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Correct identification of defaulters and non-defaulters in the lending industry is a crucial task for 

financial institutions. Credit scoring is a tool utilized for credit granting decisions. Recently, 

Random Forest (RF) is actively researched in credit scoring due to two main benefits, i.e. non-

parametric flexibility to account for various data patterns with good classification ability and the 

computed features importance that can explain the attributes. Hyperparameters tuning is a 

necessary procedure to ensure good performance of a RF. This paper proposes the use of a 

metaheuristic, Harmony Search (HS), to form a hybrid HS-RF to conduct hyperparameters tuning. 

A Modified HS (MHS) is also proposed, forming MHS-RF, for effective yet efficient search of the 

RF hyperparameters. Along with parallel computing, MHS-RF effectively reduces the 

computational efforts of the hyperparameters tuning procedure. The proposed hybrid models are 

benchmarked with standard statistical models on the Lending Club peer-to-peer lending dataset. 

The computational results show that a well-tuned RF have better performance than statistical 

models, with MHS-RF reported the best performance yet being the most efficient in 

hyperparameters tuning of RF. 
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I. INTRODUCTION 
 

Credit granting decision to new applicants is an essential risk 

evaluation task by financial institutions to avoid defaulters 

that incur cost and identify potential non-defaulters that bring 

profit. Credit scoring is an evaluation tool to assist the 

decision-making process, where it is the formal statistical 

method used to classify applicants for credit into ‘good’ and 

‘bad’ risk classes as defined in Hand and Henley (1997). 

Artificial Intelligence (AI) techniques have been the current 

research trend as shown in several comparative studies and 

review papers (Baesens et al., 2003; Goh & Lee, 2019; Hand & 

Henley, 1997; Lessmann et al., 2015; Louzada et al., 2016; 

Thomas, 2000). Random Forest (RF) is one of the current 

research interests in credit scoring due to its competitiveness 

as recognized by Lessmann et al. (2015) and its benefit to 

explain attributes using the computed features importance as 

compared to other black box AI models. RF has shown its 

potential in the credit scoring domain via involvement in 

comparative studies (Florez-Lopez & Ramon-Jeronimo, 

2015; Lessmann et al., 2015) and application in various 

credit domains (Gorter, 2017; Malekipirbazari & Aksakalli, 

2015; Óskarsdόottir et al., 2019; Tang et al., 2018). The 

competitiveness of RF then led to formulation of new 

models with RF, i.e. modified RF (Ghatasheh, 2014; Van 

Sang et al., 2016; Ye et al., 2018), hybrid RF (Jiang et al., 

2019; Yeh et al., 2012) and new ensembles (He et al., 2018; 

Zhang et al., 2018). 

Hyperparameters tuning has been the mandatory task for 

every application of RF in credit scoring where the 

techniques adopted are manual tuning of repeated trial-

and-error experiments (Ghatasheh, 2014; Gorter, 2017; 

Florez-Lopez & Ramon-Jeronimo, 2015; Óskarsdόottir et 

al., 2019; Van Sang et al., 2016; Tang et al., 2018; Ye et al., 
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2018), examination of a particular input range (Lessmann et 

al., 2015; Malekipirbazari & Aksakalli, 2015) and utilization of 

specific tuning technique (He et al.,2018; Jiang et al., 2019). 

Manual tuning is the dominant way to tune RF 

hyperparameters which is mostly based on subjective 

judgement of the researchers. Examination of a particular 

input range is similar to Grid Search (GS) but the values are 

not in a fixed increasing range of a grid, and this method is 

readily available in some software toolbox. GS, Random 

Search and Particle Swarm Optimization (PSO) are the specific 

tuning techniques attempted for RF in this domain. 

Despite manual tuning being the most common approach, 

the study by He et al. (2018) utilizing PSO for an automated 

tuning process is perceived as a starting point for the 

metaheuristics approach (MA) in tuning RF hyperparameters. 

Along with some competitive hyperparameters tuning 

performance presented recently using Genetic Algorithm (GA) 

(Yu et al., 2011), PSO (Danenas & Garsva, 2015) and Artificial 

Bee Colony (ABC) (Hsu et al., 2018), MA is a potential 

technique to be considered for hyperparameters tuning task. 

To the best of our knowledge, Harmony Search (HS) has yet to 

be hybridized with RF. Harmony Search (HS) is a 

metaheuristic first developed by Geem et al. (2001). The 

evolutionary process to seek for optimal solutions is inspired 

by the music improvisation process, where musicians tune 

instruments' pitch to achieve perfect harmony. In this study, 

HS is proposed to tune the RF hyperparameter. A Modified 

Harmony Search (MHS) is formulated by modifying the HS 

operators, which is then hybridized with RF for a more 

efficient search of hyperparameters. Parallel computation with 

MHS-RF is developed to achieve lower computational effort. 

Lastly, the two proposed models are assessed with standard 

statistical credit scoring models namely, Logistic Regression 

(LOGIT), Backward Stepwise Logistic Regression (STEP) and 

Linear Discriminant Analysis (LDA), on the latest 36-month 

loan application of Lending Club peer-to-peer lending. 

   This paper is organized as follows. Section II describes the 

algorithm of HS and modifications made on the MHS. Section 

III hybridizes HS and MHS with RF, developing HS-RF and 

MHS-RF respectively. Section IV elaborates on the 

experimental setup. Then, Section V reports the 

computational results together with detailed discussions. 

Finally, Section VI concludes the study and provides possible 

future directions. 

 

 

 

II. HARMONY SEARCH 
 

A. Standard HS 
 

A standard HS algorithm imitates the music 

improvisation process to play from existing music pieces, 

to adjust pitch according to known music pieces, or to 

randomly compose new notes. There are five procedures 

in a standard HS:  

i) Definition of objective function and the 

required parameters, i.e. Harmony Memory 

Size (𝐻𝑀𝑆), Harmony Memory Considering Rate 

(𝐻𝑀𝐶𝑅) , Pitch-Adjustment Rate (𝑃𝐴𝑅) , 

bandwidth (𝑏𝑤) , and maximum iterations 

(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟).  

ii) Initialization of Harmony Memory (HM) 

with 𝐻𝑀𝑆 number of possible candidate solutions 

which are generated from uniform distribution 

based on decision variables range. 

iii) Improvisation to generate new harmony 

with 𝐻𝑀𝐶𝑅 for exploration to control random 

selection of new harmony from 𝐻𝑀 , 𝑃𝐴𝑅  for 

exploitation to control improvement of new 

solution to neighbouring values with step size of 

𝑏𝑤 (continuous variables) or one step to the left or 

right (discrete variables), and 1 − 𝐻𝑀𝐶𝑅  for 

randomization. 

iv) Update HM if the new solution has better fitness 

than the worst solution in HM by replacing it. 

v) Termination of the repeating third and fourth 

procedure until 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 has reached. 

 

B. Modified HS 
 

In seeking for a good quality solution, HS requires a good 

balance between the exploration and exploitation 

parameters. Besides, to improve the computational 

efficiency, HS should converge to a good solution in lesser 

number of iterations. The main modifications of the 

proposed MHS are: 
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i) Elitism selection during memory 

consideration: 

The selection of new harmony is no longer a random selection 

from HM, but with a tendency to select a better quality 

harmony. Harmony vectors in HM are divided into two 

groups, i.e. elite (𝑔1) and non-elite (𝑔2), where 𝑔1 consists of 

harmony vectors with better performance than 𝑔2 . Each 

harmony vector in HM takes an index number from the 

sequence of  {1, 𝐻𝑀𝑆}. Since HM is sorted in the order of best 

to worst performance, harmony vectors with lower index 

number indicate their potential as the candidates in the elite 

group. The first quartile, 𝑞1 = 𝑟𝑜𝑢𝑛𝑑(0: 25 × (𝐻𝑀𝑆 +  1))𝑡ℎ 

term of the index sequence is computed and acts as the cutoff 

to divide HM into the elite and non-elite groups where        

𝑔1 ∈ {1, 𝑞1}  and 𝑔2 ∈ {(𝑞1 + 1), 𝐻𝑀𝑆} . Note that decimal 

values for 𝑞1 is rounded up because index values are discrete. 

An extra parameter 𝑒𝑙𝑖𝑡  is included to allocate a proper 

weightage on the elite group, so the selected new harmony has 

higher probability to originate from the elite group. With a 

probability 𝑒𝑙𝑖𝑡 , a new harmony is selected from the elite 

group. If the selection is from the non-elite group, two 

harmonies will be picked. Then, the better one will be the new 

harmony. Hence, a better harmony is always selected. Note 

that a low quality harmony, when joining with other harmony 

or being adjusted, may also produce good harmony. Thus, 𝑒𝑙𝑖𝑡 

cannot be too high to ensure a balance to seek from elite and 

non-elite group. Detailed selection process is illustrated as in 

Algorithm 1. 

 

Algorithm 1 

selection ( ) 

𝑔1 ∈ {1, 𝑞1}  

𝑔2 ∈ {(𝑞1 + 1), 𝐻𝑀𝑆}  

 

if (𝑈(0,1) ≤ 𝑒𝑙𝑖𝑡) 

        𝑖𝑛𝑑1 = 𝑟𝑜𝑢𝑛𝑑(𝑔1𝑚𝑖𝑛 + 𝑈(0,1) × (𝑔1𝑚𝑎𝑥 − 𝑔1𝑚𝑖𝑛))  

        𝑖𝑛𝑑 = 𝑖𝑛𝑑1  

else 

        𝑖𝑛𝑑2 = 𝑟𝑜𝑢𝑛𝑑(𝑔2𝑚𝑖𝑛 + 𝑈(0,1) × (𝑔2𝑚𝑎𝑥 − 𝑔2𝑚𝑖𝑛))  

        𝑖𝑛𝑑3 = 𝑟𝑜𝑢𝑛𝑑(𝑔2𝑚𝑖𝑛 + 𝑈(0,1) × (𝑔2𝑚𝑎𝑥 − 𝑔2𝑚𝑖𝑛))  

        if (𝑖𝑛𝑑2 ≤ 𝑖𝑛𝑑3) 

                𝑖𝑛𝑑 = 𝑖𝑛𝑑2  

        else 

   𝑖𝑛𝑑 = 𝑖𝑛𝑑3 

return 𝑖𝑛𝑑 

 

ii) Dynamic HMCR and PAR with step 

function 

HMCR follows a step function with the range 

[𝐻𝑀𝐶𝑅𝑚𝑖𝑛, 𝐻𝑀𝐶𝑅𝑚𝑎𝑥] . Selection probability starts from 

low to high. Thus, the search process at the start will have 

higher diversification with 𝐻𝑀𝐶𝑅𝑚𝑖𝑛 , then increased by 

step following a step function until 𝐻𝑀𝐶𝑅𝑚𝑎𝑥 is reached in 

the later search process. PAR follows a step function with 

the range [𝑃𝐴𝑅𝑚𝑖𝑛, 𝑃𝐴𝑅𝑚𝑎𝑥] . In contrast with HMCR, 

adjustment probability starts from high to low. This 

results in high exploitation at the start with 𝑃𝐴𝑅𝑚𝑎𝑥, then 

decreased by step following a step function until 𝑃𝐴𝑅𝑚𝑖𝑛 

is reached and remained the same till the end. 

    In utilizing the step function, several components i.e. 

𝐻𝑀𝐶𝑅  range, 𝑃𝐴𝑅  range, 𝐻𝑀𝐶𝑅  increment, 𝑃𝐴𝑅 

decrement, and step size 𝑠𝑡𝑒𝑝 have to be determined. The 

𝐻𝑀𝐶𝑅 = {0.70, 0.95}  is set based on the recommended 

value in Yang (2009). To align with the step function for 

𝐻𝑀𝐶𝑅 , 𝑃𝐴𝑅 = {0.10, 0.35} is used. The interval for 

increment and decrement of 𝐻𝑀𝐶𝑅 and 𝑃𝐴𝑅 respectively 

is set at 0.05 as this small interval is sufficient to cover the 

whole range for these two operators. The step size 𝑠𝑡𝑒𝑝 

determines the number of iterations for 𝐻𝑀𝐶𝑅 and 𝑃𝐴𝑅 

to maintain before shifting to another value in the range 

until both operators reach a plateau. The setting of 𝑠𝑡𝑒𝑝 

depends on the search range size and smaller 𝑠𝑡𝑒𝑝  is 

preferable as the main aim is to have faster convergence 

with active exploration and exploitation in the early stage. 

Thus, 𝑠𝑡𝑒𝑝 is set to enable both 𝐻𝑀𝐶𝑅 and 𝑃𝐴𝑅 to reach a 

plateau within the first quarter part of the total iterations. 

Detailed settings are enclosed in Section III-A, Table 1. 

iii) Additional termination criteria 

The termination criteria used in this study are the 

maximum number of iterations (max_𝑖𝑡𝑒𝑟), convergence 

of HM, and non-improvement on the best solution for a 

fixed number of consecutive iterations (𝑐𝑜𝑛𝑠_𝑛𝑜_𝑖𝑚𝑝). HS 

procedure will stop when any of the criterion is met. 

The modifications in MHS has resulted in several extra 

parameters, i.e. 𝑒𝑙𝑖𝑡 , 𝐻𝑀𝐶𝑅𝑚𝑖𝑛 , 𝐻𝑀𝐶𝑅𝑚𝑎𝑥 , 𝑃𝐴𝑅𝑚𝑎𝑥 , 

𝑃𝐴𝑅𝑚𝑖𝑛, 𝑠𝑡𝑒𝑝 and 𝑐𝑜𝑛𝑠_𝑛𝑜_𝑖𝑚𝑝. Modifications (i) and (ii) 

result in major changes in the improvisation step. The 

differences are summarized in Algorithm 2 and 3 for HS 

and MHS respectively. 
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Algorithm 2 

For every decision variable 𝑖 do 

if (𝑈(0,1) ≤ 𝐻𝑀𝐶𝑅) 

       𝑖𝑛𝑑 = 𝑖𝑛𝑡(𝑈(0,1) × 𝐻𝑀𝑆) + 1  

       𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑         

       if (𝑈(0,1) ≤ 𝑃𝐴𝑅) 

               𝑥𝑖
′ = 𝑥𝑖

′ + 𝑈(−1,1) × 𝑏𝑤  

               𝑥𝑖
′ = 𝑥𝑖

′ ± 1  

       else 

       𝑥𝑖
′ = 𝐿𝐵𝑖 + 𝑈(0,1) × (𝑈𝐵𝑖 − 𝐿𝐵𝑖)   

       𝑥𝑖
′ ∈ {𝐿𝐵𝑖 , 𝑈𝐵𝑖}  

 

Algorithm 3 

𝐻𝑀𝐶𝑅 = 𝐻𝑀𝐶𝑅𝑖𝑡𝑒𝑟
          𝒂  

𝑃𝐴𝑅 = 𝑃𝐴𝑅𝑖𝑡𝑒𝑟
          𝒃  

For every decision variable 𝑖 do 

if (𝑈(0,1) ≤ 𝐻𝑀𝐶𝑅)  

       𝑖𝑛𝑑 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛( )  𝒄  

       𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑   

       if (𝑈(0,1) ≤ 𝑃𝐴𝑅)  

              𝑥𝑖
′ = 𝑥𝑖

′ + 𝑈(−1,1) × 𝑏𝑤  

              𝑥𝑖
′ = 𝑥𝑖

′ ± 1  

else  

       𝑥𝑖
′ = 𝐿𝐵𝑖 + 𝑈(0,1) × (𝑈𝐵𝑖 − 𝐿𝐵𝑖)  

       𝑥𝑖
′ ∈ {𝐿𝐵𝑖 , 𝑈𝐵𝑖}  

 

 

 

 

III. HYBRID MODELS 
FORMULATION 

 

Random Forest is an ensemble model with the collection of 

decision trees using the bootstrap aggregation technique, or 

more commonly known as the bagging technique. Trees are 

grown with binary splitting algorithm with Gini Impurity, 

𝐺𝐼 =  1 − ∑ 𝑝𝑖
2𝑘

𝑖=1  as the splitting criteria, where 𝑖  is the 

number of classes and 𝑝𝑖  is the proportion of instances 

belonging to the respective class. 

During the tree growing process, to avoid correlations in 

between the trees, only a subset of the variables are required 

for splitting. End results of the classification is based on the 

majority votes from all the collected trees in the forest. The 

two hyperparameters to be tuned in RF are the number of 

trees (𝑛𝑡𝑟𝑒𝑒)  and number of variables from available 

attributes (𝑚𝑡𝑟𝑦). 

 

A. HS-RF and MHS-RF 
 

The HS-RF and MHS-RF follow the same procedure as in 

HS and MHS respectively, with the RF classification task 

being the objective function. Area Under Receiver 

Operating Characteristics (AUC) is the fitness function for 

both models. The full procedures of HS-RF and MHS-RF, 

as well as their differences are detailed as follows: 

 

Step 1: Define objective function (eqn 1) and parameters of 

HS and MHS (Table 1). 

The objective function is the RF classification function with 

two decision variables that corresponds to the two 

hyperparameters i.e. 𝑛𝑡𝑟𝑒𝑒 and 𝑚𝑡𝑟𝑦. The search range for 

𝑛𝑡𝑟𝑒𝑒 is chosen to be discrete values of 𝑥1 ∈ {1, 5}, where 

these values are then converted to the corresponding 

hundred. This search range is selected as it is often 

attempted by researchers. The search range of the second 

decision variable is discrete values of  𝑥2 ∈ {1, 𝑎}, where 𝑎 is 

the total number of attributes available. This search range 

is chosen because the hyperparameter 𝑚𝑡𝑟𝑦 is the random 

subset of variables from the total available attributes. 

max 𝑓(𝑥) =  majority vote{𝐶̂𝑛
𝑛𝑡𝑟𝑒𝑒(𝑥)} 

s.t      𝑥1 ∈ {1, 5} 

        𝑥2 ∈ {1, 𝑎}              (1) 

 

Table  1. Parameters Settings 

HS-RF MHS-RF 
𝐻𝑀𝑆 = 10  
𝐻𝑀𝐶𝑅 = 0.70  
𝑃𝐴𝑅 = 0.20  
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 100  

𝐻𝑀𝑆 = 10  
𝑒𝑙𝑖𝑡 = 0.70  
𝐻𝑀𝐶𝑅𝑖𝑡𝑒𝑟 = {0.70,0.95}  

𝑃𝐴𝑅𝑖𝑡𝑒𝑟 = {0.10,0.35}  
𝑠𝑡𝑒𝑝 = 5  
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 100  
𝑛𝑜_𝑐𝑜𝑛𝑠_𝑖𝑚𝑝 = 25  

 

   Step 2: Initialization of Harmony Memory 

Each harmony vector in HM has two decision variables. 

Every harmony vector is evaluated with the fitness 

function and sorted from the best to worst. Since the 

decision variables to solve RF are discrete, the harmony 

vectors are sampled directly from the search range as in 

equation (1). Both HS-RF and MHS-RF have the same HM. 

Step 3: Improvisation 

The improvisation procedure for HS-RF and MHS-RF are 

summarized as in Algorithm 4 and 5 respectively. 

a: Increasing step function for HMCR instead of a static preset value 
b: Decreasing step function for PAR instead of a static preset value 
c: Elitism selection from HM instead of random selection 
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Algorithm 4 

for 𝑖 in (1:2) 

       if (𝑈(0,1) ≤ 𝐻𝑀𝐶𝑅) 

               𝑖𝑛𝑑 = 𝑖𝑛𝑡(𝑈(0,1) × 𝐻𝑀𝑆) + 1  

               𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑   

               if (𝑈(0,1) ≤ 𝑃𝐴𝑅) 

                       𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑 ± 1  

       else  

               𝑥𝑖
′ ∈ {𝑚𝑖𝑛(𝑥𝑖), 𝑚𝑎𝑥(𝑥𝑖)}  

 

Algorithm 5 

𝐻𝑀𝐶𝑅 = 𝐻𝑀𝐶𝑅𝑖𝑡𝑒𝑟
          𝒂  

𝑃𝐴𝑅 = 𝑃𝐴𝑅𝑖𝑡𝑒𝑟
          𝒃  

for 𝑖 in (1:2) 

       if (𝑈(0,1) ≤ 𝐻𝑀𝐶𝑅)  

               𝑖𝑛𝑑 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛( )  𝒄  

               𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑   

               if (𝑈(0,1) ≤ 𝑃𝐴𝑅)  

                        𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑑 ± 1  

       else  

               𝑥𝑖
′ ∈ {𝑚𝑖𝑛(𝑥𝑖), 𝑚𝑎𝑥(𝑥𝑖)}   

 

 

 

Step 4: Update HM by evaluating and comparing the fitness 

function of the new harmony with the worst harmony in HM. 

Replace the worst harmony if the new harmony has better 

fitness. Same procedure for both HS-RF and MHS-RF. 

 

Step 5: Repeat Step 3 and 4 until max_𝑖𝑡𝑒𝑟 is reached for 

HS-RF whereas MHS-RF involves two additional criteria i.e. 

HM converges or 𝑛𝑜_𝑐𝑜𝑛𝑠_𝑖𝑚𝑝 reached. 

 

B. Parallel Computing 
 

The proposed hybrid MHS-RF aims for quality yet faster 

convergence. MHS-RF is executed sequentially over 5 

independent tasks resulting from the cross validation 

procedure. To further enhance the computational efficiency, 

parallel computing with master-slave concept is employed. 

Initially, master generates sub-tasks via data preparation 

and splitting to be assigned to 5 slaves for independent and 

simultaneous execution. Lastly, each slave returns required 

performance measures (refer Section IV-B) to compute their 

average. Algorithm 6 summarizes the parallel 

computation. Note that both sequential and parallel 

execution have the same seeding set to ensure identical 

results are obtained since the main aim is to enhance the 

computational time. 

Algorithm 6 

Master: Data preparation and partitioning 

do_parallel 

           for 𝑖 in (1:5) 

                    Slave: Step 1 – 5 of MHS-RF 

return AUC, ACC, ACC* 

Master: mean(AUC), mean(ACC), mean (ACC*) 

 

 

IV. EXPERIMENTAL 
SETUP 

 

A. Credit Dataset Preparation 
 

The dataset used in this study is retrieved from the Lending 

Club (LC) peer-to-peer lending which is available online 

(https://www.lendingclub.com/info/download-

data.action) on 4 April 2019. The LC website provides a 

huge database of customers range from year 2007 till 2019. 

For the experiment, a sample of the 36-month term loan of 

first quarter of 2016 is taken because the issued loans at this 

period have just reached maturity on April 2019, posing as 

the most recent loans that reached maturity. 

To prepare the credit dataset, this experiment focuses 

only on loan status that are fully paid and charged off. 

Variables having all empty values or more than 5% missing 

values are removed, and variables with less than 1% of 

missing value have the whole instance being removed as it 

is only a small loss of information. Missing data is imputed 

with mean (mode) for numerical (categorical) attributes. 

The resulting dataset has 49,461 issued loans and 23 

variables, with 42,178 fully paid and 7,463 charged off 

customers. Table 2 shows the attributes description of the 

dataset. 

 

 

 

 

 

a, b: Refer Table 1  
c: Refer Algorithm 1 

https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
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Table 2. Attributes in LC dataset 

Attributes  Type  

loan_amnt Numerical 

annual_inc Numerical 

dti Numerical 

delinq_2_year Numerical 

earliest_cr_line* Numerical 

inq_last_6mths Numerical 

open_acc Numerical 

pub_rec Numerical 

revol_util Numerical 

total_acc Numerical 

last_credit_pull_d** Numerical 

acc_now_delinq Numerical 

chargeoff_within_12mths Numerical 

delinq_amnt Numerical 

pub_rec_bankruptcies Numerical 

tax_liens Numerical 

inq_fi Numerical 

num_tl_120dpd_2m Numerical 

pct_tl_nvr Numerical 

home_ownership Categorical 

verification_status Categorical 

purpose Categorical 

initial_list_status Categorical 

The full name of the attributes details can be found in the 

LCDataDictionary.xls file in the LC website. 

*Transformed to how many years since first credit line opened. 

**Transformed to how many months since LC pulled credit. 

 

Numerical attributes are standardized by subtracting the 

column mean and dividing the standard deviation. Categorical 

attributes are converted to numerical attributes with the 

weight-of-evidence (WOE) transformation as discussed in 

Thomas (2000). 5-fold cross validation is applied on the 

dataset, and a holdout set is prepared as the validation set for 

hyperparameters tuning procedure to avoid overfitting 

problem. 

 

B. Performance Evaluation 

 
Accuracy (ACC) is the proportion of correctly classified 

instances in the data. ACC is a direct evaluation of the model 

performance but it is threshold-variant, where the value 

changes when the threshold, 𝜏  changes. Determining 𝜏  is 

usually assumption-based and posed as a problem in making 

concrete conclusion with ACC alone (Baesens et al., 2003). 

Hence, a threshold-invariant measure, AUC is also reported in 

this study. AUC gives a better picture on the discriminating 

ability of a model as it is the probability that a classifier will 

rank a randomly chosen positive example than a randomly 

chosen negative example (Fawcett, 2006). 

    Friedman test is conducted to test the significance of AUC 

between the compared models across the 5 test sets (from 

cross validation) for each dataset. Friedman test has been a 

popular significance test as it has been used in benchmark 

study (Lessmann et al., 2015). Post-hoc Nemenyi test is 

applied if there is significant difference reported from 

Friedman test. 

 

V. RESULTS AND DISCUSSIONS 
 

The proposed models are coded in R 3.5.1 and executed on 

2.70GHz Intel(R) Core(TM) i7-7500CPU with 4.00GB 

RAM under Windows 10 operating system. For parallel 

computation, the parallel environment is initiated with the 

‘doParallel' library in R 3.2.5 and executed on Linux based 

operating system using IBM system X360 M4 server with 

ten nodes of 2.0GHz Intel Xeon 6C processors. The 

experimental results are discussed based on model 

performances and computational time as reported in Table 

3. Model performances are evaluated with AUC and 

accuracy with two thresholds (ACC of default and ACC* 

specified for maximum accuracy). The two proposed hybrid 

models are compared with statistical models LOGIT, STEP 

and LDA, as well as RF tuned using Grid Search (GS). The 

search range of RF with GS is the same as the input range 

of the hybrid models as described in Section III-A. MHS-RF 

(P) denotes the parallelized MHS-RF, with the same 

seeding applied, hence resulting in only the difference in 

computational time. The best performances are reported in 

bold. 

 

Table 3. Model Performances 

 AUC ACC ACC* Time 

LOGIT 0.7468 0.8488 0.8508 9.77s 

STEP 0.7468 0.8485 0.8508 5.11min 

LDA 0.7481 0.8451 0.8498 6.55s 

RF 0.7702 0.8579 0.8593 7.96hrs 

HS-RF 0.7706 0.8586 0.8592 9.56hrs 

MHS-RF 0.7712 0.8582 0.8597 4.57hrs 

MHS-RF (P) 0.7712 0.8582 0.8597 1.43hrs 

𝜒𝑓𝑟𝑖𝑒𝑑𝑚𝑎𝑛
2 = 22.701, (0.000385) 

 

For AUC, ACC and ACC*, models from RF family have 

consistently outperformed the statistical models, indicating 

the flexibility of RF in capturing the dataset pattern. Among 

the three different tuning techniques for RF, the proposed 
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HS-RF and MHS-RF have consistently performed better than 

the GS-tuned RF, showing HS and MHS are competitive for 

hyperparameters tuning. The highest AUC and ACC* reported 

from MHS-RF indicate that MHS is effective in the tuning 

process. All ACC* are higher than ACC which is due to the 

threshold setting to obtain maximum accuracy, implying a 

change of threshold will change the accuracy evaluation, 

resulting in HS-RF to be the best in ACC while MHS-RF to be 

the best in ACC*. RF family is in general better than the 

statistical models, with HS-RF and MHS-RF are better than 

GS-tuned RF. 

AUC is the main focus in this study to evaluate the 

performance due to its threshold invariant property. The 

Friedman test statistics and p-value (in parenthesis) is reported 

in the last row of Table 3. The results shows significant 

differences between the five models. The corresponding post-

hoc test with the p-values are reported in Table 4, where pairs 

with significant difference at 5% significance are bolded. 

 

Table 4. Post-hoc Nemenyi Test 

 LOGIT STEP LDA RF HS-RF MHS-RF 

LOGIT - - - - - - 

STEP 1.00 - - - - - 

LDA 1.00 0.77 - - - - 

RF 0.11 0.048 0.77 - - - 

HS-RF 0.032 0.010 0.30 1.00 - - 

MHS-RF 0.018 0.004 0.24 1.00 1.00 - 

 

The AUC in Table 3 show better performance of RF family as 

compared to statistical models, and also better performance of 

the proposed hybrid models than the GS-tuned RF. According 

to the post-hoc Nemenyi test, there are only four pairs with 

significant difference i.e. both proposed hybrid models are 

significantly better than LOGIT and STEP. This implies that the 

hybrid HS-RF and MHS-RF are able to improve RF 

performances. 

 

VI. CONCLUSIONS AND FUTURE 
DIRECTIONS 

 

This study presents HS and MHS to be hybridized with RF for 

hyperparameters tuning. Both are proposed as an alternative to 

the usual manual repeated trial-and-error or GS approach in 

past research to tune RF hyperparameters. HS operators pose 

the flexibility to be modified to develop MHS for effective yet 

efficient hyperparameters search. 

The experiment is conducted on a real-life dataset from 

the Lending Club peer-to-peer lending loans which just 

reached maturity. Evaluation of the models based on AUC 

and ACC have shown the non-parametric RF performs 

better than standard statistical models of LOGIT, STEP and 

LDA. AUC is viewed as the main focus of performance 

evaluation due to its threshold-invariant property. HS-RF 

and MHS-RF have shown improvements compared with 

GS-tuned RF; indicating the effectiveness of HS and MHS 

as a potential MA to tune hyperparameters. The ability of 

MHS to perform hyperparameters tuning in a much shorter 

time shows the flexibility of HS to be modified. In addition, 

parallel computing has further enhanced computational 

efficiency. Statistical models may be more efficient than RF 

that requires hyperparameters tuning. But, to achieve a 

higher performance measure, additional procedure such as 

identification of interaction terms may be time-consuming 

as well. 

HS and MHS have been demonstrated as a competitive 

tool in hyperparameters tuning for RF. In consideration of 

both model performance and computational effort, MHS-

RF is concluded as the potential alternative for credit 

scoring. For possible future directions, the HS can be 

hybridized for hyperparameters tuning with other AI 

techniques as well. Besides, this study does not solve the 

black box property of RF. Possible future work can be 

focused to incorporate the features importance from RF for 

rules extraction. 
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