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Hourglass matrix is recently shown to be a subset of Z-matrix which can be obtained from Quadrant 

Interlocking Factorization (QIF) of nonsingular matrix. Unlike Z-matrix, the factorization of hourglass 

matrix may not exist for every nonsingular matrix. However, the potential applications of hourglass 

matrix and its QIF, such as in statistics (Markov chains), cryptography (GGH encryption scheme) and in 

graph theory (mixed graph), surpasses the counterpart Z-matrix and its WZ factorization. Lastly, 

hourglass matrix can be partitioned into triangular block matrices having Schur complement. 
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I. INTRODUCTION 
 

The appellation word "hourglass matrix" is coined by Demeure 

(1989) in describing the matrix derived from factorizing a 

square matrix, predominantly from real symmetric Toeplitz 

matrix or Hankel matrix  by computing the entries column by 

column via bowtie-hourglass factorization (WZ factorization 

or quadrant interlocking factorization (QIF)). However, WZ 

factorization of nonsingular matrix to yield a butterfly 

(hourglass) shaped dense square matrix called Z-matrix is first 

posited by D. Evans and Hatzopoulos (1979). W Z factorization 

has been modified and applied together with its block 

factorization being discussed, see for examples (B. Bylina, 

2018; D. J. Evans, 2002; Rhofi & Ameur, 2016). Z-matrix 

exists together with W-matrix during WZ factorization of non-

singular matrix 𝐵, such that (B. Bylina, 2003)  

 

𝐵 = 𝑊𝑍                                              (1) 

 

Where the entries in 𝑍 as  

 

ℎ𝑖,𝑗
∗(𝑘) = ℎ𝑖,𝑗

∗(𝑘−1)+𝑤𝑖,𝑘
∗(𝑘)ℎ𝑘,𝑗

∗(𝑘−1) + 𝑤1,𝑛−𝑘+1
∗(𝑘) ℎ𝑛−𝑘+1,𝑗

∗(𝑘−1)     (2) 

 

and the entries in 𝑊 are computed from 𝑤𝑖.𝑘
(𝑘)

 and 𝑤𝑖.𝑛−𝑘+1
(𝑘)

 as 

{
𝑧𝑘.𝑘
(𝑘−1)

𝑤𝑖.𝑘
(𝑘)
+ 𝑧𝑛−𝑘+1.𝑘

(𝑘−1)
𝑤𝑖.𝑛−𝑘+1
(𝑘)

= −𝑧𝑖.𝑘
(𝑘−1)

𝑧𝑘.𝑛−𝑘+1
(𝑘−1)

𝑤𝑖.𝑘
(𝑘)
+ 𝑧𝑛−𝑘+1.𝑛−𝑘+1

(𝑘−1)
𝑤𝑖.𝑛−𝑘+1
(𝑘)

= −𝑧𝑖.𝑛−𝑘+1
(𝑘−1)

      (3) 

 

For 𝑘 =  1, 2, . . . ,
𝑛

2
 ; 𝑖, 𝑗 =  𝑘 +  1, . . . , 𝑛 –  𝑘. The necessary 

and sufficient condition for matrix 𝐵 = [𝑏𝑗,𝑘]𝑗,𝑘=1
𝑛

 to be 

factorized is that the central submatrices 𝐵𝑛+2−2𝑙
𝑐 =

[𝑏𝑗,𝑘]𝑗,𝑘=1
𝑛+1−𝑙

  are nonsingular, where n is even order of matrix 

𝐵  (the assumption also holds for odd order) and 𝑐  the 

centered submatrix of 𝐵, for 𝑙 =  1, . . . ,
𝑛

2
 (Rao, 1997). The 

factorization is known for the adaptability of its direct 

method to solve 𝑛 ×  𝑛 linear systems given as (Heinig & 

Rost, 2011). 

 

                                              𝐵𝑥 = 𝑐                                              (4) 

 

where 

det(𝐵) ≠ 0,   𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 ,   𝑥, 𝑐 𝜖 ℝ𝑛, 𝐵 𝜖 ℝ𝑛×𝑛 

𝑐 = [𝑐1, 𝑐2, … , 𝑐𝑛]
𝑇  𝐵 = {𝑏𝑖𝑗}  1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

 

 More so, it was further elucidated that hourglass matrix 

is the same as Z-matrix which can be partitioned into 

blocks structured Z-system (J. Bylina & Bylina, 2016; 

Heinig & Rost, 2005). Unfortunately, there are changes in 

structure of Z-matrix from 𝑊𝑍 factorization or 𝑄𝐼𝐹 which 

depend on the type of matrix (Toeplitz, Hankel, Hermitian, 

centrosymmetric, diagonally dominant or tridiagonal 

matrix) being factorized. Nevertheless, 𝑍-matrix may not 
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always imply hourglass matrix nor their applications are 

always indistinguishable. Consequently, the synonymity 

between hourglass matrix and 𝑍-matrix dwindles over time 

without a cogent reason. Recently, Babarinsa and 

Kamarulhaili (2018) gave meticulous details of hourglass 

matrix and its quadrant interlocking factorization by 

restricting the computed entries of the factorization to be 

nonzero in comparison with the shape of hourglass device. 

This led them to conclude that hourglass matrix is a subset of 

𝑍-matrix. Thus, in Section II, we give the review of hourglass 

matrix and its factorization. While in Section III, the potential 

applications of hourglass matrix and its factorization are 

highlighted with some results. 

 

II. HOURGLASS MATRIX 
 

Definition 1. (Babarinsa & Kamarulhaili, 2018) Let 𝐻 be an 

hourglass matrix of order 𝑛(𝑛 ≥ 3)  with strictly nonzero 

elements ℎ𝑖,𝑗 𝜖 ℝ, defined as     

                     

𝐻 =

{
 
 

 
  ℎ𝑖,𝑗       1 ≤ 𝑖 ≤ ⌊

𝑛 + 1

2
⌋     𝑖 ≤ 𝑗 ≤ 𝑛 + 1 − 𝑖; 

 ℎ𝑖,𝑗       ⌈
𝑛 + 2

2
⌉ ≤ 𝑖 ≤ 𝑛    𝑛 + 1 − 𝑖 ≤ 𝑗 ≤ 𝑖;

 0,       otherwise.                                              

 

 

In other words, an hourglass matrix (H-matrix) is a 

nonsingular matrix of order 𝑛 (𝑛 ≥  3)  with nonzero entries 

from the ith to the (𝑛 −  𝑖 +  1) element of the ith and (𝑛 −

 𝑖 +  1) row of the matrix, 0’s otherwise for 𝑖 =  1, 2, . . . , ⌊
𝑛+1

2
⌋ 

(Babarinsa & Kamarulhaili, 2018). The authors referred 

quadrant interlocking factorization of nonsingular matrix to 

yield hourglass matrix as 𝑊𝐻 factorization, whereas 𝑍-matrix 

is obtained from 𝑊𝑍 factorization. Though the factorization of 

𝐻 -matrix and 𝑍 -matrix are quite similar, 𝑊𝐻  factorization 

restricts the computed entries to be nonzero at every stage 

during the factorization. Unlike 𝑊𝑍 factorization, 𝑊𝐻 

factorization specifies the number of times row-interchange 

can be applied at each stage of the factorization. The 𝑊𝑍 

factorization exists for every nonsingular matrix often with 

pivoting while 𝑊𝐻  factorization may fail to exist even if the 

matrix is nonsingular. 𝑊𝑍  and 𝑊𝐻  factorization require 𝑊 -

matrix to be computed during the factorization process. Unlike 

the factorization of 𝑍-matrix, the factorization for an hourglass 

matrix from a nonsingular matrix may not be from a symmetric 

positive definite or diagonally dominant matrix but definitely 

not from a tridiagonal matrix. Unlike 𝑍 -matrix, hourglass 

matrix of order 𝑛 has (𝑛
2+2𝑛−|(𝑛+1)𝑚𝑜𝑑 2−1|)

2
 

nonzero entries and  
(𝑛2−2𝑛+|(𝑛+1)𝑚𝑜𝑑 2−1|)

2
 zero entries. 

Therefore, the WH factorization gives  

 

𝐵 = 𝑊𝐻                                              (5) 

 

Proposition 1. (Babarinsa & Kamarulhaili, 2018) Let H be 

an hourglass matrix of order 𝑛(𝑛 ≥ 3) . Then, the 

determinant of hourglass matrix is  

 

𝑑𝑒𝑡(𝐻)

=

{
 
 
 

 
 
 

                 ∏ | 
ℎ𝑖,𝑖
(𝑖−1)

ℎ𝑖,𝑛+𝑖−1
(𝑖−1)

ℎ𝑛+𝑖−1,𝑖
(𝑖−1)

ℎ𝑛+𝑖−1,𝑛+𝑖−1
(𝑖−1)

|

⌈
𝑛−1
2 ⌉

𝑖=1

       𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

ℎ𝑛+1
2
,
𝑛+1
2

𝑛+1
2  ∏ | 

ℎ𝑖,𝑖
(𝑖−1)

ℎ𝑖,𝑛+𝑖−1
(𝑖−1)

ℎ𝑛+𝑖−1,𝑖
(𝑖−1)

ℎ𝑛+𝑖−1,𝑛+𝑖−1
(𝑖−1)

|

⌈
𝑛−1
2
⌉

𝑖=1

      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

 

   Partitioning of hourglass matrix of order 𝑛 (𝑛 >  3) into 

block triangular matrices gives 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, with each block 

containing ⌊𝑛
2
⌋ × ⌊𝑛

2
⌋matrices, see Equation (6). The partition 

gives exactly four blocks of triangular matrices if 𝑛 is even 

dimension while additional column vector, 𝑥̃, position at 𝑛+1
2

 

th column of the matrix if 𝑛 is odd dimension. The column 

vector 𝑥̃ can be further partitioned into 𝑥1, 𝑥 and 𝑥2, where 

𝑥1 and 𝑥2  have dimension of 
𝑛−1

2
× 1 , and 𝑥  an epicenter 

element (unit vector). Moreover, the major difference 

between 𝑍𝑠𝑦𝑠𝑡𝑒𝑚  and 𝐻𝑠𝑦𝑠𝑡𝑒𝑚  is that each block in 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 

has specific number of zero and nonzero entries, unlike 

𝑍𝑠𝑦𝑠𝑡𝑒𝑚  

𝐻𝑠𝑦𝑠𝑡𝑒𝑚 = [
𝐻1,1 𝐻1,2
𝐻2,1 𝐻2,2

]                               (6) 

Where 

𝐻1,1 = {
ℎ𝑖,𝑗                   1 ≤ 𝑖 ≤ ⌈

𝑛 − 1

2
⌉ ,    𝑖 ≤ 𝑗 ≤ ⌈

𝑛 − 1

2
⌉ ;   

 0,                    otherwise.                                              
 

𝐻1,2 = {
ℎ𝑖,𝑗        1 ≤ 𝑖 ≤ ⌈

𝑛 − 1

2
⌉,    ⌊

𝑛 + 3

2
⌋ ≤ 𝑗 ≤ 𝑛 + 1 − 𝑖;   

 0,              otherwise.                                                         
 

𝐻2,1 = {
ℎ𝑖,𝑗                 ⌊

𝑛 + 3

2
⌋ ≤ 𝑖 ≤ 𝑛,    ⌊

𝑛 + 3

2
⌋ ≤ 𝑗 ≤ 𝑖;   

 0,              otherwise.                                                         
 

𝐻2,1 = {
ℎ𝑖,𝑗         ⌊

𝑛 + 3

2
⌋ ≤ 𝑖 ≤ 𝑛,    𝑛 + 1 − 𝑖 ≤ 𝑗 ≤ ⌈

𝑛 − 1

2
⌉ ;  

 0,              otherwise.                                                         
 

 
The major difference between 𝑍𝑠𝑦𝑠𝑡𝑒𝑚  and 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 is that 

each block in 𝐻𝑠𝑦𝑠𝑡𝑒𝑚  has specific number of zero and 
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nonzero entries, unlike 𝑍𝑠𝑦𝑠𝑡𝑒𝑚. Like 𝑍𝑠𝑦𝑠𝑡𝑒𝑚, the determinant 

of 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 can easily be calculated from its blocks. We will 

concentrate on the even order of 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 . Then, the Schur 

complement of a matrix block in Equation (6) is defined as 

follows 

𝐻𝑠𝑦𝑠𝑡𝑒𝑚 𝐻1,1⁄ = 𝐻2,2 − 𝐻2,1𝐻1,1
−1𝐻1,2              (7) 

 

Theorem 1. Schur complement exists in Hsystem only if H-

matrix is nonsingular. 

Proof 

For the existence of 𝐻-matrix like 𝑍-matrix, the necessary and 

sufficient condition for 𝑊𝐻 factorization is that matrix 𝐵 

must be centro-nonsingular. First, let 𝐻-matrix of even order 

being factorized from nonsingular matrix 𝐵 be 

 

Where 𝑘 =  1, 2, . . . ,
𝑛

2
 ; 𝑙 =  𝑛 –  𝑘 + 1.. Then, the determinant 

of 𝐻-matrix is 

det (𝐻) = 𝑑𝑒𝑡 [

𝛼𝑘,𝑘 ⋯ 𝛽𝑘,𝑙
⋮ ⋱ ⋮
𝛾𝑙,𝑘 ⋯ 𝛿𝑙,𝑙

]

1≤𝑘≤𝑛2; 𝑙=𝑛−𝑘+1

 

∏ (𝛼𝑘,𝑘𝛿𝑙,𝑙 − 𝛽𝑘,𝑙𝛾𝑙,𝑘)𝑙=𝑛−𝑘+1 ≠ 0
𝑛
2

𝑘=1                    (9) 

 

Next, partition Equation (8) into 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 of 2 ×  2 triangular 

block matrices as 

 

𝐻𝑠𝑦𝑠𝑡𝑒𝑚 = [
𝐻1,1 𝐻1,2
𝐻2,1 𝐻2,2

]                                (10) 

 

If each 2 × 2 triangular block matrix is singular (or 𝐻1,1𝐻2,2 =

𝐻1,2𝐻2,1 ), then 𝐻𝑠𝑦𝑠𝑡𝑒𝑚  is not invertible which contradicts 

Equation (9). Thus, there exist at least two nonsingular 

triangular block matrices in 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 . If 𝐻1,1  is invertible as 

well as 𝐻2,2 (this is also true for 𝐻1,2 and 𝐻2,1), then the Schur 

complement of the block 𝐻1,1 in 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 is given as 

 

𝐻2,2 −𝐻2,1𝐻1,1
−1𝐻1,2                                  (11) 

The determinant of Equation (11) is nonsingular because 

𝐻2,2 −𝐻2,1𝐻1,1
−1𝐻1,2 is a lower triangular invertible matrix 

and 

det(𝐻2,2−𝐻2,1𝐻1,1
−1𝐻1,2)

det(𝐻1,1)
≠ 0. 

Thus, 

det(𝐻𝑠𝑦𝑠𝑡𝑒𝑚) = det(𝐻1,1) det (𝐻2,2 −𝐻2,1𝐻1,1
−1𝐻1,2). 

This shows that the Schur complement of 𝐻𝑠𝑦𝑠𝑡𝑒𝑚 

depends on the existence of 𝐻-matrix.  

 

III. POTENTIAL APPLICATIONS 
OF HOURGLASS MATRIX 
AND ITS QIF ALGORITHM 

 

A. Statistics: Markov chains 
 

𝑊𝑍  factorization has been applied to find the numerical 

solutions of Markov chains, see (B. Bylina & Bylina, 2004, 

2009). However, we can replace 𝑊𝑍  factorization with 𝑊𝐻 

factorization in modeling with Markov chains. Markov 

models are the most useful ones to describe queueing 

models. A homogeneous continuous-time Markov chain 

can be described with one singular matrix 

 

𝑄 = (𝑞𝑖𝑗)𝑖,𝑗=1,2,….,𝑛
                                (12) 

 

called the transition rate matrix given by 

 

𝑞𝑖𝑗 = lim
∆𝑡→0

𝑝𝑖𝑗(∆𝑡)

∆𝑡                                        (13) 

 

and by  

𝑞𝑖𝑖 = −∑𝑞𝑖𝑗
𝑖≠𝑗

 

                               (14) 

for 𝑖 ≠ 𝑗. 

 

We need to find 𝑥 =  𝜋𝑇  the vector of the stationary 

probabilities 𝜋𝑖 that the system is in the state 𝑖 at the time 𝑡 

from: 

 

𝑄𝑇𝑥 = 0,        𝑥 ≥ 0,         𝑥𝑇𝑒 = 1                      (15) 

 

where 𝑄  is an 𝑛 ×  𝑛  transition rate matrix (with 

dominant diagonal and rank (𝑛 − 1) , 𝑥  a vector of state 
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probabilities and 𝑒 =  (1, 1, . . . , 1)𝑇 . The most intuitive 

approach to solve a homogenous linear system Equation (15) is 

to replace an arbitrary equation of that system with the 

normalization equation  𝑥𝑇𝑒 = 1. Let 𝑄𝑝 be the matrix 𝑄 with 

the 𝑝th column replaced with the vector 𝑒, then the system can 

be written as 𝑄𝑝
𝑇𝑥 = 𝑒𝑝 , where 𝑒𝑝 = (𝜌𝑖𝑝) for 𝑖 =  1, . . . , 𝑛. Let 

𝑄𝑝
𝑇 = 𝑊𝑍. Solving Equation (4) with 𝑊𝑍 factorization to have 

 

{
𝑊𝑦 = 𝑐
𝑍𝑥 = 𝑦

 

 

we can set 𝑍𝑥 =  𝑦 in the system 𝑊𝑍𝑥 =  𝑒𝑝 to get 𝑊𝑦 = 𝑒𝑝. 

From which it is obvious that 𝑦 = 𝑒𝑝  bacause 𝑊  is 

unimodular matrix, where we can now solve the system 𝑍𝑥 =

 𝑒𝑝. However, we may apply 𝑊𝐻 factorization instead of the 

classical 𝑊𝑍  factorization in the Markov chains by letting 

𝑄𝑝
𝑇 = 𝑊𝐻 . Now, we set 𝐻𝑥 =  𝑦 in the system 𝑊𝐻𝑥 = 𝑒𝑝  to 

get 𝑊𝑦 = 𝑒𝑝  and then solve the system 𝐻𝑥 = 𝑒𝑝 . 

Preconditioning prevents the problem of convergence of the 

coefficient matrix 𝑄  of the linear system. Since 𝑄  is ill-

conditioned matrix, then Equation (15) can be transformed by 

preconditioning it as 

 

𝑀−1𝑄𝑇𝑥 = 0,        𝑥 ≥ 0,         𝑥𝑇𝑒 = 1                     (16) 

 

where 𝑀 is a nonsingular matrix. However, Equation (15) and 

Equation (16) have the same solution but different condition 

number with accuracy ‖𝑀−1𝑄𝑇𝑥 − 0‖. 

 

B. Cryptography: Goldreich-Goldwasser-Halevi 
encryption scheme 

 

Cryptography is a science of information security which aims to 

achieve security goals such as confidentiality, authentication, 

data integrity and nonrepudiation (Schneier, 2007). Most of 

the available cryptographic schemes widely deployed today 

lying in their security on the hardness of number theoretic hard 

problems such as integer factorization problem (IFP), discrete 

logarithm problem (DLP) and elliptic curve discrete logarithm 

problem (ECDLP). The most establish cryptographic schemes 

which rely on these problems are Rivest-Shamir-Adleman 

(RSA), El-Gamal and elliptic curve cryptosystems. However, 

the security of these schemes can be compromised due to the 

existence of powerful algorithm known as Shor’s quantum 

algorithm which can solve these problems in reasonable 

amount of time (Shor, 1994). Unfortunately, the algorithm 

requires a fully functioning quantum computer to be 

executed effectively. Therefore, it is prudent to find 

alternatives to avoid global security threats once the fully 

functioning quantum computer is being established. 

   One of the most promising candidates to replace the 

number theoretic-based cryptographic schemes is lattice-

based cryptography (Schneier, 2007). The idea behind the 

lattice-based cryptography is to exploit the immunity of 

some lattice problems such as the shortest vector problem 

(SVP) and closest vector problem (CVP) against the Shor’s 

quantum algorithm (Ekert & Jozsa, 1996). Another selling 

point of the lattice-based cryptography is the establishment 

of relationship between the worst case and average case 

hardness of these lattice problems. The earliest lattice-

based encryption scheme which was considered as the most 

practical scheme is Goldreich-Goldwasser-Halevi 

encryption scheme or GGH scheme. Through various 

empirical results, Goldreich, Goldwasser, and Halevi (1997) 

analysed the security of the GGH scheme and conjectured 

that the scheme was intractable in practice for a lattice 

dimension above 300. However, the key size of the GGH 

scheme is larger than those cryptosystems since the public 

and private keys of the GGH scheme are the lattice bases. 

Due to the attack on the GGH Scheme, Nguyen (1999) 

discovered that the main weaknesses of the scheme are due 

to its key generation process. The generated public basis 𝐵 

allowed his attack to succeed in simplifying the underlying 

lattice CVP instance into its simpler form. Although 

Nguyen’s attack successfully decrypted the published GGH 

internet challenges up to lattice dimension of 350. The 

security of GGH scheme can still be upgraded by improving 

the key generation processes to address the weaknesses 

exploited by Nguyen’s attack. The improvement is not only 

on the security aspect to make the GGH Scheme stronger 

than its original version, but also in efficiency aspect. The 

size of the bases should be reduced to allow larger lattice 

dimension to be implemented while keeping the scheme 

practical. Suppose that 𝐵,𝐻 𝜖 ℝ𝑛×𝑛  be nonsingular with 

linearly independent vectors 𝑏⃗ 1, 𝑏⃗ 2… , 𝑏⃗ 𝑛 and ℎ⃗ 1, ℎ⃗ 2… , ℎ⃗ 𝑛 as 

their columns respectively. The lattice 𝐿(𝐵) ⊂ ℝ𝑛  that 

spanned by the basis 𝐵 is defined as follow  

 

𝐿(𝐵) = {∑ 𝜇𝑖,𝑗𝑏⃗ 𝑖

𝑛

𝑖,𝑗=1

| 𝑏⃗ 𝑖 ∈ 𝐵 and 𝜇𝑖,𝑗 ∈ ℤ, ∀𝑖, 𝑗 = 1,… , 𝑛} 
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and the lattice 𝐿(𝐻) ⊂ ℝ𝑛  that spanned by the basis 𝐻  is 

defined as follow 

 

𝐿(𝐻) = {∑ 𝜏𝑖,𝑗ℎ⃗ 𝑖

𝑛

𝑖,𝑗=1

|  ℎ⃗ 𝑖 ∈ 𝐻 and 𝜏𝑖,𝑗 ∈ ℤ, ∀𝑖, 𝑗 = 1,… , 𝑛} 

 

To ensure that the bases 𝐵 and 𝐻 are spanning the same lattice, 

i.e., 𝐿(𝐵) = 𝐿(𝐻), the matrix 𝑊 is required to be a unimodular 

matrix with det(𝑊) = ±1. 

 

Proposition 2: Let 𝐵,𝐻 ∈ ℝ𝑛×𝑛  be two non-singular square 

matrices such that 𝐵 = 𝐻𝑊  where 𝑊 ∈ ℤ𝑛×𝑛 . If 𝑊  is a 

unimodular matrix, the 𝐵  and 𝐻  are bases that spanning the 

same lattice, i.e., 𝐿(𝐵) = 𝐿(𝐻). 

Proof 

Suppose the matrices 𝐵,𝐻 ∈ ℝ𝑛×𝑛  are the basis of the lattice 

𝐿(𝐵) and 𝐿(𝐻) respectively. This implies that, the basis vectors 

𝑏⃗ 1, 𝑏⃗ 2… , 𝑏⃗ 𝑛 ∈ 𝐿(𝐵) and  ℎ⃗ 1, ℎ⃗ 2… , ℎ⃗ 𝑛 ∈ 𝐿(𝐻). Given that 𝐵 = 𝐻𝑊. 

Then we have,  

 

[
 
 
 
𝑏1,1
𝑏2,1
⋮
𝑏𝑛,1

    

𝑏1,2
𝑏2,2
⋮
𝑏𝑛,2

    

⋯
⋯
⋱
⋯

    

𝑏1,𝑛
𝑏2,𝑛
⋮
𝑏𝑛,𝑛]

 
 
 

=

[
 
 
 
ℎ1,1
ℎ2,1
⋮
ℎ𝑛,1

    

ℎ1,2
ℎ2,2
⋮
ℎ𝑛,2

    

⋯
⋯
⋱
⋯

    

ℎ1,𝑛
ℎ2,𝑛
⋮

ℎ𝑛,𝑛]
 
 
 
[

𝑤1,1
𝑤2,1
⋮

𝑤𝑛,1

    

𝑤1,2
𝑤2,2
⋮

𝑤𝑛,2

    

⋯
⋯
⋱
⋯

    

𝑤1,𝑛
𝑤2,𝑛
⋮

𝑤𝑛,𝑛

] 

[𝑏⃗ 1    𝑏⃗ 2     ⋯    𝑏⃗ 𝑛] = [ℎ⃗ 1    ℎ⃗ 2     ⋯    ℎ⃗ 𝑛][𝑤⃗⃗ 1    𝑤⃗⃗ 2     ⋯    𝑤⃗⃗ 𝑛] 

 

Note that, each of the 𝑏⃗ 𝑗  vectors can be represented as follows 

 

𝑏⃗ 𝑗 = 𝑤1,𝑗ℎ⃗ 1 +𝑤2,𝑗ℎ⃗ 2 +⋯+𝑤𝑛,𝑗ℎ⃗ 𝑛 

 

for all 𝑗 = 1,… , 𝑛. Assume that, 𝑊 is a unimodular matrix. Then, 

the scalars 𝑤𝑖,𝑗 ∈ ℤ for all 𝑤𝑖,𝑗 ∈ 𝑊. This implies that, the basis 

vectors 𝑏⃗ 1, 𝑏⃗ 2… , 𝑏⃗ 𝑛 ∈ 𝐿(𝐻). Hence, we have  

 

𝐿(𝐵) ⊂ 𝐿(𝐻) 

 

Since 𝑊  is a unimodular matrix, then det(𝑊) = ±1 . That 

means, there exists 𝑊−1  such that 𝑊𝑊−1 = 𝐼. For simplicity, 

we let 𝑊−1 = 𝑈. From 𝐵 = 𝐻𝑊, now we have 

 

𝐻 = 𝐵𝑊−1 

𝐻 = 𝐵𝑈 

[
 
 
 
ℎ1,1
ℎ2,1
⋮
ℎ𝑛,1

    

ℎ1,2
ℎ2,2
⋮
ℎ𝑛,2

    

⋯
⋯
⋱
⋯

    

ℎ1,𝑛
ℎ2,𝑛
⋮

ℎ𝑛,𝑛]
 
 
 

=

[
 
 
 
𝑏1,1
𝑏2,1
⋮
𝑏𝑛,1

    

𝑏1,2
𝑏2,2
⋮
𝑏𝑛,2

    

⋯
⋯
⋱
⋯

    

𝑏1,𝑛
𝑏2,𝑛
⋮
𝑏𝑛,𝑛]

 
 
 
[

𝑢1,1
𝑢2,1
⋮
𝑢𝑛,1

    

𝑢1,2
𝑢2,2
⋮
𝑢𝑛,2

    

⋯
⋯
⋱
⋯

    

𝑢1,𝑛
𝑢2,𝑛
⋮

𝑢𝑛,𝑛

] 

[ℎ⃗ 1    ℎ⃗ 2     ⋯    ℎ⃗ 𝑛] = [𝑏⃗ 1    𝑏⃗ 2     ⋯    𝑏⃗ 𝑛][𝑢⃗ 1    𝑢⃗ 2     ⋯    𝑢⃗ 𝑛] 

 

Note that, each of the ℎ⃗ 𝑗  vectors can be represented as 

follows 

 

ℎ⃗ 𝑗 = 𝑢1,𝑗𝑏⃗ 1 + 𝑢2,𝑗𝑏⃗ 2 +⋯+ 𝑢𝑛,𝑗𝑏⃗ 𝑛 

 

for all 𝑗 = 1,… , 𝑛 . Since 𝑊  is a unimodular matrix, then 

𝑊−1 = 𝑈  is also a unimodular matrix. That means, the 

scalars 𝑢𝑖,𝑗 ∈ ℤ for all 𝑢𝑖,𝑗 ∈ 𝑈.  This implies that, the basis 

vectors ℎ⃗ 1, ℎ⃗ 2… , ℎ⃗ 𝑛 ∈ 𝐿(𝐵). Hence, we have 

 

𝐿(𝐻) ⊂ 𝐿(𝐵) 

 

Since 𝐿(𝐵) ⊂ 𝐿(𝐻)  and 𝐿(𝐻) ⊂ 𝐿(𝐵) , therefore we have 

shown that 

 

𝐿(𝐵) = 𝐿(𝐻) 

 

when 𝑊 is a unimodular matrix.          

 

Based on the structure of hourglass matrix, the matrix 

could be potentially used as the key (basis) in the GGH 

encryption scheme. The usage of hourglass matrix is 

expected to be able to reduce the size of bases, especially the 

public key. Almost half of the entries of the hourglass matrix 

are zero entries, which means the size of public key can be 

reduced if the public key is generated in the form of 

hourglass matrix. This reduction will allow the GGH 

Scheme to be implemented in higher lattice dimension 

while still being able to be efficient and practical. Hourglass 

matrix has linearly independent columns forming the basis 

of a lattice, which makes it suitable for GGH scheme. In 

addition, the generation of hourglass matrix from QIF 

processes can be executed in polynomial time. This give 

more advantages in terms of efficiency. 
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C. Graph theory: Mixed graph 
 

A simple graph 𝐺 =  (𝑉, 𝐸) is an ordered pair consisting of a 

set of vertices 𝑉 = { 𝑣1,  𝑣2… 𝑣𝑛 } and a set of undirected edges 

𝐸 = { 𝑒1,  𝑒2… 𝑒𝑛 }, no loop or multiple edges permitted (Rosen 

& Krithivasan, 2015). A directed graph or digraph is a graph 

that contains only set of directed arcs with the set of vertices 

𝑉 = { 𝑣1,  𝑣2… 𝑣𝑛 } (Rosen & Krithivasan, 2015)A mixed graph 

𝐺 =  (𝑉, 𝐸, 𝐴) is an ordered triple consisting a set of vertices 

𝑉 = { 𝑣1,  𝑣2… 𝑣𝑛 } , a set of undirected edges 𝐸 =

{ 𝑒1,  𝑒2… 𝑒𝑛 } and a set of directed arcs 𝐴  (Arumugam, 

Brandstädt, Nishizeki, & Thulasiraman, 2016). The unweighted 

mixed adjacency matrix of a mixed graph 𝐺 is defined as 𝑀 =

 𝑀(𝐺)  =  [𝑚𝑖𝑗] as an 𝑛 × 𝑛 . matrix indexed by the vertices 

{ 𝑣1,  𝑣2… 𝑣𝑛 }, where 𝑚𝑖𝑗 = 1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸 , 𝑚𝑖𝑗 = −1 if 𝑣𝑖𝑣𝑗 ∈ 𝐴, 

and 𝑚𝑖𝑗 = 0 otherwise; see for instance (Adiga, Rakshith, & So, 

2016; Guo & Mohar, 2015). 

A butterfly graph (hourglass graph) is a is a planar undirected 

graph formed by at least two triangles intersecting in a single 

vertex, especially from 5-vertex graph of two k3’s or from 

friendship graph F2, see (Alikhani, Brown, & Jahari, 2016; Liu, 

Zhu, Shan, & Das, 2017; Ponraj, Narayanan, & Ramasamy, 

2015). However, the hourglass graph discusses here is a mixed 

complete graph coined from the name of its mixed adjacency 

matrix which is obtained from hourglass matrix. A direct 

representation of hourglass matrix to weighted hourglass-

adjacency matrix will produce a weighted mixed hourglass 

graph with loops and with or without multiple arcs and 

undirected edges. There are conditions to be met if the 

weighted mixed hourglass graph of weighted mixed hourglass-

adjacency matrix is to be represented, such as taking absolute 

value of negative weights and making all entries on the anti-

diagonal the same to avoid multiple arcs and produce edges 

instead. However, the nature of the entries in hourglass matrix 

solely depends on the factorization and it is responsible for the 

weight in the graph. The inconsistence in the representation 

can be avoided if we consider mixed hourglass-adjacency 

matrix from the weighted mixed hourglass-adjacency matrix. 

To do this, we replace the nonzero entries (weights) of the 

weighted mixed hourglass-adjacency matrix with 1’s if there 

exists an undirected edge, -1’s if there exists an arc or loop and 

0’s otherwise, see (Babarinsa & Kamarulhaili, 2019). In order 

to avoid loops, we assign 0’s to the diagonal of the mixed 

hourglass-adjacency matrix 𝑀(𝒢)  to obtain mixed 

hourglass graph 𝒢 with an edge joining 𝑣𝑖 and 𝑣(𝑛+1−𝑖); for 

𝑖 =  1, 2, … , ⌈𝑛−1
2
⌉  . With this, the mixed energy, spanning 

subgraph, Zagreb index and k-factorization of the graph can 

be obtained from mixed hourglass graph. 

Definition 2. (Babarinsa & Kamarulhaili, 2019) A mixed 
hourglass-adjacency matrix  𝑀(𝒢)  of a mixed hourglass 

graph 𝒢  is the 𝑛 × 𝑛(𝑛 ≥ 3)  matrix  𝑀(𝒢) = (ℎ𝑖,𝑗)𝑛×𝑛 

defined by 

 

𝑀(𝒢) = {

1       if 𝑣𝑖𝑣𝐽 is an edge;

−1       if (𝑣𝑖 , 𝑣𝐽) is an arc;

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

 

Proposition 3. Let 𝒢 be a mixed hourglass graph and let 

 det (M(𝒢)) be the determinant of mixed hourglass-

adjacency matrix M(𝒢) of order n. Then 

 

𝑑𝑒𝑡(𝑀(𝒢)) = {

0             𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑                           
−1         𝑖𝑓 𝑛 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑜𝑑𝑑
1         𝑖𝑓 𝑛 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

Proof  

We let 𝑑𝑒𝑡(𝑀(𝒢)) = 𝑐𝑜𝑠 (
𝜋𝑛

2
)  because −1 ≤ 𝑐𝑜𝑠 (

𝜋𝑛

2
) ≤ 1 

irrespective of the value of 𝑛 . Noticeably, when 𝑛  is odd 

then 𝑐𝑜𝑠 (
𝜋𝑛

2
) = 0. If 𝑛 is even, then 𝑛 = 2𝑘  for 𝑘 ∈ ℕ. We 

have, 

𝑐𝑜𝑠 (
𝜋𝑛

2
) = cos(𝜋𝑘) = (−1)𝑘 

Thus, 

(−1)𝑘 = {
1          𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛
−1     𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑.

 

Therefore, 

 

𝑐𝑜𝑠 (
𝜋𝑛

2
)

=

{
 

 
0              𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑                                        

(−1)𝑘 = {

0                                  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
−1     𝑖𝑓 𝑛 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑜𝑑𝑑
1      𝑖𝑓 𝑛 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛.

}
 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

 

IV. CONCLUSION 
 

Results on hourglass matrix and its quadrant interlocking 

factorization hasbeen discussed. The applications of the 

matrix and its factorization has been highlighted. We 

conclude that 𝑊𝐻 factorization may not exist for every 
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nonsingular matrix even if the matrix can be factorized from 

𝑊𝑍  factorization. However, the advantages of hourglass 

matrix go beyond scientific computing and surpass its 

counterpart 𝑍-matrix. 
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