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A boxplot is an exploratory data analysis (EDA) tool for a compact visual display of

a distributional summary of a univariate data set. It is designed to capture all typical

observations and displays the location, spread, skewness and the tail of the data. The

precision of some of this functionality is considered to be more reliable for symmetric data

type and thus less appropriate for skewed data such as the extreme data. Many observations

from extreme data were mistakenly marked as outliers by the Tukey’s standard boxplot. A

new boxplot implementation is presented which adopts a fence definition using the extent

of skewness and enhances the plot with additional features such as a quantile region for the

parameters of generalized extreme value (GEV) distribution in fitting an extreme data set.

The advantage of the new superimposed region was illustrated in term of batch comparison

of extreme samples and an EDA tool to determine search region or direction as contained in

the optimisation routines of a maximum likelihood parameter estimation of GEV model. A

simulated and real-life data were used to justify the advantages of the boxplot enhancement.
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I. INTRODUCTION

Boxplot is considered one of the most popular

exploratory data analysis (EDA) visual tool that

receives a considerable amount of interest since

its introduction as a schematic plot by Tukey in

1977 (Tukey, 1977). The philosophy behind box-

plot construction is purposely made to utilise its

simplicity in displaying important features of the

univariate data set. These features constitute

mainly a capture of typical observations, study

symmetry or tail behaviour, identify outliers,

compare parallel batches of data sets and anal-

ysis of some distributional assumptions about

data. It can also be used to supplement more

∗corresponding author: bibabura@gmail.com

complex displays about univariate information.

The five values of significance used in construct-

ing boxplot are; the upper fence, lower fence,

the upper hinge (upper quartile), lower hinge

(lower quartile), and the median (Tukey, 1977).

In a univariate data set up, the Tukey’s standard

boxplot was designed to capture data within the

fence mark-up region given by

[Q1 − 1.5IQR,Q3 + 1.5IQR]

of regular observations in X. Where X is

the data set, Q1, Q3 are first and third quartiles

of X respectively, and IQR is the interquartile

range of X. Many studies are made to adjust the

Tukey’s fence mark-up according to data char-

acteristics, for example, Frigge et al. (1989),
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Kimber (1990), Carling (2000), Schwertman et

al. (2004), Schwertman and de Silva (2007),

Hubert and Vandervieren (2008), Bruffaerts et

al. (2014) and Babura et al. (2017). The work

of Babura et al. (2017) specifically adjusts the

fence to accommodate extreme data characteris-

tics.

The literature on boxplot characters is not

limited to fence adjustment as some boxplot

variants have been developed to incorporate ad-

ditional display requirement to enhance visu-

alization and analysis of some special type of

dataset. For example, the variable width and

notch boxplot by McGill et al. (1978) which

embedded the notch in the boxplot to represent

confidence interval around the median, the cir-

cular boxplot for circular data by Abuzaid et

al. (2012) whereby circular display characters

is reflected in the circular boxplot, K-boxplot for

mixture data by Qarmalah et al. (2016) in which

multimodality character was incorporated in the

k-boxplot. Although the work of Babura et al.

(2017) is for extreme data but limited to fence

adjustment which is a diagnostic character in

extreme event modelling with the ability to de-

termine outlying observations from the dataset.

So, an additional boxplot characters which re-

flect relative information about fitting parame-

ters of the extreme modelling tools is considered

as necessary to be develop. The framework in

this paper is limited to block maximum extreme

events with generalized extreme value distribu-

tion (GEV) as the modelling tool.

The paper extends the work of Babura et

al. (2017) in visualising extreme data so that

the modified boxplot can be part of the classi-

cal EDA tools such as histogram, qq plot and

density plot, that are more popular in extreme

model diagnostic. After introducing some im-

portant concepts and describing the methodol-

ogy involved in the next sections, a simulation

experiment is formulated whichresulting to en-

hancment of the diagnostic properties of box-

plot. The classical features of boxplot were

maintained with the adoption of fence definition

as proposed in Babura et al. (2017) for a proper

capture of the regular extreme observations. The

fitting parameters regions using quantile esti-

mate were proposed and embedded into the new

boxplot. The enhancement enables the proposed

boxplot to have an additional diagnostic feature

for fitting an extreme data sample to GEV dis-

tribution model. A simulated and real-life data

were used to show the advantages of this devel-

opment over those found in the literature.

II. MATERIALS AND METHODS

In this section, important statistical measures

and concept are described along with the imple-

mentation of the methodological framework of

the research work.

A. Sample quantiles

Let {X(1), . . . , X(n)} denote the order statis-

tics of a sample {X1, . . . , Xn} of independent

identically distributed (i.i.d.) random variables

from a distribution F and suppose Qi(p) denote

the ith sample quantile. Then, the quantile of a

distribution F is given by

Q(p) = F−1(p) = inf{x : F (x) ≥ p} (1)

There are a number of equivalent way of

defining quantile estimates, in which two defi-
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nitions from among the ones described by Hyn-

dman and Fan (1996) based on order statistics

are considered. These definitions have a gen-

eral form which is a representation according to

weighted averages of consecutive order statistics

and is given by

Q̂i(p) = (1− γ)X(j) + γX(i+1) (2)

where j−m
n ≤ p < j−n+1

n for some m ∈ R and

0 ≤ γ ≤ 1. The value of γ is a function of

j = bpn+nc and g = pn+m−jwith b.c denoting

the greatest integer function.

B. Block maximum events and the

generalized extreme value (GEV)

distribution

Extreme data are records of events that are

more extreme than any that have already been

observed within a particular uniform block of pe-

riod. The current development in global warm-

ing which signifies a considerable interest in en-

vironmental research and financial crisis a con-

sequence from so much volatility in the finan-

cial sector, are some of the events that give rises

to a universal interest in modeling and forecast-

ing of extreme events. Jenkinson, (1955) intro-

duced the GEV distribution for modelling the

distribution of extremal events in meteorologi-

cal data with unknown limiting form of extreme

value distribution. The GEV distribution was

described to represent the three families of ex-

treme value distributions: Gumbel, Fréchet and

Weibull type distributions. GEV distribution fo-

cus on the statistical behavior of block maximum

events Mn = max{X1, ..., Xn} where X1, ..., Xn,

is a sequence of independent random variables

having a common distribution function F . The

following theorem describes the limiting distri-

bution of Mn.

Theorem 1 (Coles, 2001) If there exists se-

quences of constants {an > 0} and {bn}, as

n → ∞, such that Pr{(Mn − bn)/an ≤ x} →
G(x) where G is a non-degenerate distribution

function, then G is a member of the GEV fam-

ily :

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

(3)

defined on {x : 1 + ξ(x−µσ ) > 0} where σ >

0 and µ, ξ ∈ R,

So,G(x) is said to be Freichet if ξ > 0,

Weibull if ξ < 0 and Gumbel if ξ = 0 with re-

expression of the limiting distribution as

G(x) = exp

{
− exp

[
−x− µ

σ

]}
,−∞ < x <∞

(4)

The quantile function which is the relation-

ship of the GEV model with its three parameters

is given by;

Q(p) =

µ−
σ
ξ

(
1− z−ξp

)
, for ξ 6= 0

µ− σ log zp, for ξ = 0
(5)

where zp = log(1− p).

C. Maximum likelihood estimate method

for the parameters of GEV distribution

The maximum likelihood estimate (MLE)

method for estimate of GEV distribution pa-

rameters is proposed by Prescott and Walden
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(1980) and is regarded as the most popular and

efficient among parameter estimation methods.

The MLE method involves maximising the like-

lihood function of a distribution given by

L(θ) =
n∏
i=1

g (x) (6)

where g is a known density function with pa-

rameter vector θ. In the case of GEV distribu-

tion θ is assumed to be a rational function, such

that the parameter θ = (µ, σ, ξ) maximize G di-

rectly or by maximising the logarithm of likeli-

hood functions logL(θ) or simply `(θ). Now, for

a sample {xi}n1 of independent identically dis-

tributed block maximum observation that fol-

lows a GEV distribution the log-likelihood func-

tion for the GEV parameters when ξ 6= 0 is given

by

`(θ) = `(µ, σ, ξ) = −n log σ −
(

1 +
1

ξ

)∑n

i=1
log

[
1 + ξ

(
xi − u
σ

)]
−

n∑
i=1

[
1 + ξ

(
xi − µ
σ

)]
(7)

such the 0 < 1 + ξ

(
xi − u
σ

)
for i = 1, 2, 3, ...n (8)

Coles (2001) revealed that at parameter com-

bination for which Condition (8) did not hold,

corresponding to a set-up which makes at-least

single observation in the data falls beyond an

end-point of the distribution, the likelihood is 0

and corresponding log-likelihood equals ∞.

However, the case when ξ = 0 requires the

Gumbel limit of the GEV distribution, which

leads to the following log-likelihood function

`(θ) = `(µ, σ) = −n log σ −
∑n

i=1

(
xi − µ
σ

)
−
∑

i=1
exp

{
−
(
xi − µ
σ

)}
(9)

Maximisation of both Equations (7) and (9)

with respect to the parameter vector θ = (µ, σ, ξ)

leads to the MLE of the parameters of GEV dis-

tribution. The two systems in Equations (7) and

(9) have no analytical solution, but for any given

dataset the maximisation is attained using stan-

dard numerical optimisation algorithms. The

MLE described above is implemented for com-

parison in the performance with real data sub-

section of the study using quasi-Newton method

optimisation algorithm proposed by Broyden,

(1970).

D. Median-unbiased and distribution-free

quantiles

The distribution-free quantile is regarded as

the default quantile definition in R package. In

particular, Hyndman and Fan (1996) suggested

their quantile definition number 8 as the best

because of its advantage over other proposed

definitions that possess distribution free charac-

ters. The median-unbiased property is consid-

ered the advantage of definition 8. Hyndman

and Fan (1996) determined the median position

MF (X(k)) ≈
k− 1

3

n+ 1
3

and defined the sample quan-
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tile by setting pk ≈
k− 1

3

n+ 1
3

. Consequently, pk be-

comes median-unbiased of order o(n−1/2) (Reiss,

1989). This quantile is optimal over all other me-

dian unbiased quantile estimators and possess

translation equivariant property among others

(Reiss, 1989).

Another important advantage of this quan-

tile method in the GEV modelling framework

is that the estimate has far less computational

requirement especially when compared to es-

timate in Equation (5). In the distribution-

free quantile estimate, prior knowledge or esti-

mate of the modelling parameters is unnecessary.

Therefore, unless otherwise stated, the median-

unbiased and distribution-free quantile estimate

was choosen for all the formulated simulations in

the research work that requires a quantile esti-

mate of a random sample from the GEV distri-

bution. This choice allows the implementation of

the proposed methods over GEV samples with-

out determining the unknown parameters from

the sample in practice.

E. Three boxplot methods for fence

mark-up

The boxplot construction requires an ordered

sample X = (x(1), x(2)..., x(n)} of size n along

with an estimate of the three sample quartiles

Q1, Q2 and Q3 from X. Usually, the box-

plot hinges are versions of the first and third

quartile, i.e., close to quantiles of sample X at

p = {0.25, 0.75} such that the first and third

quartiles of sample X are respectively given by

Q1 = x(k), and Q3 = x(n−k+1) where k =
1
2

⌊
n+3
2

⌋
with b.c as the greatest integer function.

The second quartile Q2 is referred to be the me-

dian of sample X. However, any boxplot imple-

mentation requires an estimate of a robust cen-

tre spread usually with interquartile range given

by R = Q3 − Q1. A boxplot method is usually

determined according to a fence estimate. In

this paper, three fence estimation methods was

considered the classical boxplot method (Tukey,

1977), the adjusted boxplot method (Hubert and

Vandervieren, 2008), and the modified boxplot

method (Babura et al., 2017). The classical, ad-

justed and modified boxplot methods are con-

structed in a similar way except in the fence def-

inition.

Generally, the lower fence estimate FL and

upper fence estimate FU can be expressed as:

FL = Q1 − h1IQR, (10)

FU = Q3 + h2IQR, (11)

where h1 = h2 = 1.5 for the classi-

cal boxplot method by Tukey, (1977), {h1 =

1.5e−4m, h2 = 1.5e3m;M ≥ 0} or {h1 =

1.5e−3m, h2 = 1.5e4m;M < 0} for the adjusted

boxplot method by Hubert and Vandervieren,

(2008), and {h1 = 1.5e−4δ, h2 = 1.5e6δ; δ ≥
0} or {h1 = 1.5e6δ, h2 = 1.5e−4δ; δ < 0}
for the modified boxplot method by Babura

et al., (2017). M and δ are estimates of

medcouple and Bowley skewness measures re-

spectively. Furthermore, the interval F =

[min {x ∈ X;x ≥ FL} ,max {x ∈ X;x ≤ FU}] is

referred as the fence cut off region.

Then the construction of a boxplot consti-

tutes a rectangular box, which captures the mid-

dle batch of the ordered sample observations

which span from the first quartile Q1 to the third
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quartile Q3. A line is drawn to divide the box

into two indicates the position of the median

value. Additional lines extend outward from the

two ends of the box to two adjacent fence val-

ues. The fence values are marked to capture all

regular sample observations that are not flagged

as outliers by the fence rule of a particular box-

plot method. Finally, any data point outside

the interval [FL, FU ] data points are plotted in-

dividually above or below the fence cut-off and

referred to as potential outliers.

McGill et al. (1978) proposed an additional

feature to the boxplot construction called a

notch, in which the notch area of a boxplot repre-

sents confidence interval around the median typ-

ically computed as Q2 ± 1.58IQRn for a Gaus-

sian sample.

F. Determination of the GEV distribution

parameters regions

Let F be a GEV distribution and X ∼
F (µ, σ, ξ) where µ, σ, and ξ are the location,

scale and shape parameters of F respectively.

The quantile bands for the location and scale pa-

rameters of the GEV distribution are obtainable

based on the following simulation processes:

• generate a sample X from F with fixed lo-

cation (µ = 0), scale (σ = 1) and varying

the shape parameter (ξi = −0.8 + 0.1(i−
1), 1 ≤ i ≤ 109

• based on resampling of X ∼ F (µ, σ, ξi)

values of the following populations were

generated;

A(ξi) = {pi, Qpi ≈ µ} (12)

B(ξi) = {qi ;Q1 −Qqi ≈ σ} (13)

C(ξi) = {δ(Xi);Xi ∼ F (0, 1, ξi} (14)

where the quantile positions pj, qj ∈
(0.25, 0.75), 1 ≤ j ≤ n; where n = 100 as the

sample size of X.

• the resampling process for each fixed

choice of parameters was repeated 5000

times to obtain the collections that form

the populations in A(ξi), B(ξi), C(ξi).

III. RESULTS AND DISCUSSION

The implementation of the simulation ex-

periment returns a quantile band for the loca-

tion and scale parameters of GEV distribution

and skewness estimate of the shape parameter.

These bands are reflected in the newly proposed

boxplot as a location and scale parameters re-

gion for a sample from GEV distribution. The

GEV distribution has three parameters namely

location, scale, and shape parameters.

A. The location parameter region

Figure 1 illustrates the outcome of the sim-

ulation experiment as described earlier. Each

boxplot displays the overall band of the return

population A(ξi) for their corresponding values

of ξi. All the simulated groups exhibit the same

distributional characteristics in the centre and

spread. The display of similar distributional

character indicates that; the quantile positions

pi ’s are invariant over the variation in ξ of F for
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estimating a quantile band of the GEV distri-

bution location parameter. Therefore, the Q(pi)

band for µ is estimated to be the 95 percentile

bands of its associated A(ξi). Thus, the location

parameter region of F in a boxplot is marked to

be the averages of lower and upper limits of Q(pi)

bands, corresponding to A(ξi)’s respectively.

Table 1 is an extraction of the lower and up-

per limits of the 95 percentiles bands of A(ξi)’s

from the simulation result to which the overall

average 95 percentile band is [0.28, .046]. Thus,

the result of this simulation experiment is ob-

tained to be the boxplot quantile region of the

location parameter (µ) of the GEV distributed

extreme dataset is obtained to be within the in-

terval [Q0.28, Q0.46].

B. The scale parameter region

Figure 2 illustrates a boxplot display of sim-

ulated populations B(ξi). Each boxplot dis-

plays the overall band of the return population

B(ξi) for their respective values of varying ξi.

Most of the simulated groups exhibit the same

distributional characteristics in the centre and

spread with little deviation for scenarios when

ξi ∈ [−0.8,−0.3] which can be ignored. Conclu-

sively, the qi’s are invariant over the variation in

ξ of F for estimating a quantile band of the scale

parameter σ.

If [α1i, α2i] is the 95 percentile bands

of B(ξi), then its associated quantiles de-

fined on [Qα1i, Qα2i] would yield a band

[Qα1i −Q1, Qα2i −Q1] which capture the actual

value of the scale parameter σ of F . Conse-

quently, the overall band for the scale parameter

in a boxplot is marked at [Qα1 −Q1, Qα2 −Q1]

where α1 and α2 are the averages over α1i’s and

α2i’s of B(ξi)’s respectively.

Table 2 shows the simulation results of

[α1i, α2i] for B(ξi) which consequently gives the

approximate average overall band of [0.42, 0.60].

Thus, the result of the simulation experiment

which proposed the boxplot quantile region

of the scale parameter (δ) of the GEV dis-

tributed extreme data is considered as the in-

terval [Q0.42 −Q1, Q0.60 −Q1].

C. The skewness estimate of the shape

parameter

The overall simulation band for each C(ξi)

was illustrated in Figure 3 as a boxplot. As ob-

served, a corresponding increase in lower and up-

per limit of the band of δ for C(ξi) as the shape

parameter ξ of GEV distribution increases. To

establish a relation between δ and ξ, we extract

the medians of C(ξi)’s and associate it with its

corresponding ξi as a respond to a resistance fit

model. If δi is the medians of C(ξi), we then fit ξ

to be given by ξ = a+bδ where a and b resistance

fit parameters.

Figure 4(a) illustrates the behaviour of the

GEV distribution’s shape parameter ξ in re-

sponse to the extent of skewness measured as

Bowley coefficient δ. In order to have a good

fit for the relation illustrated in Figure 4(a), to

which a response when median skewness is below

0.8 is considered. To justify this choice, we ob-

serve that due to the long tail behaviour of GEV

samples with shape parameter ξ ≥ 2.5 the box-

plot visualisation of such sample becomes dif-

ficult, especially to comprehend the information

around the box. Boxplot visualisation of the sce-

nario δ > 0.8 or ξ > 2.5 will remain a limitation

in practice. Figure 4(b) shows the resistance fit
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Figure 1. Boxplot display of simulation band for A(ξi)

Figure 2. Boxplot display of simulation band for B(ξi)

based on this choice and gives an estimate of the

parameters a and b to define the relation between

ξ and δ given by

ξ̂ =
31δ − 4

10
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Table 1. Percentile band for the quantile position p of the location parameter

ξi Lp Up ξi Lp Up ξi Lp Up ξi Lp Up 

0.80 0.28 0.46 2.00 0.28 0.46 4.80 0.27 0.47 7.60 0.28 0.46 

0.70 0.28 0.46 2.10 0.28 0.46 4.90 0.28 0.46 7.70 0.27 0.46 

  0.60 0.28 0.46 2.20 0.27 0.46 5.00 0.27 0.46 7.80 0.28 0.46 

0.50 0.28 0.46 2.30 0.27 0.47 5.10 0.27 0.46 7.90 0.28 0.46 

  0.40 0.28 0.46 2.40 0.27 0.46 5.20 0.28 0.46 8.00 0.28 0.46 

0.30 0.28 0.46 2.50 0.28 0.47 5.30 0.27 0.46 8.10 0.27 0.46 

0.20 0.28 0.47 2.60 0.28 0.46 5.40 0.28 0.47 8.20 0.28 0.46 

0.10 0.28 0.46 2.70 0.28 0.46 5.50 0.28 0.46 8.30 0.28 0.47 

0.00 0.28 0.46 2.80 0.28 0.46 5.60 0.27 0.46 8.40 0.28 0.46 

0.10 0.28 0.46 2.90 0.28 0.46 5.70 0.28 0.47 8.50 0.28 0.46 

0.20 0.28 0.46 3.00 0.28 0.46 5.80 0.28 0.47 8.60 0.28 0.46 

0.30 0.28 0.46 3.10 0.28 0.46 5.90 0.27 0.46 8.70 0.27 0.46 

0.40 0.28 0.46 3.20 0.27 0.46 6.00 0.28 0.46 8.80 0.27 0.47 

0.50 0.28 0.46 3.30 0.28 0.46 6.10 0.28 0.46 8.90 0.28 0.47 

0.60 0.28 0.46 3.40 0.28 0.46 6.20 0.28 0.47 9.00 0.27 0.46 

0.70 0.28 0.46 3.50 0.28 0.46 6.30 0.27 0.46 9.10 0.28 0.46 

0.80 0.27 0.46 3.60 0.28 0.46 6.40 0.28 0.46 9.20 0.28 0.47 

0.90 0.28 0.46 3.70 0.28 0.46 6.50 0.28 0.46 9.30 0.28 0.46 

1.00 0.28 0.46 3.80 0.28 0.46 6.60 0.28 0.46 9.40 0.27 0.46 

1.10 0.28 0.46 3.90 0.28 0.46 6.70 0.28 0.46 9.50 0.28 0.46 

1.20 0.28 0.46 4.00 0.28 0.46 6.80 0.27 0.46 9.60 0.28 0.46 

1.30 0.27 0.46 4.10 0.28 0.46 6.90 0.28 0.46 9.70 0.27 0.46 

1.40 0.28 0.46 4.20 0.27 0.46 7.00 0.27 0.46 9.80 0.28 0.46 

1.50 0.28 0.47 4.30 0.28 0.46 7.10 0.28 0.46 9.90 0.28 0.46 

1.60 0.28 0.46 4.40 0.28 0.46 7.20 0.28 0.46 10.00 0.27 0.46 

1.70 0.28 0.46 4.50 0.28 0.46 7.30 0.28 0.46  

1.80 0.28 0.46 4.60 0.28 0.46 7.40 0.27 0.46 

1.90 0.28 0.46 4.70 0.27 0.46 7.50 0.28 0.46 

Lp and Up are respectively lower and upper limits of the 95 percentile bands of �  ) 

 

D. Implementation of the proposed boxplot

with parameters regions

The location and scale parameters region de-

scribed earlier in this section were superimposed

on the proposed boxplot as illustrated in Figure

5.

Figure 5 Proposed modified boxplot display

of GEV distribution’s location and scale parame-

ter regions along with quantile estimate of shape

parameter. The location parameter region was

superimposed as a rectangular box shaded in for-

ward slide arrays of green lines that span from

Q0.28 up to Q0.46 of the data set. Also, the vi-

sualisation of the scale parameter where simi-

larly superimposed as the length of a thick line

along the vertical edges of the box. The dis-

tance of the line spans from Q1 up to Q0.42 and

to Q0.60 as the lower and upper bands for the

scale parameter region respectively. The region

[Q0.42, Q0.60] is marked with two adjacent rectan-

gles along the vertical edges of the box filled with
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Table 2. 95 Percentile band for quatile position q of the scale parameter

ξi α1i α2i ξi α1i α2i ξi α1i α2i ξi α1i α2i 
-0.80 0.51 0.75 2.00 0.44 0.63 4.80 0.40 0.59 7.60 0.37 0.56 

-0.70 0.52 0.75 2.10 0.45 0.62 4.90 0.40 0.59 7.70 0.37 0.56 

-0.60 0.52 0.75 2.20 0.44 0.62 5.00 0.40 0.58 7.80 0.37 0.56 

-0.50 0.52 0.75 2.30 0.44 0.62 5.10 0.40 0.58 7.90 0.37 0.56 

-0.40 0.52 0.73 2.40 0.44 0.61 5.20 0.39 0.58 8.00 0.37 0.56 

-0.30 0.52 0.72 2.50 0.43 0.62 5.30 0.39 0.58 8.10 0.37 0.56 

-0.20 0.52 0.71 2.60 0.43 0.61 5.40 0.39 0.58 8.20 0.37 0.56 

-0.10 0.52 0.70 2.70 0.43 0.61 5.50 0.39 0.58 8.30 0.37 0.56 

0.00 0.52 0.69 2.80 0.43 0.61 5.60 0.39 0.58 8.40 0.37 0.56 

0.10 0.51 0.69 2.90 0.43 0.61 5.70 0.39 0.58 8.50 0.37 0.56 

0.20 0.51 0.68 3.00 0.42 0.61 5.80 0.39 0.58 8.60 0.37 0.56 

0.30 0.50 0.67 3.10 0.42 0.60 5.90 0.38 0.58 8.70 0.36 0.56 

0.40 0.50 0.67 3.20 0.42 0.60 6.00 0.39 0.58 8.80 0.37 0.56 

0.50 0.50 0.66 3.30 0.42 0.60 6.10 0.39 0.57 8.90 0.37 0.56 

0.60 0.49 0.66 3.40 0.42 0.61 6.20 0.38 0.58 9.00 0.36 0.55 

0.70 0.49 0.65 3.50 0.41 0.60 6.30 0.38 0.58 9.10 0.36 0.55 

0.80 0.48 0.65 3.60 0.42 0.60 6.40 0.38 0.57 9.20 0.36 0.55 

0.90 0.48 0.65 3.70 0.41 0.59 6.50 0.38 0.57 9.30 0.36 0.56 

1.00 0.47 0.64 3.80 0.41 0.60 6.60 0.38 0.57 9.40 0.36 0.55 

1.10 0.47 0.64 3.90 0.41 0.59 6.70 0.38 0.57 9.50 0.36 0.55 

1.20 0.47 0.64 4.00 0.41 0.60 6.80 0.38 0.57 9.60 0.36 0.55 

1.30 0.47 0.64 4.10 0.40 0.59 6.90 0.38 0.57 9.70 0.36 0.55 

1.40 0.46 0.63 4.20 0.40 0.59 7.00 0.38 0.57 9.80 0.36 0.55 

1.50 0.46 0.63 4.30 0.40 0.59 7.10 0.38 0.57 9.90 0.36 0.55 

1.60 0.45 0.63 4.40 0.40 0.59 7.20 0.37 0.56 10.0 0.36 0.55 

1.70 0.46 0.63 4.50 0.40 0.59 7.30 0.37 0.57  

1.80 0.45 0.63 4.60 0.40 0.59 7.40 0.37 0.56 

1.90 0.45 0.62 4.70 0.40 0.59 7.50 0.37 0.56 

α1i and α2i are respectively lower and upper limits of the 95 percentile bands of B(ξi) 

 

backwards slides arrays of blue lines.To display

the shape parameter estimate, a textual value

of the estimate is imposed and situated between

Q3 and upper fence of the boxplot. The pro-

posed improvement of boxplot display for ex-

treme data gives a significant improvement in

capturing some additional information about the

fitting parameters of a GEV distribution model.

E. Performance with simulation data

Figure 6 illustrates the advantages of the new

method as compared to the notch boxplot re-

garding the batch comparison of extreme sam-

ples. Figure 6(a), (b) and (c) show the three sce-

narios of extreme samples that is: Weibull type

(G (x;µ, 1,−0.5)), Gumbel type (G (x;µ, 1, 0))

and Freichet type (G (x;µ, 1, 0.5)). In each case,

the first two samples have the same location pa-

rameter (µ = 0) while the third sample has dif-

ferent location parameter (µ = 1). In all the sce-

narios, the notch fails to capture the actual lo-

cation parameter value as against the proposed

region even though they both show the popula-

tion differences against the third sample.

In general performance, a better capture
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Figure 3. Boxplot display of simulation band for GEV sample skewness δ in C(ξi)

Figure 4. Median skewness of simulated GEV distribution’s samples versus corresponding GEV

shape parameter

(with no outlier) can be observed on the extreme

data by the proposed methods as against the

classical method. The illustration in Figure 6

indicates a better capture of the extreme data

based on the in-cooperated fence definition and

a better understanding of the actual position of

the location parameter for batch comparison.

F. Performance with the real data

To explore the advantage of the proposed im-

provement, three batches of environmental ex-

treme data sets were visualised. The annual

maximum observed one-hour precipitation for 46

years i.e. from 1947 to 1993 source (Thomas and

Nolan, 1997). The yearly maximum river flow
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Figure 5. Proposed modified boxplot display of

GEV distribution’s location and scale

parameter regions

discharge in cubic meters per second for 60 years

source (Castillo, 1988) and the monthly maxi-

mum rainfall data values mm at Petaling Jaya

record center Malaysia (source from Earth Ob-

servation Center, Institute of Climate Change,

Universiti Kebangsaan Malaysia).

The three data sets were visualised with

the proposed boxplot method as against the

two other boxplot methods. The illustration

in Figure 7 shows that the adjusted boxplot

slightly improved the data capture of the classi-

cal method particularly in the upper fence region

while the proposed modification not only cap-

ture the data correctly but also suggest some in-

formation about the fitting parameters in mod-

eling the extreme data with GEV distribution.

The density plot of best fitting parameters based

on MLE estimate was plotted along with the

density plots from the extracted parameters re-

gions of the proposed modified boxplot.

Figure 8 is the proposed boxplot display on

the left side along with density plot overlapping

the dataset as a histogram on the left side. In

all of the three scenarios, by chosing the up-

per band of the scale parameter, the quantile

estimate of shape parameter and a combination

with the lower and upper limits of the location

parameter corresponding to a lower and upper

band fit were obtained respectively to have an

adequate capture of the data sets. The two fits;

the lower and upper band fit have placed the

best fit from MLE estimate in between them as

expected. Either of the lower or upper band fit

can be used to get insight into some inferential

details about the data set. However, any of the

band (lower/upper) can be used in identifying a

search direction or as an initial point while im-

plementing optimisation procedures required in

some parameter estimation methods such as the

MLE method.

The interesting thing here is the ability of the

proposed parameters regions to generate an es-

timate that captures the data represented as a

histogram and places the MLE fit between the

lower band of the region to the upper band of

the region which is referred to as lower band fit,

and upper band fit respectively. This quantile

estimate of the region is not an attempt to im-

prove or give an alternative to the regular known

parameter estimation methods. It gives an EDA

idea about the actual position of the best fit-

ting parameters. The estimates can also serve

as a starting point while trying to implement

optimisation procedures involved in the popu-

lar parameter estimation methods such as MLE.

However, the advantage of the parameter region

was demonstrated in Figure 8.

IV. CONCLUSION

The boxplot is a popular graphical EDA tool

for analysis of one-dimensional data set. Among
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Figure 6. Comparison of newly improved modified boxplot with notch boxplot for batches of

simulated GEV samples. In the figures the samples are generated from (a) A Weibull type GEV

samples (b) A Gumbell type GEV Sample and (c) A Freichet type GEV samples.

its limitation is that; some of the quantile mea-

sures used does not suggest any significant prop-

erties about the data especially for data set that

inherently possess skewed distribution properties

like the extreme data. The functionality of box-

plot was extended over an extreme sample by in-

corporating the fitting parameters region to the

GEV distribution model. The region is a quan-

tile estimate based on simulation experiment on

samples from GEV distribution. The improve-

98



ASM Science Journal, Volume 11(2), 2018

Figure 7. Comparison of three boxplot methods over some real-life data sets. Namely (a) The

annual maximum observed one-hour precipitation for 46 years, (b) The yearly maximum river

flow discharge in cubic meters per second for 60, (c) 31-year Monthly maximum rain

ment is not an attempt to substitute or improve

the classical inferential methods used to estimate

the modelling parameters. It is rather consid-

ered an EDA tool that supplements some esti-

mation procedures which requires optimisation

methods. By implication, the parameter region

can be used to set an initial point and identify

search direction in such optimization procedures.

The advantage of the region in batch compari-

son of an extreme sample over the notch in the

classical boxplot was shown. Also the use of the

in-cooperated region to visualize population dif-

ference for batches of extreme samples was rec-

ommended. The general rules in using a box-

plot should always apply despite the proposed

improvement. Conclusively, the following rules

should be taken into consideration while using

boxplot with the proposed improvement:

• The boxplot construction requires at least

5 data points

• Use of the proposed parameters regions re-

quires a sufficient extreme sample size of

at least 30 drawn from a block-maximum
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Figure 8. Visualising a block maximum extreme sample with the proposed boxplot along with its

parameters region versus histogram/density fitting of the data with proposed boxplot parameter

estimates for three datasets (a) River flow data (b) Precipitation data and (c) Rainfall intensity

data

method

• Batch comparison of extreme samples can

be visualised using the location and scale

parameters region as incorporated in the

proposed boxplot for a more valid conclu-

sion

• The boxplot and the proposed enhance-

ment in this work should remain for ex-

ploratory analysis rather than confirma-

tory

However, the limitation of this contribution is

the non-cooperation of other extreme modeling

tools such as the generalised Pareto distribution

for a peak over threshold data and the r largest-

order statistics process.
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