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The dual response surface optimization approach is commonly used in an industrial process
to simultaneously optimize the process sample mean and the process sample standard
deviation functions. The shortcoming of this approach is that the sample mean and the
sample variance are used to fit the process mean and process variance functions based on
the OLS method. However, these estimators are very sensitive to outliers or departures from
the normality assumption. The OLS estimates do not give good results when both outliers
and heteroscedastic errors exist concurrently. As a consequence, the optimum operating
conditions may be located far from the true optimum values. In order to make significant
improvements in robust design studies, robust location (median) and robust scales estimates
(Median Absolute Deviation (MAD) and Interquartile Range (IQR)) of the response variables
are employed for dual response surface optimization. Two-stage robust estimator based
on MM-estimator (TSR-MM based) based on robust location and robust scales estimates
is proposed to simultaneously remedy the problem of heteroscedastic errors and outliers.
The results of the study indicate that the TSR-MM based on robust location and scales es-
timates provide a significant reduction in the bias and variance of the estimated mean response.
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I. Introduction

During the last few decades, much of response
surface methodology (RSM) was focused on
finding the operating conditions that resulted
in an optimum response of the mean with
the homogeneity assumptions on the variances.
With the challenge of economic, industrial
statisticians have become aware that they can
no longer focus only on the optimal process
mean of the response of interest. Instead, the
process variance of the response also needs to
be considered. As noted by (Vining and Myers,
1990), the common problem in an industrial
process is to minimize the process variability

dual response surface model, outliers, optimization, robust location, robust

that is inherently part of some process, which
can achieve the target value for characteristics
of interest. The dual response surface optimiza-
tion approach, introduced by (Vining and My-
ers, 1990), is a useful technique to monitor an
industrial process by using both the mean and
the standard deviation of the measurements as
the responses. In practice, the two separate
models give a more understanding analyst of
the optimization process and thus allow them
to see what levels of the control variables can
lead satisfactory values of the response as well
as the variance.

Like other optimization work in RSM, the
method of least squares is widely used to solve
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the process target problem. With the as-
sumption of OLS to retain the error variance
to be homogeneous, it is quite difficult in a
certain situations and thus resulting in het-
eroscedasticity. In such a situation, the iter-
ative weighted least squares (IWLS) estima-
tion procedure is often used to estimate the re-
sponses when heteroscedasticity occurs in the
data (Montgomery et al., 2001). The IWLS is
an alternative method to finding a transforma-
tion that stabilizes the response, Y. However,
the IWLS estimators suffers a huge set back
in the presence of a few a typical observations
that we often call outliers (Midi et al., 2009).
The model based on robust techniques for
improving the quality of the process is suc-
cessfully applied to different industrial prob-
lems. Nonetheless, in the presence of both
outliers and heteroscedasticity in response sur-
face model, not much work has been reported
in the literatures for estimating the parame-
ters. (Goethals and Cho, 2011) proposed the
Reweighted Least Squares (hereafter we denote
this procedure as RLS) to handle the prob-
lems of heterocedasticity in response surface
model. Their work did not take into consid-
eration when outliers are present in the data.
This problem has motivated us to develop a
new and more efficient estimator that can rec-
tify these two problems simultaneously. In this
paper, we propose an alternative method to
handle heteroscedastic problem in the existence
of outlier. The proposed method incorporates
the highly efficient and high breakdown point
estimator, specifically the MM-estimator in the
formulation of robust design in response surface
model. Real data sets and Monte Carlo simula-
tions support our view that the newly proposed
robust weighted least squares method outper-
forms the existing estimation techniques in the
presence of heteroscedasticity and outliers.

II. Methodology

A. Estimation of Heteroscedastic
Regression Model

Consider a heteroscedastic regression model:

yi =z B+ e
1=1,2,K,n

E(eizxi) = 0; (1)

where the y; is the response variables, x; are
known n x 1 design vectors of independent
variables, [ is an unknown vector of inter-
est, and ¢; is the component of an n x 1 ran-
dom vector. Assuming Y = (y1,v2, K,yn)?,
r = (1,22, K,2,)7, € = (e1,€2, K,¢,)T, and
Q) = diag(01?, K, 0,2%), then equation (1) can
be written as

Y =XB+c¢
E(eX) =0
E(feX)=0Q (2)

Here, without loss of generality, we assume that
X is a column full rank matrix, i.e. rank(X) =
k. The OLS estimators of regression coeffi-
cients introduced is used, and the parameter
3 is defined as 3 = (XTX)"1XTy is the best
linear unbiased estimator with

var(f) = (XTX)1XTax(XTX)™  (3)

where E(é¢T) = Q, a positive definite ma-
trix. If the errors are homoscedastics, that is
Q) = o%I, Equation (2) simplifies to var(B) =
52(XTX)~L If the errors are heteroscedastic,
that is = 02V, the Equation (2) becomes

var(f) = A(XTX) I XTVX(XTX)™t (4)
When heteroscedasticity in the residuals is
encountered, transformation of variables may
be conducted as remedial procedure (Goethals
and Cho, 2011). The weighted least squares
(WLS) is often used to remedy the problem
of non-constant error variances (Kutner et al.,
2004). The weighted least squares estimator
and maximum likelihood estimates of the re-
gression for a model with k£ parameter can be
expressed as
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Bwrs = (XTWX) XTWy (5)

where
.
var(é) =W = Y ]‘\/} o M (6)
0 0 A Vin
and w; = ﬁ%, where ©; is the fitted values

and var(Bwrs) = o?wrs(XTWX)™! where
n 2.2
O'QWLS = MSEWLS — 7Zi21_12261

B. The Reweighted Least Squares

In the situation where heteroscedasticity errors
exist, the OLS is not an efficient estimator.
(Kutner et al., 2004) proposed weighted least
squares to estimate the parameters of multiple
linear regression models for solving the error
variance which is not constant. (Goethals and
Cho, 2011) employed this technique and inte-
grated it in the response surface methodology.
They refer this technique as Reweighted Least
Squares (RLS). The RLS-based method is
defined in two stages as follows:

Stage 1.

(i) Fit model in Equation (1) by the ordinary
least squares to obtain Bors.

(ii) Compute the residuals & = y; —

f(zi; Bors) and then regress the absolute

residuals, denoted as s; where s; = |é],
on g; also by using ordinary least squares
method.

Find the fitted values §; from the stage 1
(ii).

The square of the inverse fitted values
would form the initial weight, w;; = S%
Stage 2. Solve for new weighted least squares
estimates

where z is the model matrix, diagonal current
weight matrix, and ¢ is a number of iteration.
Stage 1 and Stage 2 are repeated until the es-
timated coefficients converge.

(Goethals and Cho, 2011) employed the RLS
methods to estimate the parameters of the
second-order polynomial models for the process
mean (7) and process standard deviation (s) of
the response y. The fitted response functions
for the process mean and process standard de-
viation are as follows:

i(x) = X B, and 6°(z) = X 3,2
where
By = (XTWX) 1 XTwy

and
B = (XTWX) 1 XTWs?

y= [glag27K7 gn]T and 32 = [521a 5227Ka SQn]T

C. Two-Stage Robust Weighted
Least Squares Estimator

(Kutner et al., 2004) proposed two-stage pro-
cedure to rectify the problem of non-constant
variance or heteroscedasticity. (Goethals
and Cho, 2011) referred to this procedure
as the RLS procedure. The main limitation
of this estimator is that it depends on the
classical estimation technique to estimate the
parameters of a model. It is now evident that
the OLS method is easily affected by outliers
(Midi et al., 2009,). Although the RLS based
method can rectify the heteroscedastic error,
but it is not robust when outliers occur in the
data. In this situation, the RLS based method
cannot handle both problems at the same time.
We need to improve this method that can
remedy the problem of heteroscedastic errors
and dampen the effects of outliers. In this
respect, we propose to incorporate robust MM
estimator in the formulation of the Two-Stage
Robust (TSR-MM based) procedure. The
proposed algorithm for the TSR-MM based is
similar to the RLS except that all the classical
estimation techniques used to estimate the
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parameters in each stage are replaced by the
robust estimators. We also modify at stage 2
of the RLS by adapting the MM procedure
to the transformed model. The TSR-MM
algorithm developed consists of the following
two stages.

Stage 1.

(i) Fit model in Equation (1) by using MM
estimator (Yohai, 1987) to obtain Sysas.

Regress the absolute residuals, denoted as
s; where s; = |¢;|, (obtained from Stage 1
(i)) on g; also by using the MM-estimator.

(iii)

Find the fitted values §; from the stage 1
(ii).

The square of the inverse fitted values

would form the weight, w; = 8%

(iv)

Stage 2.

Following (Riazoshams et al., 2010), the
two-stage robust (TSR-MM based) estimator
is obtained by adapting the MM estimator to
the model (1) after it has been transformed.

yit =i X wi, fi* (x4, 8) = filxi, B) X w;

and
EZ'* = €; X Wj;

The ﬁTgR_ mm of the MM is obtained by

min ip(yz* - f"(%’%ﬁ))

3 o
Brsr-MM ;1

Similar to the approach by (Goethals and Cho,
2011), TSR-MM based approach is utilized to
estimate the parameters of the function for the
process mean and process standard deviation.

D. Robust Design Optimization
Procedure in Dual Response
Model Based on Two-Stage

Robust Weighted Least Squares

Let fi(x) and 6(x) represent the fitted response
surface function for the sample mean and sam-
ple standard deviation defined in Section B.

(Step 2). We formulate the new fitted response
function for the process mean and process vari-
ance based on TSR-MM estimator already de-
veloped in Section C..

i(x) = boersr—_rany+a brsr—arv+a Brsp—ma

~9 ’ /
6%(x) = co(rsr—mmn)+T crsrR—MM+T CTSR-MMT

where borsp—nin), brsrR-mM, Brsr-mw,
co(rSR-MM)s cTsR—MM and CTsg— i are es-
timates of the coefficients based on TSR-MM
estimator. The usual method in replicated re-
sponses problem is to firstly compute the sam-
ple mean and sample standard deviation of Y
and construct the process mean and process
standard deviation functions. Once the fitted
response function for the process mean and pro-
cess variance have been established, the opti-
mum operating conditions of control factors are
obtained by minimizing the following

minimize MSE = ¢%(x) 4 (ju(z) — to)?

where tg is the customer-identified target value
for the quality characteristics of interest.

III. Results and Discussion

A. Monte Carlo Simulation

In this section, we report a Monte Carlo simu-
lation study that is designed to assess the per-
formance of the TSR-MM based estimator. In
this simulation study, firstly, the responses Y
were generated randomly from a normal distri-
bution. Following (Park and Cho, 2003), five
responses (Yj1, Yo, ...,Yis) are generated from
each distribution with u(x;) and o(x;) at each
control factor settings x; = (i1, T2, x;3) where
i =1,2,...,27. The total number of iterations
is 500, each having 27 design points, and 135
responses. ji(z) and o?(x) are given as follows:

() = 50 4+ 5(z1% + 222 + 23?)

o?(z) = 100 + 5((z1 — 0.5)% + 292 + x3%)

Secondly, to see how the lack of a normal distri-
bution affects the estimators, the responses Y
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are also generated from other distribution such
as double exponential distribution, which has
heavier tails distribution that is prone to pro-
duce a few outliers. The probability density
functions is given by

— i —lz—nl/B
o) = 5ot

In order to induce heteroscedasticity of the
error variances, o2(x) is generated according
to this relation, o%(z) x exp(0.821% + 0.829% +
0.8z3%). To further investigate the effect of
outliers, the data were contaminated by gen-
erating three outliers from N (250,10%), that is
2.2% contamination. The good data were then
replaced by 3 outliers such that the first obser-
vation of the second response variable, the 27th
of observation of the third response variables,
and the 14th observation of the fourth response
variable are replaced with the outliers already
generated. Since the OLS model is known to be
not reliable in the presence of outliers, it is not
included in the comparison. For each distribu-
tion specified above, two statistical measures
such as bias and mean squared error (MSE)
using RLS and TSR-MM based methods were
considered as decision criteria to judge the per-
formance of the estimators. Using the Breusch-
Pagan test for non-constancy of error variance
with the level of significance a = 0.05, test
statistics for testing Hg : 71 = 2 = 3 = 0 ver-
sus Hi : not all v; equals 0 is calculated. Since
test statistics x4p = 7.987 > X(2)_9573 = 7.81,
Hy is rejected, which suggests that the error
variance of this study is not constant.

Table 1 (see Appendix) illustrates the esti-
mated bias and MSE of the optimal mean re-
sponse [i(x) for response surface model with
heteroscedastic errors based on RLS and TSR-
MM based methods. Assuming that the tar-
get value for this experiment is to = 50.0. It
can be observed that in the presence of het-
eroscedascity and without contaminated data,
as expected, the RLS based estimates is slightly
better than the TSR-MM based. However, for
non-normal data having heteroscedastic errors,
the TSR-MM based method is more efficient

that the RLS based method, evidence by hav-
ing smaller bias and MSE.

B. Numerical Results

In this section, the performance of the newly
proposed robust TSR-MM based estimator is
assessed through two numerical examples.

1. Printing Process Data

This experiment introduced by (Box and R.,
1987), was conducted to determine the ef-
fect of the three control variables: x;(speed),
xa(pressure), and x3(distance) on the charac-
teristic of a printing process y, that is on the
machine’s index to apply colored inks to pack-
age labels . The experiment is a 3% factorial
design with three replicates at each of the 27
design points. Table 2 (see Appendix) displays
the data for this experiment, along with the
calculations for the mean and standard devia-
tion at each design point. In order to see the
effect of outliers in the heteroscedasticity data,
we deliberately changed three response points,
that is the 8", 15", and 27" observation cor-
responding to y1(259 to 9259), y2(568 to 8656),
and y3(1161 to 11161). The graphical results
for the assumptions of normality and constant
variance for original data are displayed in Fig-
ure 1. It can be seen from this figure that there
is a moderate heteroscedasticity problems. Fol-
lowing (Goethals and Cho, 2011), based on
level of significance, & = 0.05 and assuming
that log, 0 = 70 + 1Xi1 + 12X + 13Xis,
the Breusch-Pagan test for non-constancy of
error variance is conducted. The hypothesis
test is stated as Hy : 71 = 72 = 3 = 0 ver-
sus Hy : not all v; # 0 and since the value of
Breusch-Pagan test statistics for a full second-
order model is x%p = 37.219 > X(2).95,3 = 7.81,
Hy is rejected. Hence, the error variances of
this experiment are not constant. The opti-
mum response based on least-squares (OLS),
Reweighted Least Squares (RLS based), and
Two-Stage Robust (TSR-MM based) estima-
tions were then applied to the data.

The full second-order response surface
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functions for the process mean and process
standard deviation based on the OLS, RLS
and TSR-MM based respectively, are given as
follows.

(1) OLS

Gors(z) = 32812 4+ 177.0x1 + 109.43z
+131.28z5 + 31.63x12 — 22.7629°
— 28.87x32 + 66.03x1 22 + 75.47x 123
+ 43.58x9x3

dors(z) = 35.29 4+ 11.53x1 + 15.32z9
+29.04x3 + 3.90x12 — 1.62x52
— 16.9323% + 7.72x 29 + 5112123
+ 14.08x9x3

(2) RLS

firns(z) = 314.21 4+ 174.32x1 + 136.49x 5
+127.1725 + 28.4621% — 8.563x52
— 13.9523% + 37.492 29 + 47.762 3
+ 67.122913

G rLs(z) = 44.708 + 22.654x 1 + 25.787x9
+ 33.42923 — 6.773x1% — 19.797 25>
+ 22.485x5% — 19.45821 12
+ 22.805x1x3 + 25.777x013

(3) TSR-MM based

firsr—nia(z) = 285.43 + 178.8221 + 135.982
+ 119.1423 + 53.132,2 + 19.3025>
—10.9123% + 58.2021 29
+ 51.42x12x3 4+ 51.53x913

6rsr_n(x) = 39.93 + 17.88x; + 25.11x
+ 21.54x3 + 3.04x12 + 2.72x52
— 2.04x3% — 4.86x 22
+ 14.04x123 + 24.01x223

Table 3 (see Appendix) presents the stan-
dard errors of each estimate for the process

mean and process standard deviation using the
OLS, RLS, and TSR-MM based. Without the
presence of outliers in the data, the standard
errors of each of the three estimates are small
and fairly closed to each other. Nonetheless,
the TSR-MM based estimator is slightly bet-
ter than the RLS and the OLS as evidenced
by its smallest standard errors for both mean
and standard deviation response model. Table
4 (see Appendix) exhibits the estimated opti-
mum settings, mean, variance, and MSE of the
estimated mean response. The mean squared
error is obtained by the MSE relation where,
MSE = 6%(z) + (i(z) — to)? with to = 500.
It can be seen from Table 4 that the estimated
mean response based on RLS achieves the tar-
get i.e. 500 and has the smallest value of MSE.

It can be observed from Figure 2, in the
presence of outliers, the plots revealed a seri-
ous problem of non-constant variance and non-
normality. The results of Table 5 and Table
6 (see Appendix) signify that in the presence
of outliers, things change dramatically. The
OLS and RLS based are immediately affected
by outliers. It can be seen that the standard
errors of the OLS and RLS estimates increased
markedly, and their objective target have devi-
ated. Nevertheless, as expected, the TSR-MM
based estimate is only slightly affected by out-
liers revealed by smaller values of the standard
errors, and MSE and achieve the objective tar-
get.

IV. Conclusion

The main aim of this chapter was to de-
velop a reliable alternative approach in dual
response model for correcting the problem of
heteroscedastic errors in the presence of out-
liers. It seems that the performances of the op-
timum mean response of the RLS and the T'SR-
MM based estimators are equally good in a het-
eroscedascity data without outliers. The RLS
based estimator is a good technique for solv-
ing heteroscedascity problem but it is easily af-
fected by outliers. Hence, they are not reliable.
In this chapter, we proposed a TSR-MM based
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method where it can remedy both problems of
heteroscedascity and outliers at the same time.
The numerical example and simulation experi-
ment indicate that the TSR-MM based method
offers a substantial improvement over the other
existing methods for handling the problems of
outliers and heteroscedastic errors in response
surface model.
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Appendix A Figures and Tables

Table 1: Estimated Bias and MSE of the Estimated Optimal Mean Response for Heteroscedascity
Data Using RLS based and TSR-MM based Methods
RLS based | TSR-MM based

Distribution Bias | MSE | Bias MSE
Normal 3.83 | 24.90 | 3.90 26.12
Normal (contaminated) | 9.17 | 133.48 | 3.37 19.55
Double Exponential 4.65 | 40.95 | 4.15 29.54

Table 2: Printing Process Data Set

Run Speed, X; Pressure, Xo Distance, X5 y; 1o Y3 Y S

1 -1 -1 -1 34 10 28 24.00 12.490
2 -1 -1 115 116 130 120.33 8.386

3 1 -1 -1 192 186 263 213.67 42.829
4 -1 0 -1 82 88 88 86.00 3.464

5 0 0 -1 44 188 188  140.00 83.138
6 1 0 -1 322 350 350 340.67  16.166
7 -1 1 -1 141 110 86 112.33 27.574
8 0 1 -1 259 251 259  256.33  4.619

9 1 1 -1 290 280 245 271.67  23.629
10 -1 -1 0 81 81 81 81.00 0.000

11 -1 0 90 122 93 101.67  17.673
12 1 -1 0 319 376 376  357.00  32.909
13 -1 0 0 180 180 154 171.33  15.011
14 0 0 372 372 372 372.00  0.000

15 1 0 0 541 568 396  501.67  92.500
16 -1 1 0 288 192 312  264.00 63.498
17 1 0 432 336 513  427.00  88.606
18 1 1 0 713 725 754  730.67  21.079
19 -1 -1 1 364 99 199  220.67 133.822
20 0 -1 1 232 221 266  239.67  23.459
21 1 -1 1 408 415 443  422.00 18.520
22 -1 0 1 182 233 182  199.00 29.445
23 0 1 507 515 434  485.33  44.636
24 1 0 1 846 535 640 673.67 158.210
25 -1 1 1 236 126 168  176.67  55.510
26 1 1 660 440 403  501.00 138.935
27 1 1 1 878 991 1161 1010.00 142.454
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Table 3: Comparison of Mean and Standard Deviation of the Estimates for Original Dataset

Model s(bo) s(b1) s(b2) s(b3) s(bs) s(bs) s(bg) s(br) s(bg)  s(bg)
Mean-OLS 38.72 1792 1792 17.92 31.04 31.04 31.04 21.95 21.95 21.95
Mean-RLS 23.82 13.56 14.12 1544 21.75 19.78 22.87 18.11 20.08 18.85

Mean-TRS-MM 29.57 10.07 11.81 12.92 25.31 15.24 15.96 10.79 13.74 14.44
Std-OLS 2243 10.38 10.38 10.38 17.98 1798 17.98 12.71 12.71 1271
Std-RLS 18.18  9.29 9.52 9.98 1491 13.48 13.55 11.54 11.57 13.00

Std-TRS-MM 15.94 6.24 5.78 6.39 10.26 11.54 9.64 5.73 7.37 6.73
(a) Scatter Plot (b) Normal Q-Q Plot

é o 00 to 4o o 00 00 o § [=T 00000

e - @ . é Ooom}o
S | T T T T T a | T T

0 200 400 600 800 -2 -1

Fitted line

Theoretical Quartiles

Figure 1: (a) Plot residuals against fitted line, and (b) Plot of normality for Original data set

Table 4: The Estimated Optimum Settings, Mean, Variance, and MSE of the Estimated Mean

Response
Model x* Mean Variance MSE
OLS (1.000,0.060, —0.243) 494.657 1988.550  2017.099
RLS (0.9966,0.9967, —0.7190) 500 8.043¢~ 11 5.161e710
TRS-MM (1.000, 1.000, —1.000) 497.86 492.29 496.85

Table 5: Comparison of Mean and Standard Deviation Models for Modified Dataset

Model s(bo) s(b1) s(b2) s(bs) s(bs) s(bs) s(bg) s(bz) s(bg)  s(bg)
Mean-OLS 539.1 249.5 249.5 249.5 432.2 432.2 4322 305.6 305.6 305.6
Mean-RLS 226.5 149.7 151.1 140.0 139.6 201.8 1109 149.8 114.4 140.9

Mean-TRS-MM 33.21 15.72 18.13 16.94 31.31 24.17 23.79 20.17 18.35 21.13

Std-OLS 012.5 4224 4224 4224 731.6 731.6 7316 517.3 517.3 517.3
Std-RLS 360.7 264.2 265.5 245.7 236.5 331.9 202.1 268.4 236.7 253.7
Std-TRS-MM 1824 6.33 819 7.00 13.06 11.90 11.89 8.05 7.52 9.92
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(a) Residuals vs Fitted (b) Normal Q-Q
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Figure 2: (a) Plot residuals against fitted line, and (b) Plot of normality for Modified data set

Table 6: The Estimated Optimum Settings, Mean, Variance, and MSE of the Estimated Mean
Response for Modified dataset

Model x* Mean Variance MSE
OLS (—0.637,0.353,1.000) 342.01 14448.21 39407.22
RLS (0.777,—1.000, 1.000) 444.97 12482.95 15511.21

TRS-MM (1.000,0.1278,—0.3421) 497.62 793.13 798.81
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