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Non-stationary data usually exist in real life and influenced by covariates. The non-stationary
extremes are usually modelled by setting a constant high threshold, u, where the threshold
exceedances are modelled by Generalized Pareto distribution (GP). Covariates model is incor-
porated to the GP parameters to account for non-stationarity. However, the threshold, u, may
be high enough for GP approximation on certain covariates but not on others, which in this case
may violate the asymptotic basis of the GP model. In this paper, a covariate-varying threshold
selection method based on regression tree is suggested and applied on simulated non-stationary
data sets. The regression tree will be used to partition data sets into stationary groups
with similar covariate condition. Thus, a constant high threshold can be fixed within each
group. The tree-based threshold exceedances can then be modelled by stationary GP which
is a simpler model compared to the non-stationary GP. Simulation study is done to demon-
strate and assess the performance of this method compared to the conventional method. The
results show that the proposed method is a reasonable complement to the conventional method.

I. Introduction

Extreme value techniques are widely used in
many disciplines such as ocean wave modelling
(Northrop and Jonathan, 2011), business cycle
(de Carvalho et al., 2012), assessment of mete-
orological change (Wang et al., 2016) and also
electricity demand (Sigauke and Bere, 2017).
The objective of an extreme value analysis is
to quantify the stochastic behaviour of a pro-
cess at unusually large or small levels. Besides,
extreme value analysis also provides a frame-
work for forecasting via return levels.

There are two ways to define extremes in ex-
treme value framework. The first one is block
maxima where observations are partitioned or
blocked into regular intervals and the max-
imum observations within each block (block
maxima) are modelled by Generalized Extreme
Value model (GEV). The next method is by

setting a constant high threshold on the data
sets and the exceedances are modelled by Gen-
eralized Pareto model (GP). The focus of this
paper is on the second method.

Let y be the variable of interest and u is the
fixed high threshold, Pickands III et al. (1975)
shows that for values of y greater than u, given
that u is sufficiently high, the exceedances of
threshold u, can be modelled using GP model
where the cumulative distribution function is

H(y) = 1 −
[
1 +

ξ(y − u)

σ

]−1/ξ
,

where y > u and 1 + ξ(−u)/σ > 0. Scale and
shape parameter are denoted by σ and ξ re-
spectively.

Many methods on threshold selection have
been proposed for the case of non-stationary
extremes. Some of them uses goodness of fit
tests to select the optimum threshold (Bader
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et al., 2018, Thompson et al., 2009). Thompson
et al. (2009) use normality test on the difference
of some estimated parameter obtained from
two consequence thresholds. Starting from the
lowest threshold, the goodness of fit test will
be applied. The first threshold which failed
to reject the null hypothesis of the test is se-
lected as the optimum threshold. This is sim-
ilar to Bader et al. (2018), except for a rule
called ForwardStop rule which is applied to
control the False Discovery Rate. Yang et al.
(2018) proposed to use the plot of characteris-
tic value against their corresponding thresholds
as a threshold selection method. The lowest
threshold value where the characteristic value
is stable will be chosen as the optimum thresh-
old.

In real world data sets, non-stationarity is
apparent due to seasonal trends and covari-
ates effect, (Northrop and Jonathan, 2011).
The main issue in modelling non-stationary ex-
tremes using GP is threshold selection. Var-
ious methods have been proposed to tackle
this issue. The most frequently used method
in the literature is by incorporating covariate
model in the parameter of GP to model the ex-
ceedances of a constant high threshold (Coles
et al., 2001). However, the covariate model is
usually incorporated in scale parameter, not in
shape parameter. This is because the shape pa-
rameter is difficult to estimate precisely (Coles
et al., 2001). Covariate model chosen to be in-
corporated in the scale parameter usually con-
structed by referring to the underlying trends
that affect the data sets. However, it is difficult
to determine the exact model for the covariates
which affect the process. Besides, by setting
a constant high threshold on a non-stationary
extremes with covariates effect will violate the
basis of the GP distribution approximation. At
some covariate values, the high threshold might
be high enough for GP approximation, how-
ever, at another different covariate values, the
same high threshold would not be high enough
for GP approximation.

To overcome this problem, a threshold that
varies according to the covariate values is pro-

posed. The covariate-varying threshold selec-
tion method is based on regression tree. The
rest of this paper is organized as follows. In
Section 2 the tree-based threshold selection
method will be explained. In Section 3 the de-
tails of the simulation study on this method are
described. In section 4, the results of the simu-
lation study are presented. Finally, in Section
5 some concluding comments are discussed.

II. Methodology

Regression tree is a method to partition a data
set recursively thus permitting a simple predic-
tion model to be fitted within each cluster, rep-
resented by terminal node or leaf (Loh, 2011).
The tree consists of parent node, internal node
and terminal node. To determine which cluster
an observation belongs to, firstly, all observa-
tions are placed at the root (parent node) of the
tree. The observations at the root are split by
answering binary questions which are related to
the covariates affecting the observations, where
observations with ’yes’ answer will be placed at
the left leaf (internal node) and observations
with ’no’ answer will be placed at the right leaf
(internal node) (Shihabuddin et al., 2018). An
example of the question asked is ”Is t < 228?”
where t is the covariate time of the observa-
tions.

The split is chosen such that it maximizes
the reduction of the impurity level within the
tree which is measured using sum of squared
errors. The sum of squared errors for a tree T
is

S =
∑

c∈leaves(T )

∑
i∈c

(yi −mc)
2

where mc = 1
nc

∑
i∈c yi, is the mean of ob-

servations within leaf c. In other words, the
impurity level is the deviation of each obser-
vations from their corresponding cluster mean.
This step is repeated recursively to create new
leaves(internal nodes). Each split will reduce
the impurity level within the tree. However,
the amount of the impurity level reduction for
each split will be smaller than in the previous
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split. Nodes at the final level are called termi-
nal nodes.

An important issue within regression tree
is the stopping criterion, where the tree is
stopped from growing. If the stopping criterion
is too low, the tree will be overgrown whereby
there will be a small number of observations in
each cluster. However, too big a stopping cri-
terion will produce clusters which are not ho-
mogeneous. The usual practice is by setting
a bound, δ such that a split must reduce the
sum squared errors of the tree not less than
δ. The δ value is inversely related to the size
of the tree or number of clusters produced by
the tree. The smaller the δ value, the bigger
the tree produced. In this study, the stopping
criterion used is based on stationarity of the
terminal nodes or clusters.

Let x1, . . . , xn be a non-stationary sequence
of observations with t1, . . . , tn and y1, . . . , yn as
covariates. Regression tree is used to partition
the xi sequence into m homogeneous station-
ary clusters. Since the purpose of using the
regression tree in this study is to obtain sta-
tionary observations within each clusters, the
stopping criterion for the regression tree is set
such that if all clusters are stationary, the re-
cursive partitioning will be stopped. However,
for all data sets, the objective that all clus-
ters are stationary cannot be achieved. Hence,
the percentage of stationarity are selected arbi-
trarily at 90%. Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test is used in this study to test
the stationarity of the observations within each
cluster.

If all observations within each clusters are
approximately stationary, a constant high
threshold can be set within each cluster. The
threshold is set in term of percentile. The per-
centile is kept similar for all clusters so that the
rate of exceedances remain constant through-
out the data set. By using percentile as thresh-
old value, each cluster will have unique thresh-
old value. In other words, each observation will
have their own threshold value. These thresh-
old values are arranged according to the index
of observations to create varying threshold. In

this study, the percentile value chosen to be
threshold within each cluster is 95th percentile
(Eastoe and Tawn, 2009).

III. Simulation Study

The tree-based threshold selection method will
be demonstrated on simulated data sets. The
data sets which are consist of GEV random
variable, x are simulated using inverse sampling
method. The simulated GEV random variables
are as follows

x = µ+
σ((− logF (x))−ξ − 1)

ξ
.

Let X1, . . . , Xn is distributed by GEV(µ, σ, ξ),
Mn = max(X1, . . . , Xn) will follow
GEV(µ∗, σ∗, ξ) where

µ∗ = µ+
σ(nξ − 1)

ξ
and σ∗ = nξσ.

According to Coles et al. (2001), if block
maxima of a dataset can be modelled with
GEV(µ, σ, ξ), the exceedances of a high enough
threshold, u set on the dataset can be modelled
with GP(σ̃, ξ). In our case,

σ̃ = σ∗ + ξ(u− µ∗)

= nξσ + ξ

[
u−

(
µ+

σ(nξ − 1)

ξ

)]
To induce non-stationarity in the data sets,

covariates model is incorporated in the GEV
location parameter, µ. Two covariate models
are considered which are:

1. µ = µ0 + µ1

(
t

n+1

)
+ µ2y for linear trend.

2. µ = µ0 +µ1 cos(2πtn )−µ2 sin(2πtn )+µ3y for
cyclic trend.

These models are based on covariate models
proposed by Eastoe and Tawn (2009). Here,
t and n represent time covariate and number
of observations respectively. Another covariate
y is generated from standard normal distribu-
tion. Time covariate, t is included to create
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trends in the data sets, while the covariate y
represents a random variable which might af-
fect the variable x.

In this study, 36 different data sets with dif-
ferent number of observations and different pa-
rameter values are simulated. Three number
of observations are selected arbitrarily, which
are 3653, 7305 and 18263. These number of
observations correspond to daily observations
for 10 years, 20 years and 50 years respectively.
The parameter µ1(for linear and cyclic covari-
ate model) and µ2(for cyclic covariate model
only) contribute more in making trend appar-
ent in the data set because they are related to
the covariate time. Hence, we vary the value of
both parameters by setting them arbitrarily at
2.5, 5 and 10. The parameter µ2(for linear co-
variate model), µ3(for cyclic covariate model)
and σ are kept constant value equal to 1. Be-
sides, we also vary the shape parameter ξ at
-0.4 and 0.4.

IV. Results and Discussion

The regression tree procedure explained before
is applied on the simulated data sets. Number
of clusters obtained and the reduction of SSE
after the final split, δ are recorded for every
procedure. Table 1 shows results for data sets
with positive shape parameter; ξ = 0.4 while
Table 2 shows results for data sets with nega-
tive shape parameter; ξ = −0.4.

From both tables, the results show that, as
the number of observations within a data set in-
crease, the partitioning needed to produce sta-
tionary clusters also increase. Besides, as the
value of parameter related to the time covari-
ate increase, the number of clusters produced
also increase. This is related to the influence
of the time covariate on the observations which
increases when the value of the parameter get
bigger. Data sets with negative shape parame-
ter need more partitioning to obtain stationary
clusters because the linear and cyclic trends are
more apparent within these data sets.

For the sake of brevity, only one parame-
ter value (3 data sets) for each combination

of covariate model and shape parameter value
are chosen to demonstrate the method. The
data sets are chosen based on which parameter
value produce largest range of number of clus-
ters between different number of observations.
The data sets chosen are highlighted in Table
1 and Table 2. The resulting regression tree
are shown in Figure 1 and Figure 2 for data
sets with positive shape parameter and Figure
3 and Figure 4 for data sets with negative shape
parameter.

(a)

(b)

(c)

Figure 1: Regression tree for ξ = 0.4 and linear
trend with (a) n = 3653, (b) n = 7305, (c)
n = 18263

From Figure 1 until Figure 4, it can be ob-
served that the size of the tree increases as
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Table 1: Number of clusters obtained for regression tree in parentheses and the reduction of
SSE after the final split, δ for data sets with positive shape parameter, ξ = 0.4

covariate parameter n=3653 n=7305 n=18263
model value

linear µ1 = 2.5 0.001895 (30) 0.001274 (40) 0.000719 (50)
µ1 = 5 0.001357 (40) 0.000834 (42) 0.000464 (72)
µ1 = 10 0.002119 (20) 0.000602 (52) 0.000023 (110)

cyclic µ1, µ2 = 2.5 0.001106 (40) 0.000726 (50) 0.000362 (80)
µ1, µ2 = 5 0.000654 (49) 0.000308 (73) 0.000109 (149)
µ1, µ2 = 10 0.000101 (91) 0.000048 (162) 0.000035 (180)

Table 2: Number of clusters obtained for regression tree in parentheses and the reduction of
SSE after the final split, δ for data sets with negative shape parameter, ξ = −0.4

covariate parameter n=3653 n=7305 n=18263
model value

linear µ1 = 2.5 0.001167 (30) 0.000433 (59) 0.000210 (86)
µ1 = 5 0.000644 (52) 0.000318 (70) 0.000129 (114)
µ1 = 10 0.000270 (66) 0.000105 (110) 0.000042 (181)

cyclic µ1, µ2 = 2.5 0.000479 (57) 0.000152 (109) 0.000059 (181)
µ1, µ2 = 5 0.000081 (109) 0.000058 (123) 0.000018 (239)
µ1, µ2 = 10 0.000026 (124) 0.000013 (191) 0.000004 (377)

the number of observations in the data set in-
creases. In addition to that, data sets with neg-
ative shape parameter tend to have bigger tree
compared to data sets with positive shape pa-
rameter. Moreover, data sets with cyclic co-
variate model also have bigger tree than their
counterparts with linear covariate model. This
explains that data sets with more apparent
trends need larger trees and produce more clus-
ters so that each clusters are stationary.

The next step is to fix a constant high thresh-
old within each stationary clusters obtained.
The constant high threshold are chosen based
on previous literature where the threshold is
set at the nth percentile of the observations.
In this study, 95th percentile is chosen as the
threshold within the stationary clusters. Tree-
based threshold can be obtained by arrang-
ing the threshold within clusters according to
observations index. The resulting tree based
threshold for all data sets are shown in Figure
5 until Figure 8. All the obtained tree-based
thresholds follow the trend of the data. In other
word, the obtained threshold vary according to

the covariates affecting the observations.
The exceedances of the tree-based thresh-

olds are then modelled by stationary and non-
stationary GP model. For the non-stationary
GP model, covariate models incorporated in
the GP scale parameter are given by:

σ = exp

{
σ0 + σ1

(
t

n+ 1

)
+ σ2y

}
(1)

σ = exp
{
σ0 + σ1 cos

(
2πt

n

)
− σ2 sin

(
2πt

n

)
+ σ3y

}
(2)

where Equation 1 is for data set with linear
trend and Equation 2 is for data set with cyclic
trend.

The estimated parameter values are shown
in Table 3 for ξ = 0.4 and in Table 4 for
ξ = −0.4. Based on the results, most of the es-
timated shape parameter are close to the shape
parameter value used for simulation. Accord-
ing to Coles et al. (2001), GP model fitted to
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(a)

(b)

(c)

Figure 2: Regression tree for ξ = 0.4 and cyclic
trend with (a) n = 3653, (b) n = 7305, (c)
n = 18263

exceedances of high threshold, where the par-
ent distribution is GEV, will have shape pa-
rameter same to the corresponding GEV shape
parameter. Hence, it can be concluded that the
tree-base threshold selection method does not
violate the theoretical basis of GP approxima-
tion.

Comparison between fitted stationary GP
model and fitted non-stationary GP model are
done using Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC). The
AIC and BIC values are shown in Table 5 for
ξ = 0.4 and Table 6 for ξ = −0.4. The results

(a)

(b)

(c)

Figure 3: Regression tree for ξ = −0.4 and
linear trend with (a) n = 3653, (b) n = 7305,
(c) n = 18263

show that most AIC and BIC values for station-
ary model are smaller than for non-stationary
model. Hence, modelling the exceedances of
tree-based threshold by stationary GP model
leads to less information loss compared to mod-
elling by non-stationary GP model. This also
concludes that regression tree method reduce
the non-stationarity within the data set which
leads to the suitability of stationary GP model
for the tree-based threshold exceedances.

The goodness of fit of the stationary model
fitted to the exceedances of the tree-based
threshold is checked using two goodness of fit
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Table 3: The estimated parameters of stationary GP model (S) and non-stationary GP model
(NS) fitted to the exceedances of tree-based threshold for ξ = 0.4

covariate n model σ0 σ1 σ2 σ3 ξ
model

linear 3653 S 2.773400 - - - 0.338944
NS 1.140048 -0.254902 -0.038319 - 0.343374

7305 S 3.173481 - - - 0.148101
NS 1.175697 -0.035041 0.022537 - 0.144478

18263 S 2.951356 - - - 0.239009
NS 1.001323 0.165164 -0.079161 - 0.232361

cyclic 3653 S 2.126440 - - - 0.318758
NS 0.762627 0.137990 -0.104260 -0.113842 0.300729

7305 S 2.667115 - - - 0.230123
NS 0.983395 -0.014219 0.117746 0.011770 0.226723

18263 S 2.717581 - - - 0.274062
NS 0.999397 0.007978 0.008781 -0.008925 0.273979

Table 4: The estimated parameters of stationary GP model (S) and non-stationary GP model
(NS) fitted to the exceedances of tree-based threshold for ξ = −0.4

covariate n model σ0 σ1 σ2 σ3 ξ
model

linear 3653 S 0.341835 - - - -0.289549
NS -1.148147 0.168006 0.038186 - -0.311566

7305 S 0.291734 - - - -0.156084
NS -1.331015 0.282488 -0.006506 - -0.203953

18263 S 0.248132 - - - -0.083597
NS -1.304679 -0.100424 0.065049 - -0.130211

cyclic 3653 S 0.335565 - - - -0.138367
NS -1.131935 -0.053628 -0.114716 0.173038 -0.171678

7305 S 0.266744 - - - 0.017345
NS -1.304569 0.081954 0.071466 0.127846 -0.040992

18263 S 0.243336 - - - -0.000119
NS -1.403703 0.006401 0.030406 0.080007 -0.023372

tests which are Anderson-Darling (AD) test
and Cramer von Mises (CVM) test. The p-
values of the tests are shown in Table 7 for
ξ = 0.4 and Table 8 for ξ = −0.4. Accord-
ing to the results, most of the data sets simu-
lated with positive shape parameter, ξ = 0.4,
shows that the p-values for CVM test is more
than 0.05. However, for data sets with negative
shape parameter, ξ = −0.4, only a few of the
simulated data sets give a good fit for station-
ary GP model. Nonetheless, it would not be a

problem, since extreme data sets with negative
shape parameter are rarely encountered in real
world. Hence, we can conclude that the sta-
tionary GP model is suitable in modelling the
tree-based threshold exceedances.

The proposed method which is the tree-
based threshold selection also has been com-
pared with the standard method which the ex-
ceedances of a constant high threshold are mod-
elled by nonstationary GP model with covari-
ate model incorporated in the parameter. In
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(a)

b)

(c)

Figure 4: Regression tree for ξ = −0.4 and
cyclic trend with (a) n = 3653, (b) n = 7305,
(c) n = 18263

this study, for each data set, a constant high
threshold is fixed at 95th percentile of the data.
The covariate models incorporated in the GP
scale parameter are same as Equation 1 and
Equation 2. The comparison between both
methods are done by comparing the AIC and
BIC values which determine the information
loss due to the model estimating. The results
are shown in Table 9 for ξ = 0.4 and in Table
10 for ξ = −0.4.

Based on the values of the AIC and BIC, it
can be observed that there are not much dif-
ference between tree-based threshold method

(a)

(b)

(c)

Figure 5: Tree-based threshold for ξ = 0.4 and
linear trend with (a) n = 3653, (b) n = 7305,
(c) n = 18263

and standard method. In fact, for data sets
with negative shape parameter, ξ = −0.4, the
values of AIC and BIC for tree-based thresh-
old method are smaller compared to the stan-
dard method, hence, it ca be concluded that the
tree-based threshold selection method is better
in terms of modelling due to less information
loss.
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(a)

(b)

(c)

Figure 6: Tree-based threshold for ξ = 0.4 and
cyclic trend with (a) n = 3653, (b) n = 7305,
(c) n = 18263

(a)

(b)

(c)

Figure 7: Tree-based threshold for ξ = −0.4
and linear trend with (a) n = 3653, (b) n =
7305, (c) n = 18263
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(a)

(b)

(c)

Figure 8: Tree-based threshold for ξ = −0.4
and cyclic trend with (a) n = 3653, (b) n =
7305, (c) n = 18263

Table 5: The AIC and BIC values of stationary
GP model (S) and non-stationary GP model
(NS) for ξ = 0.4

covariate n model AIC BIC
model

linear 3653 S 909.778 916.293
NS 912.913 925.943

7305 S 1790.925 1798.847
NS 1794.751 1810.595

18263 S 4497.751 4507.502
NS 4496.108 4515.610

cyclic 3653 S 849.858 856.495
NS 852.049 868.640

7305 S 1750.734 1758.692
NS 1754.786 1774.680

18263 S 4460.792 4470.567
NS 4466.708 4491.146

Table 6: The AIC and BIC values of stationary
GP model (S) and non-stationary GP model
(NS) for ξ = −0.4

covariate n model AIC BIC
model

linear 3653 S -147.016 -140.341
NS -145.123 -131.773

7305 S -314.145 -306.112
NS -313.859 -297.794

18263 S -945.291 -935.488
NS -951.379 -931.772

cyclic 3653 S -102.817 -95.923
NS -110.466 -93.232

7305 S -268.262 -260.053
NS -276.264 -255.740

18263 S -879.217 -869.270
NS -883.743 -858.875

Table 7: P-values for Anderson-Darling (AD)
and Cramer von Mises (CVM) goodness of fit
tests for stationary GP model fitted to ex-
ceedances of tree-based threshold with ξ = 0.4

covariate n AD test CVM test
model p-value p-value

linear 3653 0.6795 0.7937
7305 0.1232 0.3285
18263 0.0095 0.1220

cyclic 3653 0.6643 0.7484
7305 0.1007 0.2412
18263 0.0023 0.0337

294



ASM Science Journal, Volume 12, Special Issue 3, 2019 for IQRAC2018

Table 8: P-values for Anderson-Darling (AD)
and Cramer von Mises (CVM) goodness of fit
tests for stationary GP model fitted to ex-
ceedances of tree-based threshold with ξ =
−0.4

covariate n AD test CVM test
model p-value p-value

linear 3653 0.0261 0.0943
7305 0.0043 0.0286
18263 0.0066 0.0597

cyclic 3653 0.0063 0.0561
7305 0.2095 0.3843
18263 0.0010 0.0295

Table 9: The AIC and BIC values of tree-based
threshold selection method (TB) and standard
method (S) for ξ = 0.4

covariate n model AIC BIC
model

linear 3653 TB 909.778 916.293
S 885.880 898.718

7305 TB 1790.925 1798.847
S 1740.376 1755.986

18263 TB 4497.751 4507.502
S 4408.343 4427.15

cyclic 3653 TB 849.858 856.495
S 844.380 860.427

7305 TB 1750.734 1758.692
S 1680.999 1700.512

18263 TB 4460.792 4470.567
S 4298.972 4323.061

Table 10: The AIC and BIC values of tree-
based threshold selection method (TB) and
standard method (S) for ξ = −0.4

covariate n model AIC BIC
model

linear 3653 S -147.016 -140.341
NS 209.707 222.545

7305 S -314.145 -306.112
NS 380.146 395.756

18263 S -945.291 -935.488
NS 1030.396 1049.667

cyclic 3653 S -102.817 -95.923
NS 236.056 252.104

7305 S -268.262 -260.053
NS 445.062 464.575

18263 S -879.217 -869.270
NS 1110.373 1134.462
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V. Conclusion

Non-stationary extremes modelling usually use
constant high threshold to determine the ex-
tremes. However, with non-stationary data
which is affected by covariates, a constant
threshold might be an issue which possibly vi-
olate the GP model assumption. In this pa-
per, a covariate-varying tree-based threshold
has been proposed. The exceedances of the
tree-based threshold are modelled by both sta-
tionary and non-stationary GP model. Results
from AIC and BIC values show that stationary
GP model fit the exceedances better. Hence, by
applying the aforementioned method we have
a simpler model to fit the data. Comparison
has been made between the tree-based method
and the usual constant high threshold method.
The AIC and BIC values show that the tree-
based threshold selection method is compara-
ble to the standard method in terms of infor-
mation loss.

With regards to future study, it is suggested
that a method to select threshold within the
stationary clusters in regression tree instead
of using the 95th percentile value. Smoothing
techniques can also can be applied on the tree-
based threshold to reduce the roughness of the
threshold.
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