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This research attempts to apply spatial statistics by employing GIS in providing evidence of 

underlying spatial contribution to potentially air pollutants concentration accumulation. We 

perform profiling of the air pollutants within 16 years observation (2000-2015) from 37 fixed 

monitoring stations in Peninsular Malaysia using ArcGIS software version 10.5. Kriging 

interpolation model present as the best model as compared to IDW based on the RMSE value 

that closest to 1. The RMSE value from kriging model for PM10, SO2 and O3 were 7.8096, 

0.015 and 0.0028 respectively. Only SO2, NO2, and CO showed significant of Z-score from 

Getis-Ord general G, and Moran’s I calculation (p < 0.05). The initial profiling was able to 

identify relevant patterns that show crucial spatial characteristics. Hence the profiled pattern 

is used in further analysis such as determination a hotspot, or cold spots that should be 

prioritized for future prediction of air pollution impact.   
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I. INTRODUCTION 
 
 

Air pollution is an environmental problem 

that has its long history across the global. Rapid 

urban development alongside with the shift 

from fuelwood to coal and then to oil as fuel 

consumption plays a vital role in expansion 

dramatically the air pollution problems 

(Mosley, 2014). The air pollution problem leads 

to scholarly debate and public concern as they 

potentially will degrade human's health. 

Previous air pollution research, particularly in 

Malaysia, has a deal with various aspects, 

however, employing spatial concept using 

Geographical Information System (GIS) in 

dealing with air pollution phenomena is 

insufficient. Amongst the advantages of 

applying GIS in this field of study is it can 

portray the spatial correspondence of air 

pollutants dispersion and directly explore the 

potential exposure pathways in space and time 

(Yerramilli et al., 2011). This study aims to get 

the best interpolation model that suitably used 

for air pollution database and to analyze 

primarily the spatial pattern of air pollution 

phenomena.  

 
II. DATA AND METHODS 

 
 

1. Study Area 

 

There are 37 Continuous Air Quality 

Monitoring (CAQM) stations located 
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throughout Peninsular Malaysia enforced by 

Department of Environment (DOE), Malaysia 

(Figure 1). In this research, all the 37 locations 

of CAQM stations were selected to represent air 

pollution exposure in Peninsular Malaysia. 

These stations are operated effectively until 

April 2017 by Alam Sekitar Malaysia Sdn. Bhd 

(ASMA), the subsidiary company of the DOE. 

 

2. Air pollutants and meteorological 
  data sources 

 

This research uses a time-series approach to 

associate the data components starting from 

2000 until the year 2015. A dataset comprising 

of air pollutants (PM10, O3, NO2, SO2, and 

CO) and meteorological parameters (wind 

speed, temperature, and humidity) at the 37 

stations were collected from DOE prior 

spatially and statistically analyzed in ArcGIS 

version 10.5. All received data were initially in 

the form of hourly before being converted to a 

yearly average value. Hence, a total of 296 data 

sets (37 observations x 8 parameters) were 

prepared in a spreadsheet and spatially 

referenced using each location’s longitude and 

latitude. The coordinates were projected in the 

World Grid System of 1984 (WGS84) during 

the process of converting the spreadsheet data 

into GIS. 

 

3. Assessment of different spatial 
  interpolation model 

 

The collected dataset in this research is 

insufficient to estimate unknown concentration 

located in between the monitoring stations. 

Therefore, spatial interpolation was used in this 

research to predict the unknown value at other 

location than sampled point values. A 

comparison of two types of interpolation model 

has initially performed namely Inverse 

Distance Weighting (IDW) and Kriging. IDW is 

a deterministic method while Kriging is a 

geostatistical method. There were three sub-

group of Kriging namely ordinary kriging (OK), 

simple kriging (SK) and universal kriging(UK). 

Either one of them are weighted average model 

hence they have the same underlying 

mathematical formulation as following (Wong 

et al., 2004): 
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where z is air pollution concentration at an 

unsampled point xo, zi is a set of neighboring 

sampled values that sampled at location xi, λ 

represents the weight assigned to each 

neighboring values, and the sum of the weight 

is one. In IDW, the weight λ depends solely on 

the distance to the prediction location. This 

research uses the weight or power of 2 which is 

the default value in the ArcGIS. To select the 

best interpolation model, we then performed a 

cross-validation test. 

 

4. Spatial autocorrelation methods  

 

Two types of spatial autocorrelation were 

chosen to test the spatially clustered tendency 

(Scott and Janikas, 2010) of the selected air 
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pollutants namely Getis-Ord general G and 

global Moran’s I. Both methods are an 

inferential statistic; hence the null hypothesis is 

the values associated with features are 

randomly distributed. A confident level of 95% 

was selected and p-value < 0.05 was considered 

as statistically significant clustering. General G 

statistic of overall spatial association is as 

following equation: 
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where Xi and Xj are concentrations of 

pollutants for features i and j, Wi,j is the spatial 

weight between i and j, n is the total number of 

features in the dataset and Ɐj ≠ i indicates that 

feature i and j cannot be the same features. 

Also, the second type of spatial autocorrelation, 

global Moran’s I was calculated using formula 

as follow: 
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where (Xi – X) is the deviation of feature i from 

its mean of concentration, Wij is the spatial 

weight between the feature i and j, N is equal to 

the total number of features, and S0 is the 

aggregate of all spatial weight. The values of 

both indices that show higher than 0 refer to 

positive spatial correlation while the values less 

than 0 indicates a negative correlation and 0 

values mean insignificant (Habibi et al., 2017). 

 

III. RESULT AND DISCUSSION 

 

1. Interpolation calculation output 

 

The cross-validation approach was mainly to 

verify best interpolation model before being 

implied for further data analysis. We have 

chosen the RMSE as the primary criterion for 

best selection of interpolation results. Table 1 

depicted the statistic errors for each tested 

model. Results showed that Kriging was a 

better model compared to IDW generally for all 

five air pollutants. The RMSE sorting for PM10, 

SO2, and O3 was a similar trend: 

SK<OK=UK<IDW. In contradiction, RMSE 

sorting for NO2 and CO was on different 

direction: OK=UK<IDW<SK. By combining the 

overall result, SK and OK/UK was the best 

model for three pollutants (namely PM10, SO2, 

and O3) and the rest of two pollutants (NO2 

and CO) respectively. The best model selection 

was based on RMSE parameters that meet the 

principle of RMSE should close to 1 (Xiao et al., 

2016). A series of studies of testing and 

modeling air quality across Europe and the US 

also found that kriging method is generally 

preferred over IDW for PM10 data (Wong et 

al., 2004; Horalek et al., 2007). The best 

interpolation method preference is highly 

depended to the nature and availability of data 

from existing monitoring network (Wong et al., 
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2004) apart from consideration of another 

selection criterion such as spatial coverage 

quality, continuity, and robustness (Horalek et 

al., 2007).  Kriging is known as a geostatistical 

method unlike IDW is a deterministic method. 

The latter interpolation method uses 

assumptions that closer monitoring station has 

more similar nature of data value than 

monitoring station that is farther apart. Unlike 

for the geostatistical method (kriging), it 

assumes all values are the result of the random 

process with dependence (Johnston et al., 

2001). Due to both interpolation methods have 

their own strong and weakness as well as 

considering the RMSE value, we finally choose 

kriging method as the best interpolation 

method that suitable with our air quality data.  

 

2. Spatial pattern analysis 

 

Analysis of spatial pattern in this research 

was performed to identify spatial clustering or 

dispersion of the five types of air pollutants 

across Peninsular Malaysia. We compute the 

pattern analysis using two different 

tools/methods namely Getis-Ord general G and 

global Moran’s I. The selected spatial pattern 

tools generate a value known as z-score which 

describe the degree of spatial dispersion or 

concentration for the air pollutants variables. 

Table 2 showed the Z-score value for global 

Moran’s I and Getis-Ord general G. All p-values 

for Getis-Ord general G were significant (p < 

0.05) for 16 years PM10, SO2, NO2, and CO 

except for O3. Therefore, the null hypothesis is 

rejected with 95% confident level, resulted in 

significant clustering for the observed of PM10, 

SO2, NO2, and CO. Statistical tests for the 

Getis-Ord general G also showed that 16 years 

O3 and NO2 has minimum and maximum Z-

score value of 0.33 and 5.38 respectively.  

 

On the other hand, the Moran’s I result 

depicted significant p-values for 16 years 

average of SO2, NO2, and CO only. Similarly, 

with Getis, it is possible to reject the null 

hypothesis which leads to further investigation 

needed to find the cause of significant spatially 

related to air pollution in particular for SO2, 

NO2 and CO phenomena. Highest Z-score 

value of 16 years analyzed through Moran's I 

occurred for NO2, followed by CO, SO2, and 

PM10 whereas Z-score for O3 was in a negative 

value. Having that pattern analysis of 16 years 

air pollutants, the Z-score values of Getis were 

higher than Moran’s I. Our finding was in 

contrast with previous research that reported 

Z-score for Moran’s I were larger as compared 

to Getis (Habibi et al., 2017). However, the 

previous study used IDW as their interpolation 

method unlike in the current study we 

employed kriging as the interpolation method 

due to smaller RMSE result in cross-validation 

test.   

 

Looking at the overall 16 years of spatial 

pattern analysis, a low negative Z-score either 

in Getis or Moran’s I method indicates a 

significant data outlier spatially. In addition, 

the results showed a minimum of outliers for 

SO2, NO2, and CO within the 16 years dataset. 

Moreover, the high Z-score values for SO2, 
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NO2, and CO suggested that such pollutants 

are highly and spatially clustered in Peninsular 

Malaysia. Theoretically, sources of outdoor air 

pollutants are associated with number of 

vehicles, level of urbanization, industrialization 

as well as trans boundaries pollution. A major 

development in Peninsular Malaysia is rapidly 

driven by industrial sector that interrelated 

with an increment of vehicle numbers and 

urban population. Types of air pollutants that 

emitted from such human activities vary with 

notably NO2 concentration is coming from 

motor vehicles emission (Awang et al., 2000). 

Hence, our results are showing that emission of 

NO2 is highly clustered at a specific location 

where vehicles are the primary emission 

sources. The subsequent phase of this study 

will assess quantitatively the spatial association 

between different air pollutants clustering with 

their potential emission sources. 

 

Moreover, Table 2 shows positive 

correlation value for the contaminants (95% 

confidence level) which demonstrate that 

locations with the relatively high level of 

pollutants are close together, the similar 

pattern with contaminants of low level (Moore 

& Carpenter, 1999). Table 2 also showed 

seasonal Z-score values for PM10, SO2, NO2, 

CO, and O3. Only SO2 has a significant p-value 

for both Getis and Moran's I value (p<0.05) 

during wet, dry and inter-season. It can be seen 

that in Figure 2, a similar trend for seasonal Z-

score between Getis and Moran’s I value, 

however, Getis Z-score was still more 

significant than Moran's I. 

 

 

 

Table 1. Statistical errors of the compared interpolation models 

Statistical error IDW OK SK UK 
PM10 Mean 1.29 0.56 0.45 0.56 

RMSE 9.37 7.84 7.80 7.84 
SO2 Mean 0.00 -0.00 0.00 -0.00 

RMSE 0.00 0.00 0.00 0.00 
NO2 Mean 0.00 0.00 0.00 0.00 

RMSE 0.00 0.00 0.01 0.00 
CO Mean 0.04 -0.00 0.06 -0.00 

RMSE 0.20 0.19 0.48 0.19 
O3 Mean -0.00 -0.00 0.00 -0.00 

RMSE 0.00 0.00 0.00 0.00 
IDW=Inverse Distance Weighting, OK=Ordinary Kriging, SK=Simple Kriging, UK=Universal Kriging 
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Table 2. Comparison between global Moran’s I and Getis-Ord General G for the five pollutants during 
the different period 

  Wet Dry Inter 16 years average 

PM10 Getis Z-score -0.17 -0.67 -0.74 2.51* 

 Moran’s I Index 0.213 0.218 0.238 0.119 

 Moran’s Z-score 1.56 1.59 1.71 0.95 

SO2 Getis Z-score 4.67* 3.15* 3.48* 3.91* 

 Moran’s I Index 0.505 0.339 0.336 0.413 

 Moran’s Z-score 3.47* 2.42* 2.36* 2.86* 

NO2 Getis Z-score -0.8 -0.82 -0.86 5.38* 

 Moran’s I Index -0.159 -0.118 -0.134 0.768 

 Moran’s Z-score -0.86 -0.58 -0.69 5.23* 

CO Getis Z-score -0.56 -0.51 -0.51 4.02* 

 Moran’s I Index -0.134 -0.14 -0.109 0.561 

 Moran’s Z-score -0.71 -0.75 -0.54 3.95* 

O3 Getis Z-score -0.43 -0.17 -0.88 0.33 

 Moran’s I Index 0 0.071 0.103 -0.089 

 Moran’s I Z-score 0.18 0.63 0.85 -0.39 

*p-value < 0.05 
 

 

 

Figure 1. Continuous Air Quality Monitoring (CAQM) stations 
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Figure 2. Seasonal Z-score values for SO2 

 

 

IV. CONCLUSION 

 

A GIS-based air pollution study in 

Peninsular Malaysia during the period of 2000-

2015 is reported in this paper. In the end, this 

study seeks the best interpolation method for 

primary data before being used in the further 

geo-statistical analysis. Kriging is chosen than 

IDW after cross-validation test was performed 

and the value of root mean square error was 

used as the selection basis. This study also 

suggests that Getis-Ord general G as a better 

pattern analysis after considering the z-score 

value that consistently significant. This 

research finding will be used as initial 

consideration for subsequent air pollution 

phenomena profiling.  
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