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Bayesian Network (BN) is established in a wide variety of applications to provide cause-effect
relationships of variables in a compact manner. It makes use of expert domain knowledge
when actual data is not available. One of the available methods in reducing the expert burden
in elicitation task of BN is an Elicitation of Bayesian Belief Network (EBBN). It requires only
a limited amount of elicited probabilities from the expert to derive the conditional probability
values of the variables. The current elicited-probability methods are stated in a crisp way, but
expert opinion is usually expressed in linguistic terms to illustrate the judgment. This study
proposes a new elicitation procedure by incorporating EBBN with a Z-Number approach,
a 2-tuple fuzzy numbers to represent the linguistic terms. Besides the human subjective
judgment, the Z-Number has advantages of including the confidence of the evaluation, thus
providing a more reliable final outcome. A case study example of elicitation on a well-known
medical diagnostic network is presented to illustrate how the method works in practice.
Keywords: Bayesian Network, EBBN, Expert elicitation, Z-Number, Linguistic terms.

I. Introduction

Bayesian Network (BN) is a causal network
or graph of dependency based on uncertainty
that can represent discrete and continuous vari-
ables. It is able to capture the probabilistic re-
lationship between variables, combine different
sources of data and does not require a specific
distribution type to the data like other sta-
tistical techniques (Neapolitan, 2004). A BN
gives a graphical representation of events which
contains the parent’s node (variables that are
causes of a particular node) and child’s node
(the consequence of that node) and causal re-
lationship between the two nodes is quanti-
fied by the conditional probabilities which are
represented in a conditional probability table
(CPT). Each probability in a CPT represents

the probability of a certain state in a child node
given a set of parent states. The causal re-
lationship and values of the CPT are usually
estimated from available data, or can be deter-
mined on the basis of expert knowledge.

The procedure to obtain information in BN
from expert is called expert elicitation (Fen-
ton and Neil, 2011). However, the involve-
ment of expert elicitation is a big challenge
such that the elicitation task requires a tire-
some or repetitive work to perform transmis-
sion of knowledge even for a simple BN (Jensen,
1996). One of the ways is reducing the burden
of the experts by decreasing the number of con-
ditional probabilities to be elicited (Mkrtchyan
et al., 2015). In the discrete case of BN, among
methods available to generate a full CPT from
a few information such as likelihood method
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(Kemp-Benedict, 2008), weighted-sum algo-
rithm (Das, 2004) and Elicitation of Bayesian
Belief Network (EBBN) (Wisse et al., 2008).
The likelihood method requires experts to pro-
vide weighting factor for each state in child and
parents nodes, whereas the weighted sum algo-
rithm is based on the concept of compatible
parental configuration. Both of these methods
can be hard for an expert to determine the re-
quired information. The EBBN has advantages
as it requires only small number of probability
values to be elicited in order to generate full
CPT.

In the traditional EBBN procedure, expert
has to give a precise numerical probability val-
ues to infer their belief. Ramli, Ghani, Hashim,
and Zulkarnain (2015) used a well-known nu-
merical probability scale in EBBN procedure
as an aided tool to simplify the task of the
probability assessment. Probability scale is a
horizontal or vertical line divided into several
intervals showing the linguistic terms (such as
improbable, uncertain, expected, probable) as-
signed to corresponding probability values to
help expert put his belief (Renooij and Witte-
man, 1999). They found that the use of a prob-
ability scale tends to have a scale bias, i.e. ex-
pert tend to use the point-based value assigned
without considering the spread of other values
over the scale. Moreover, non-statistician ex-
pert struggled to provide the subjective proba-
bilities especially when involving dependability
of many variables.

Due to inefficient utilisation of precise prob-
ability value for an expert elicitation process in
a BN, fuzzy sets has been employed to provide
subjective judgments to infer the belief (Kabir
et al., 2015, Yang et al., 2008, Yazdi and Kabir,
2017, Zoullouti et al., 2015). A fuzzy proba-
bility is a representation of imprecise linguis-
tic probabilities with a fuzzy subset. However,
fuzzy sets face the limitation of not taking into
account the degree of reliability or confidence
of the judgment. Zadeh (2011) introduced Z-
number, a new concept of fuzzy numbers that
able to manage the uncertainty of information
by adding a reliability level to fuzzy linguistic

values. A Z-number is a 2-tuple fuzzy num-
bers, where the first component is the restric-
tion of the information and the second part is
the reliability, confidence or strength of truth
of the first component. There are few studies
applying Z-numbers in different domains such
as decision-making problems (Aboutorab et al.,
2018, Azadeh et al., 2013, Kang et al., 2012,
Mohamad et al., 2014, Yaakob and Gegov,
2015), earned value management (Salari et al.,
2014) and psychological research (Aliev and
Memmedova, 2015). Research shows that Z-
number has the ability to describe the human
judgment since it includes the reliability of in-
formation.

In this study, we propose a new elicitation
method by integrating the Z-number concept
in EBBN elicitation procedure, and a proce-
dure framework is proposed. This procedure
consists of four major phases, i) identification
of uncertainty problems in a BN model, ii) ex-
pert assessment based on the Z-numbers con-
cept, iii) conversion of a Z-number to a crisp
value, and iv) the derivation of CPT through
EBBN method. This procedure will effectively
overcome the address constraint in traditional
EBBN elicitation method.

II. The EBBN Method

The EBBN method is developed by Wisse et al.
(2008) and has been patented by United States
Patent in 2013 (Wisse, 2013). Since then,
the method has been recognized as one of the
methods that able to reduce the expert assess-
ment burden in eliciting a BN model (Hansson
and Sjökvist, 2013, Knochenhauer et al., 2013,
Werner et al., 2017, Zhang and Thai, 2016). It
requires only a limited amount of elicited prob-
abilities from expert and uses piece-wise linear
interpolation function to derive the full CPT.
Some definitions of the terms in the EBBN are
defined as follows:

Xc Discrete random variable of a child
node, with xc,min and xc,max are
the minimum and maximum value
of Xc, respectively
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pa(Xc) The parent nodes of the Xc

P (Xc|axc
) The probabilities of child node in the

states of parent nodes, pa(Xc)

axc
The assignment of the states of the
parent nodes

aneg The assignment of the best combi-
nation of the states of parent nodes
for low state ordered of Xc

apos The assignment of the best combi-
nation of the states of parent nodes
for high state ordered of Xc

aneg,k+ The assignment of pa(Xc) in which
Xk in its most favorable state and
all Xm ∈ pa(Xc) ∼ Xk are in their
least favorable state for low values of
Xc

S+(Xk, Xc) The parent nodes, Xk ∈ pa(Xc) has
a positive influence on Xc, i.e. ob-
serving a higher value for Xk does
not reduce the higher values of Xc,
regardless the values of other vari-
ables pa(Xc) ∼ Xk

S−(Xk, Xc) The parent nodes, Xk ∈ pa(Xc) has

a negative influence on Xc, i.e. ob-

serving a higher value for Xk does

reduce the higher values of Xc, re-

gardless the values of other variables

pa(Xc) ∼ Xk

In a nutshell, the EBBN method starts with
minimum assessment from the expert before
the full CPT for a network can be deter-
mined. It starts with ordering of the states of
the child node, Xc and the states of the par-
ent node, Xk and determine that Xk has ei-
ther positive, S+(Xk, Xc) or negative influence,
S−(Xk, Xc) on Xc. Next, the probabilities of
child node in the best states of parent nodes,
P (Xc|axc) and probabilities to determine the
parent’s weight, P (Xc = xc,max|aneg,k+) and
P (Xc = xc,min|aneg,k+) are assessed. The
weight for each parent node Xk ∈ pa(Xc) is
calculated as:

wk = 1
2

δ+k∑
l:Xl∈pa(Xcδ

+
l

+ 1
2

δ−k∑
l:Xl∈pa(Xc)δ−l

(1)

with

δ+k = P (Xc = xc,max|aneg,k+)− P (Xc = xc,max|aneg)

δ−k = P (Xc = xc,min|aneg)− P (Xc = xc,min|aneg,k+)

A CPT can be determined in two steps pro-
cedure. In the first step, P (Xc = xc) is es-
timated as a function of joint influence factor
Ijoint , fxc(Ijoint) for each sate xc of Xc. Ijoint
is a function to express the general tendency of
all parents’ influences together, pa(Xc) on Xc.
It can be derived as:

Ijoint(a) =

∑
k:Xk∈pa(Xc)

Iind(xk).(rank(xk)−1)∑
k:Xk∈pa(Xc)

(rank(xk,max)−1)
(2)

The function can takes on values in the
range of 0 to 1, i.e. Ijoint(a) ∈ (0, 1), indeed
Ijoint(aneg) = 0 and Ijoint(apos) = 1. In addi-
tion, individual influence factor, Iind that con-
tains information about the influence of each
parents individually are also calculated, as fol-
lows:

Iind(xk) =

{
rank(xk)−1)

(rank(xk,max)−1) if S+(Xk, Xc)

rank(xk,max)−rank(xk)
rank(xk,max)−1 if S−(Xk, Xc)

(3)

where xk,max is the highest value of
Xk. The function can takes on values
in the range of 0 to 1, i.e. Iind(xk) ∈
(0, 1). To account for both the general ten-
dency and the individual influences, the in-
tervals of each parent nodes are determined
as [min(Iind(xk), Ijoint(a)),max(Iind(xk), Ijoint(a))] .
The piece-wise linear function fxc : [0, 1] →
[0, 1] is then constructed through this intervals
to obtain the full CPT as the weighted average
over the distributions Pk(Xc|a). The use of lin-
ear interpolations ensures that ∑xc fxc(i) = 1
coherent with total of probabilities of differ-
ent values of Xc , ∑xc P (Xc) = 1. Details of
EBBN procedure are discussed in the following.

III. The Z-numbers concept

Zadeh Zadeh (1965) introduced a concept of
fuzzy set to deal with uncertain conditions of
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real life situations. In addition, his his new
novel notion of Z-numbers has a greater ca-
pability to express the impreciseness of real
life problems since it includes the reliability of
information (Zadeh, 2011). This section dis-
cussed some definitions and basic concepts of
fuzzy set, linguistic terms, fuzzy number and
Z-numbers as follows, reviewed from Garćıa-
Cascales and Lamata (2007), Wang (1997),
Zadeh (1965, 2011):

Definition 1. A fuzzy set of A in universe of
discourse X is illustrated as:

A = 〈x, µA(x)〉 |x ∈ X

where µA(x) is the membership function of A
which maps each element x in X to a real in-
terval [0,1].

Definition 2. A fuzzy number A is a fuzzy
subset of X can be described using triangular
fuzzy number, Ã = (a1, a2, a3), where the
membership function µ

Ã
(x) as:

µ
Ã

(x) =


0 x < a1
x−a1
a2−a1 a1 < x ≤ a2
a3−x
a3−a2 a2 < x ≤ a3
0 x > a3

Definition 3. A linguistic variable is variable
with value is expressed in linguistic terms such
as low, medium, high, etc. Generally, linguistic
term is represented by fuzzy numbers.

Definition 4. A Z-number denoted by Z =
(Ã, R̃) is an ordered pair of fuzzy numbers that
contains two main components. The first com-
ponent is the fuzzy restriction on the values of
X can take, Ã; while the second component is
the reliability or the strength of confidence of
the first component, R̃. Generally, both com-
ponent of Ã and R̃ are described in linguistic
terms and presented in a fuzzy number form.

IV. Proposed Procedure

The proposed elicitation in EBBN procedure
using Z-numbers is defined as following four

major steps:

STEP 1: Identify the uncertainty prob-
lems in a BN model

The identification of the uncertainty prob-
lems in a BN model determines whether the
expert elicitation method is relevant approach
to deal with it. For applying EBBN method
to solve the uncertainty, the BN conceptual
model that contained must that satisfy the
following requirements: 1) the CPT of the
child node can be subjectively assessed, 2) the
CPT of the child node is needed to have two or
more parents, and 3) the states of both parent
and child node can be ordered.

STEP 2: Expert assessment of probabil-
ities using Z-numbers

The EBBN method requires the expert to
assess both qualitative information (such as
ordering of the states of parent and child node,
type of influence and dominance of parent
node) and quantitative information (typical
probabilities). Without loss of generality, the
Z-numbers comes in when it only involves
probability assessment in the beginning part of
the procedure. Instead of providing numerical
data, expert use Z-number concept which is
expressed in linguistic terms to represent their
belief. The following assessment is needed
from the expert for the derivation of the CPT
of child node:

i. Ordering. First, the method requires that the
states of the child node, Xc and the states of
the parent nodes, Xk ∈ pa(Xc) be ordered
from the lowest to the highest value. Note that
Xk can have influence on Xc, either a positive,
S+(Xk, Xc) or a negative, S−(Xk, Xc)

ii. Typical probabilities. The assignment of best
combination of the states of parent nodes for
each state in child nodes, pa(Xc) = axc

is de-
termined, next the probability of P (Xc|axc) is
assessed

iii. Weights. The determination of each parent’s
weight wk is by using Eq. (1). In this case, the
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values of P (Xc = xc,max|aneg,k+) and P (Xc =
xc,min|aneg,k+) are assessed.

iv. Dominance. The EBBN method includes
the expression of dominance of parent node,
whether Xk has either a positive or negative
dominance over Xc

The assessment of probabilities in Step (ii) and (iii)

are replaced with assessment using Z-numbers form,

Z = (Ã, R̃). Ã represents the restriction values of

the likelihood of occurrence in the child node given

the parent node; while R̃ represents the reliability

or the expert confidence of the judgment.

STEP 3: Converting Z-number to crisp
value

In order to be able to generate the full CPT
in EBBN method, the assessment using Z-
number in STEP 2 must be converted into a
crisp (probability) value. This study utilized
transformation method proposed by Kang et
al. (Kang et al., 2012) that make use canon-
ical representation of multiplication operation
on triangular fuzzy number from Chou (Chou,
2003) as follows:

w(Zij) = w(Ã, R̃)

= Ã
⊗

R̃

= (alij , a
m
ij , a

u
ij)

⊗
(rlij , r

m
ij , r

u
ij)

= ((alij + 4× amij + auij)/6)× ((rlij + 4× rmij + ruij)/6)

(4)

STEP 4: Derivation of CPT

The CPT can be determined in two steps
procedure. In the first step, P (Xc = xc) is es-
timated as a function of joint influence factor,
Ijoint , fxc(Ijoint) that represent general pref-
erences of all parents’ nodes. Next, individual
influence factor, Iind that contains information
about the influence of each parents individually
are also calculated. The piece-wise linear func-
tion fxc : [0, 1] → [0, 1] is constructed through
[min(Iind(xk), Ijoint(a)),max(Iind(xk), Ijoint(a))]

to derive the desired CPT as the average

probabilities, denoted with Pk(Xc = xc|axc) as
follows:

P (Xc = xc|pa(Xc) = a)

=
∑

i:Xpi |pa(Xc)

wi

∫ Imax,k
Imin,k

fxc(Ijoint(a))dIjoint(a)

Imax,k − Imin,k
(5)

where

Imax,k = max(Iind(x
j
pi), Ijoint(a))

Imin,k = min(Iind(x
j
pi), Ijoint(a))

V. Illustrative Example

This section presents a case study to demon-
strate the application of the proposed method.
We use the Cardiac output node from a
well-known ALARM (A Logic Alarm Reduc-
tion Mechanism) network available in Netica
(Norsys Software Corp., 2018). The ALARM
network is a complex belief network of medical
diagnostic system for patient monitoring (Bein-
lich et al., 1989). As in Figure ??, the node
Cardiac output is depends on Heart rate (HR)
node and Stroke volume (SV) node. Each of
them represented with three states level [low,
normal, high]. In this example, we will show
how to determine the full CPT for Cardiac out-
put in normal condition when HR is low and
SV is normal, P (Xc = normal|alownormal).

Figure 1: The node Cardiac output from the
network ALARM

A. States ordering

Firstly, the method requires that the states of
both parent and child nodes is ordered form low
to high the values and determine its influences.
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In this study, the states of the child node is
ordered as Xc = [low, normal, high] and the
assignment states of parents axc are alow =
[HR = low, SV = low], anormal = [HR =
normal, SV = normal] and ahigh = [HR =
high, SV = high]. Both parent nodes have
positive influences, S+(Xk, Xc) to the Cardiac
node.

B. Expert assessment

For the P (Xcardiac|axc) assessment, five linguis-
tic terms from Chang and Hwang (Chen and
Hwang, 1992)) is being adopted to represent
both of the restriction, Ã and reliability part,
R̃. Each linguistic term is represented by the
triangular fuzzy numbers in Table 1 and graph-
ically as in Figure 2. Table 2 shows the as-
sessment made by the expert using Z-number
concept.

Table 1: Linguistic terms for restrictions and
reliability part

Linguistic terms
Likelihood of the

child states, Ã
Reliability, R̃

Very Low (VL) (0, 0.1, 0.2) (0, 0.1, 0.2)
Low (L) (0.1, 0.25, 0.4) (0.1, 0.25, 0.4)
Medium (M) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7)
High (H) (0.6, 0.75, 0.9) (0.6, 0.75, 0.9)
Very High (VH) (0.8, 0.9, 1.0) (0.8, 0.9, 1.0)

Figure 2: Linguistic terms representation

C. Converting Z-Number to crisp
value

The Z-number forms are transformed
into crisp (probability) values using Eq.

Table 2: Z-number assessment for node “Car-
diac” and converted probability values

Xcardiac P (Xcardiac|axc)
Z-Number
assessment

Normalized
probability

value

low P (Xc = low|alow) (VH,VH) 0.82
P (Xc = normal|alow) (VL,VH) 0.09
P (Xc = high|alow) (VL,VH) 0.09

normal P (Xc = low|anormal) (VL,VH) 0.11
P (Xc = normal|anormal) (VH,H) 0.79
P (Xc = high|anormal) (VL,VH) 0.11

high P (Xc = low|ahigh) (VL,VH) 0.09
P (Xc = normal|ahigh) (VL,VH) 0.09
P (Xc = high|ahigh) (VH,VH) 0.82

(4). For example, the assessment of
P (Xc = normal|anormal = (V H,H) =
((0.8, 0.9, 1.0), (0.6, 0.75, 0.9)) is converted as
follows:

P (Xc = normal|anormal)
= ((0.8 + 4× 0.9 + 1.0)/6)× ((0.6 + 4× 0.75 + 0.9)/6)

= 0.675

While the Z-number assessment for P (Xc =
low|anormal) = (V L, V H) and P (Xc =
high|anormal) = (V L, V H) are converted to
0.09. We have employed a simple normalized
procedure to ensure that the total probability
of the transformed values in any row of the
CPT is 1.0. The normalized value is obtained
as follows:

P (Xc = low|anormal) =
P (Xc = low|anormal)∑

P (anormal)

= 0.675/((0.675 + 0.09 + 0.09))

= 0.79

Similarly, P (Xc = normal|anormal) and
P (Xc = high|anormal) are obtained as 0.11.
Thus,

∑
P (anormal) = 1.0. The normalized

converted values of other assessments can be
found in the last column in Table 2.

D. Deriving the CPT

Once the crisp probability values are obtained,
following related functions can be calculated:

i. wk using Eq. (1), we obtain the following
weights of HR = 0.7708 and SV = 0.2292.
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ii. Ijoint(a) using Eq. (2), we have the follow-
ing Ijointalow = 0 , Ijointanormal = 0.25 and
Ijointahigh = 1

iii. Iind(xk) for each state of parent nodes are
obtained using Eq. (3): IindHR and
IindSV=[0 0.5 1]

The illustration of piece-wise linear function
fnormal : [0, 1] through the HR and SV inter-
vals in obtaining P (Xc = normal|alownormal)
are shown in Figure 3. For the respective
CPT of P (Xc = normal|alownormal), the in-
tervals for parent nodes are HR = [0, 0.125]
and SV = [0.125, 0.25, 0.5]. Using Eq. (5), the
conditional probability is obtained as:

P (Xc = normal|alownormal) =
∑

k:HR,SV wk.P (Xc = normal|alownormal)

= (0.7708× 0.265) + (0.2292× 0.654)

= 0.354.

Table 4 in Appendix shows the full CPT
values for the node Cardiac output using the
proposed method and obtained from original
database in the Netical tool. When we look up
the probabilities in the original CPT, we find
that the generated probabilities from the pro-
posed method are ‘not far off’. Next we will
investigate how well our proposed method ap-
proximates the probabilities.

Figure 3: Linear function of fnormal through
the HR = low and SV = normal intervals

E. Performance of proposed method

To further validate and assess the performance
the proposed method, we conducted two types

of analyses: performance measures and sensi-
tivity analysis. For comparison, full CPT of
the Cardiac output from the ALARM network
is obtained based on two different elicitation
methods: the EBBN using crisp probability
values and EBBN using Z-number (see Table
4 in Appendix).

1. Performance measure

Assuming that we have the knowledge of the
true probability value for a certain CPT, we
can assess the quality of approximation to
that CPT using specific statistical measures.
The most common performance measures are
error-based and distance/dissimilarity metrics.
Hansson and Sjökvist (2013) used mean abso-
lute difference between the original CPT and
the CPT generated by elicitation methods.
Zagorecki and Druzdzel (2013) used Euclidean
Distance and Kullback-Leibler divergence to
measure the dissimilarity between two CPTs.
In this study, we have used the following three
measures to assess the performance of the pro-
posed method:

(a) Mean Absolute Error (MAE): is an average of
the absolute difference between the predicted
and the true value

(b) Mean Absolute Percentage Error (MAPE): is
an average absolute percent error for each pair
of data point

(c) Root Mean Square Error (RMSE): or Root
Mean Square Deviation (RMSD) is a measure
of the variance of the residuals (prediction er-
rors). As the square root of a variance, RMSE
can be interpreted as the standard deviation
of the unexplained variance, and indicates how
close data points are to the predicted values

(d) Normalized Root Mean Squared Error
(NRMSE): computes the normalized root
mean squared error where lower values
indicate less residual variance

(e) Euclidean distance: or Euclidean metric exam-
ines the root of square differences between two
points

(f) Kullback-Leibler (KL) divergence: also called
relative entropy is a measure of differences be-
tween two probability distribution. It origins
from information theory that can helps us to
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measure just how much information we lose
when we choose an approximation

(g) Jensen-Shannon (JS) divergence: a measure to
assess the similarity between two conditional
probability distributions based on Kullback-
Leibler divergence and Shannon’s entropy. We
use the square root of JSD that can be used as
a pair-wise distance metric and satisfies prop-
erties of a distance measure.

For the above three measures, the smaller the
measure, the better performance of the elicita-
tion method. Results of the comparison of the
performance of the two elicitation methods are
presented in Table 3.

Table 3: Performance of the elicitation meth-
ods on the measures

Measure Crisp EBBN
Z-number

EBBN

MAE 0.1896 0.2293
MAPE 4.9983 7.1719
RMSE 0.2893 0.2886
NRMSE 0.2982 0.2975
Euclidean 1.5032 1.4996
KL 0.4297 0.4276
JS 0.3213 0.3393

Note: Underlined values indicate the best score for the two meth-
ods.

The underlined number in Table 3 indicates
that the corresponding elicitation method has
the best performance for that measure. Crisp
EBBN have a better performance based on
MAE, MAPE and JS divergence measures,
while Z-number EBBN is better according to
RMSE, NRMSE, Euclidean and KL divergence
measure. For four of the measures, the Z-
number EBBN are distinctly better however
the result of crisp EBBN are relatively close
by and consistent.

2. Sensitivity analysis

Sensitivity analysis refers to procedure in inves-
tigating the effects of inaccuracies in the BN
parameters on the model’s output. It deter-
mines how posterior probability change when
prior probability of parent nodes take different
value (Ren et al., 2008). In this case study,

we choose one situation where “High” Car-
diac output, ahigh has been observed and we
want to calculate the posterior probability of
P (HRhigh|ahigh) and P (SVhigh|ahigh). The as-
sumption that the prior probability using crisp
EBBN is subject to uncertainty of ±0.5 and
using Z-number EBBN is subject to five differ-
ent linguistic assessment has been made (see
Table 5 in Appendix). As can be seen in
the last column in Table 5, the change be-
tween prior and posterior probabilities of par-
ent nodes HRhigh and SVhigh for both elicita-
tion methods clearly indicate that the poste-
rior probability steadily increases with respect
to prior probability. This trend shows that
the proposed assigned probabilities are ratio-
nal and stable to input variability (Ren et al.,
2008).

Derived from above performance measure
and sensitivity analysis, we conclude that the
Z-number EBBN has a comparable perfor-
mance to traditional crisp EBBN elicitation
method, thus can be an acceptable elicitation
method.

VI. Conclusion

A new expert elicitation method by integrat-
ing the EBBN and Z-number concept is pre-
sented in this paper. The Z-number uses lin-
guistic terms to represent the expert’s evalu-
ation of the information and also the expert
confidence in providing the evaluation. The
proposed procedure consists of four important
steps. In the first step, the uncertainty prob-
lem in a particular BN model that need the ex-
pert elicitation is identified. The model struc-
ture also must have fulfilled the EBBN require-
ments. Then, expert making assessment of re-
quired CPT value using the Z-number concept.
Next, in order to generate precise probability
value in CPT, the Z-number assessment is con-
verted to a crisp value. Finally in the third
stage, the full CPT is derived as the weighted
average over the conditional probability distri-
butions. A case study example of well-known
belief network, an ALARM network shows that
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the procedure works in practice. The perfor-
mance of the method is comparable with the
traditional EBBN method. The elicitation ap-
proach in this study can fill the methodologi-
cal gaps in expert elicitation approach of a BN
model. By integrating Z-numbers, we believe it
have added two features that benefits the classi-
cal EBBN method. Firstly, it is possible to ad-
dress human uncertainty in judgment by means
of linguistic variable. Secondly, the component
of reliability of Z-numbers able to include ex-
pert’s confidence of their estimates. In the fu-
ture, we would like to test the method on more
examples and improve the performance of the
method.
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Appendix

Table 4: The CPT for the node Cardiac output from the network ALARM database, generated
from the traditional EBBN and proposed method

Heart Rate Stroke Volume
Cardiac Output

Original database EBBN Z-number EBBN

Low Normal High Low Normal High Low Normal High

Low Low 0.98 0.01 0.01 0.95 0.03 0.02 0.82 0.09 0.09
Low Normal 0.95 0.04 0.01 0.63 0.32 0.04 0.53 0.35 0.12
Low High 0.30 0.69 0.01 0.24 0.56 0.20 0.24 0.50 0.26
Normal Low 0.95 0.04 0.01 0.22 0.66 0.12 0.28 0.56 0.17
Normal Normal 0.04 0.95 0.01 0.06 0.90 0.04 0.11 0.79 0.11
Normal High 0.01 0.30 0.69 0.04 0.49 0.47 0.10 0.44 0.46
High Low 0.8 0.19 0.01 0.07 0.37 0.56 0.14 0.38 0.48
High Normal 0.01 0.04 0.95 0.03 0.29 0.68 0.10 0.32 0.58
High High 0.01 0.01 0.98 0.02 0.03 0.95 0.09 0.09 0.81

Note: Bold numbers indicate assigned probabilities replaced the generated probabilities.

Table 5: Sensitivity analysis result between prior and posterior probabilities

Variable state
Crisp EBBN Z-number EBBN

Prior
probabilities

Posterior
probabilities

Change of
prior and
posterior

probabilities
(%)

Z-number
assessment

Converted prior
probabilities

Posterior
probabilities

Change of
prior and
posterior

probabilities
(%)

HRhigh 0.20 0.5529 1.7644 (L,M) 0.13 0.4331 2.4645
0.25 0.6162 1.4649 (L,VH) 0.23 0.5926 1.6338
0.30 0.6672 1.2239 (M,H) 0.38 0.7308 0.9487
0.35 0.7090 1.0258 (M,VH) 0.45 0.7738 0.7196
0.40 0.7441 0.8602 (H,H) 0.56 0.8418 0.4965

SVhigh 0.20 0.3751 0.8754 (L,M) 0.13 0.2641 1.1129
0.25 0.4444 0.7778 (L,VH) 0.23 0.4176 0.8559
0.30 0.5069 0.6898 (M,H) 0.38 0.5950 0.5867
0.35 0.5635 0.6101 (M,VH) 0.45 0.6621 0.4714
0.40 0.6150 0.5376 (H,H) 0.56 0.7530 0.3386
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