aij = Aji. For degree of node i, it is given
as Ki = ∑j Aij . As for the walker, since it
cannot remain at the same node, it will move

to another node once at a time with the prob-
ability of 1

Ki
. Using the adjacency matrix and

the probability, we can determine the transi-
tion probability which is defined by the walker
movements. If the walker is on node i at time
t chooses one of its neighbour with equal prob-
ability at time t+ 1, the transition probability
can be written as Wij =

Aij

Ki
. Since the walker

starts at node i at time t = 0 and arrived at
node j at time t; the master equation can be
expressed as

Pij(t+ 1) =
∑
k

Akj
Kk

Pik(t). (1)

Since there is no boundary in network, the ran-
dom walker can move in any direction inside
the GGN. However, it cannot leave the system
and this is similar to the diffusion process ex-
cept that all walkers must follow the equation
at every time step (Lau and Szeto, 2010). In
order to find the walker probability at j from i
at t, the asymptotic behaviour of the transition
probability is considered. Based on the princi-
ple of detailed balance with t→∞, the system
reaches a state where there is no net flow of
random walker in any direction. This leads to
KiP

∞
j = KjP

∞
i where

P∞j = lim
t→∞

Pij(t).

The equilibrium state can be defined as

P∞j =
Kj

2L
. (2)

where L denotes the number of edges. Based
on Eq.2 at equilibrium state, the walker has
a higher tendency to move to nodes with more
edges. In the other hand if the system’s net flow
is not zero, it will consist of both equilibrium
state probability and fluctuation around it.

In order to figure out the MFPT, we need
to find a relation between first passage time,
Fij(t) and probability of the walker to reach
the destination, Pij(t). This relation described
the time step of a random walker where it con-
tinues to move even when the destination node
is reached at time t′ due to the time step is set
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at t, then returns to j after t − t′ steps (Red-
ner, 2001). Thus, the first-passage probability
satisfies the relation

Pij(t) = δijδt0 +
t∑

t′−0
Fij(t)Pjj(t− t′). (3)

where δijδt0 represents to the initial condition
of the walker probability. This equation can be
decoupled by using Laplace transform (Hughes,
1995, Redner, 2001) and yields

P̃ij(s) = δij + (̃F )ij(s)P̃jj(s). (4)

The details of the formulation of MFPT are
explained in Samsul et al. (2018). By express-
ing the terms in Eq.4 with Laplace transform,
MFPT, 〈Tij〉 is obtained as follows

〈Tij〉 =

 2L
Kj

[
R

(0)
jj −R

(0)
ij

]
forj 6= i

2L
Kj

forj = i
(5)

Other than MFPT, another transport prop-
erty of random walk that can be identified here
is the relaxation time, τ where it is the asymp-
totic time of convergence to the equilibrium or
stationary distribution. It is defined as

τj = R
(n)
jj ≡

∞∑
t=0

[
Pjj(t)− P∞j

]
. (6)

Another measurement called random walk
centrality can also be obtained when the ran-
dom walk motions are asymmetric, i 6= j. The
measurement equation is given by

Cj ≡
P∞j
τj

. (7)

It measures the speed of the walker to move
from one node to another node. The walker will
reach the target node earlier in consequence of
high RWC value. This property plays different
effects depending on the type of network. For
example, in terms of communication, a node
with high RWC will receive signal emitted by
its partner earlier (Noh and Rieger, 2004). Us-
ing the MFPT computed from Eq.5, we can

study the trapping problem defined on GGN.
Let 〈Tj〉 be the average trapping time, or the
average of MFPT, 〈Tij〉 to the trap node j,
taken over all starting point. The equation 〈Tj〉
is expressed as

〈Tj〉 =
1

N − 1

 N∑
j=1

〈Tij〉 − 〈Tii〉

 . (8)

For the GMFPT, 〈Tg〉, it is defined as average
over all the trap nodes for the network. The
formulation of 〈Tg〉 is expressed by

〈Tg〉 =
〈Tj〉
N

. (9)

II. Methodology

The growing geometrical network in this study
is constructed based on using modular group,
a discrete subgroup of PSL(2, R) tessellating
the hyperbolic plane. The tessellation is gen-
erated with Mathematica by using linear frac-
tional transformation and can be found in Taha
et al. (2016). As number of iterations increases,
the size of the network grows exponentially pro-
ducing large number of nodes and edges. This
is due to the growth of concatenation of words
or generators of the modular group (Taha et al.,
2016). Table 1 shows the total number of
nodes and edges produced from different itera-
tion while Figure 1 shows the constructed net-
work.

To compute the value of MFPT based on
Eq.5, a matrix formulation needs to be formed
first by using equation Rnij ≡

∑∞
t=0[Pij(t) −

P∞j ]. The equation can be written as

R(0) =
∞∑
t=0

(Wt −Q). (10)

where R(0) is similar to R
(0)
ij . Matrix W

in Eq.10 represents the transition matrix and
Q ≡ P∞1 represents the equilibrium probabil-
ity matrix. A relation of Qn = Q for n > 0 and
WQ = QW = Q are the consequence of the
matrix Q being the projection of W onto the
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Table 1: Total number of nodes and edges produced from different iteration.

Number of iteration, i Number of nodes Number of edges

1 6 8
5 23 44
10 100 207
15 414 872
20 1695 3585

a) b)

c) d)

Figure 1: Underlying network from the modular group tessellation with iteration a)i = 1,
b)i = 5, c)i = 10 and d)i = 15

.

subspace with eigenvalue 1 (Noh, 2007). From
these relations, Wn−Q = (W−Q)n for n > 0
and (I − Q) for n = 0. Applying all of them
into Eq.10, it can be redefined as

R0 =
1

I + Q−W
−Q. (11)

To determine both MFPT and RWC, Eq.11

needs to be evaluated and the result is substi-
tuted into the Eq.5 to yield the MFPT. This
step is repeated for every iteration for all con-
structed network from the modular group.
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III. Results and Discussion

Computation of MFPT has been carried out on
networks constructed from tessellation of mod-
ular group on a hyperbolic plane with different
sizes. Computing MFPT enables us to know
what is the mean time for a random walker to
reach a particular node for the first time. With
the MFPT values for every node in a particular
network, we can compute the average trapping
time (ATT), 〈Tj〉 for a particular trap node j
taken over all starting points in the network.
ATT is important as it can be used to charac-
terize the network structural properties based
on transport efficiency. One example of trap-
ping problem is the work of Montroll (1969) in
the application to excition trapping on photo-
synthesis units.

2000 5000 10
4

ATT

1.×10
-4

2.×10
-4

5.×10
-4

RWC

Figure 2: Log-log plot of random walk central-
ity vs average trapping time for modular group
at 20th iteration.

Figure 2 shows the graph plot of RWC
against the ATT for every node in 20th it-
eration GGN. Table 1 shows the number of
nodes increases as the iteration, i increases.
i = 1, 5, 10, 15, 20 are chosen generally to re-
flect on how the network grows. However, we
generate the network model for each iteration
between 1 ≤ i ≤ 20. According to Table 1, a
20th iteration GGN has 1695 nodes and 3585
number of edges. RWC is decreasing linearly
with the ATT which implies that the longer
the time needed for the walker to arrive at cer-
tain nodes, the less important that the node
becomes in the network. For example, a less

important node in the network will be less vis-
ited by the walker in comparison to the other
nodes. Say we have two nodes where Cj > Ci,
the random walker that starts at node i will
reach j earlier compared to when it started on
node j and wants to reach i. Thus a node with
a larger RWC tends to be visited earlier by the
random walker rather than a node with smaller
RWC. In another word, a node with a high val-
uer of RWC will attract the walker to visit it
more frequently. Also, a high value of RWC in
a node indicates that the node is important in
diffusion or trapping process.

Structure of the network plays an important
role in determining the values of RWC and
ATT for a particular node. In Tables 2 and
3, we identify the highest and lowest ten values
of ATT and RWC for nodes in the GGN. The
location of these nodes is also highlighted in the
network as shown in Figure 3. Nodes with the
highest values of ATT (red in colour) are all
located at the periphery part of the network.
On the other hand, nodes with lowest values
of ATT (green in colour) are all located at the
center of the network. This shows that the cen-
tral part of the network or the ”freeze” region
has the most effective communication between
nodes while the outer regions are pretty much
less effective.

If we look at the degree of the nodes on
the network, they are distributed between the
range of 2 ≤ K ≤ 18. Nodes with the high-
est values of ATT are all having value of K =
2. Meanwhile, the nodes with lowest values
of ATT possess the value of K ranging from
6 ≤ K ≤ 18. From the static process, by
looking at the degree distribution, the network
can be identified as a heterogeneous network
because the degree is not distributed evenly.
From the dynamical process, RWC or ATT val-
ues can be used to explain this matter as their
distribution shows asymmetry in the network.

From the same GGN, we also study the re-
laxation time, τ . Figure 4 shows how the re-
laxation time behaves with the node degree of
the network. We examined the distribution of
relaxation time by calculating the τ for each
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Figure 3: GGN at 20th iterations where the magnified points show the highest and the lowest
values of ATT.

Table 2: Lowest values of ATT.

Nodes ATT RWC K

661 1280.41 0.000783507 18
3 1335.20 0.000750921 18

288 1539.2 0.000651432 17
289 1558.59 0.000643515 6
662 1655.63 0.000605669 6
424 1824.68 0.000549441 6
1119 1832.4 0.000546916 17
128 1913.76 0.000523787 6
975 2049.37 0.00048903 6
974 2078.804 0.000482091 6

K. A short relaxation time in random walk is
known as random walks with non-compact ex-
ploration (Bénichou et al., 2010, Hwang et al.,

Table 3: Highest values of ATT.

Nodes ATT RWC K

739,740 13687.5 0.00007308 2
602,603 13569.9 0.000073714 2
569,570 13534.5 0.0000739081 2
561,562 13475.7 0.0000742325 2
332,333 13363.4 0.0000748545 2

2012) whereas a high value of τ indicates a
longer time is spent by the random walker trav-
eling around at the neighbourhood nodes (Lee
et al., 2014). This phenomenon is called a com-
pact case and a non-compact case behaves on
the contrary. Based on Figure 4, there is an ob-
vious variation of the value of τ ranging from
the lowest τ to the highest at the node with
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Figure 4: τ vs K for the 20th iteration GGN.

degree of six. This is because node with degree
six is usually nodes that form the central part
(saturated part) of the network and they ap-
peared the most in the network. These nodes
are not only appeared at the central region,
they also appeared in different region of the
network. Hence, the relaxation time turns out
to be distributed broadly between 1 ≤ τ ≤ 7.
On the contrary, another region with different
value of K has much smaller range of τ due
to active boundary of the network (Wu et al.,
2015) where it can still link many triangles.

According to Eq.7, τ is inversely propor-
tional to RWC. When RWC is high, the re-
laxation for that particular node is low. This
implies that most nodes in the central regions
have low relaxation time which means that they
can converge to stationary distribution easily.
If we consider the walker as information, it
would mean that the information can be sup-
plied to all nodes in that region in a short time.

5 10 15 20
Iteration

50

100

500

1000

5000

10
4

GMFPT

Figure 5: GMFPT vs Iteration.

Then, we compute the GMFPT of every
other iteration from the modular group. Figure
5 shows a semi-log plot between GMFPT and
iterations and it shows that GMFPT grows ex-
ponentially. This trend indicates that it has
a power-law function. The linear scaling of
GMFPT with the iteration also shows that
the underlying structure of the network is het-
erogeneous and not homogeneous. This trend
can also be observed in complete graphs (Bollt
and ben Avraham, 2005). For having hetero-
geneous structures, this means that there are
central nodes that gas very large degree. These
nodes usually have high RWC and the walkers
are attracted to them.

High value of GMFPT indicates a longer
time for the walker to cover the whole net-
work, thus affects the efficiency of the network
model. However, when compared to a homoge-
neous network (random network), the GMFPT
is much lower.

IV. Conclusion

In summary, we have discussed five transport
properties of random walk process in grow-
ing geometrical network. From the computed
MFPT, we managed to determine the relax-
ation time, τ , random walk centrality, average
trapping time and global mean first passage
time. RWC and ATT have revealed that GGN
of interest has heterogeneous structure due to
asymmetry in dynamics. As for the relaxation
time, we found that the central part (saturated
part) of the network has the lowest value. This
implies that the central regions have a fast con-
verging time. From the global perspective, the
linear scaling of GMFPT indicates the struc-
ture of the networks has a scale-free property.
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