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This paper presents the development of mathematical model on the flow of viscoelastic fluid 

associated with microrotation properties under boundary layer approximation. The respective 

fluid, also known as viscoelastic micropolar fluid is a member of the non-Newtonian fluid family 

that contains microstructure while displaying the characteristic of being viscous and elastic. Due to 

the intricate nature of the fluid and enhanced with the fact that the fluid flows over a bluff body, a 

complex mathematical model is proposed. The governing equations are derived from the three 

fundamental physical principals upon which all fluid dynamics are based and later expressed as 

two-dimensional boundary-layer coordinate. The complexity of the model is reduced after 

undergoing the boundary layer and Boussinesq approximation. Before it is solved numerically, the 

mathematical equations of the respective model are subjected to another transformation where the 

associated equations are changed into dimensionless form and can be written in the simplest form 

of ordinary or partial differential equations. 
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List of symbols 

 

a  radius of cylinder 

u,v  
dimensional velocity component along x , y

axes 

u,v  
non-dimensional velocity component 

along  x,y axes 

x ,y  
dimensional boundary layer cording along the 

surface of cylinder and normal to it 

x,y  
non-dimensional boundary layer cording along 

the surface of cylinder and normal to it 

k  thermal conductivity 

pc  specific heat 

bF  body force 

H
 

non-dimensional microrotation 

H
 

dimensional microrotation 

  j microinertia density 

 p pressure 

V
 

dimensional velocity vector 

 T dimensional temperature 

 B magnetic field strength 

 g gravitational force 

Re Reynolds number 

M magnetic parameter 

eu
 

free stream velocity 

wT
 surface temperature 

T  ambient temperature 

 
Greek symbols 
 
  fluid density 

  stress tensor 

  vortex viscosity 
  dynamic viscosity 

  non-dimensional temperature 

  electrical conductivity 

  mixed convection parameter 

  thermal expansion coefficient 


 inclination angle 
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I. INTRODUCTION 
 

Microrotation and viscoelasticity properties of fluid plays 

significant roles in engineering applications. Micropolar 

fluid, for example has proven to be better lubricants than 

other fluid with the same viscosity. According to (Tipei, 

1979), lubricants with microrotational properties generates 

higher pressure and load carrying capacity while enhancing 

bearing performance. Similar studies on micropolar fluids as 

lubricants have also been shown in (Prakash & Sinha, 1975; 

Zu-gan & Zhang-ji, 1987; Das & Guha, 2018). The 

mathematical concept of micropolar fluid has been discussed 

in details by (Lukaszewicz, 1999) in his work and besides 

lubrication theory, other applications in daily life of the fluid 

has also been highlighted. Among them is how micropolar 

model can serve to represent biological flows such as the 

blood flow in our body and lubrication in human joints which 

is a great contribution in biomedical engineering.  

Viscoleastic fluid is viscous fluid with elasticity 

characteristics such as paints, polymeric fluids, DNA 

suspension and even some biological fluid (Perez-Reyes et 

al.,2018). In industry, dampers are crucial for ventilation 

system and the existence of viscoelasticity in damping agent 

is able to improve the performance of a typical industrial 

damper (Ashrafi & Eskafi, 2011). According to (Nie & 

Kumacheva, 2008), viscoelastic fluid also plays a big role in 

photolithography process to create pattern on surface such as 

for semiconductor microelectronics and plastic electronics. 

Other practical application of viscoelastic fluid involves drag 

reduction and polymeric suspensions.  

Since the viscoelastic and micropolar has been proven to 

have important applications, the mathematical model of both 

fluid has been presented and solved independently in various 

studies since decades ago. The mathematical study on 

micropolar fluid has been led by (Eringen, 1966) which has 

then motivated other researchers to explore the fluid flow at 

various geometrics and effects including ((Nazar et al., 2003) 

and (Salleh et al., 2012). The development of mathematical 

model on viscoelastic fluid is also as popular, dated as early 

as 1960s. Among existing models of the flow of viscoelastic 

fluid that also considers the MHD effect are (Andersson, 

1992; Rashidi et al., 2014; Aziz et al., 2017). 

What sets apart the mathematical model in this study and 

the previous models is that our major interest is in fluid with 

merging characteristics of elasticity and microrotation effect. 

The flow of viscoelastic micropolar fluid in circular tube and 

between rotating coaxial cylinder has been proposed by 

(Yeremeyev & Zubov, 1999) while (Madhavi et al., 2019)    

focuses on the heat transfer of similar fluid from a vertical 

cone. This study on the other hand, will concentrate on 

the derivation of the flow of viscoelastic micropolar fluid 

on horizontal circular cylinder with the presence of MHD 

effect.      

 

II. GOVERNING 
EQUATIONS 

 
The flow of incompressible fluid can be well described by 

the famous Navier-Stokes equations which embodied  the 

fundamental physical principles that mass, momentum 

and energy are conserved (Cebeci & Cousteix, 2005). The 

viscoelastic micropolar model which consists of four 

equations, namely the continuity, momentum, angular 

momentum and energy equation is an extended version of 

the Navier-Stokes model that can be expressed by the 

following equations.   

 

Continuity equation: 

0  =V  (1) 
 

Momentum equation: 

bp
t

 
+  = − +  + 

 
 

V
V V F  (2) 

where  ( )( ) ( )02 2k = + −d d  

 

Angular momentum equation:  

( ) ( ) 22j H = + − + + V H V H    (3) 

 

Energy equation: 

( ) 2
pc T k =  V     (4) 

  

Comparing this model to the classic viscoelastic model in 

(Mohd Kasim et al., 2013), an additional angular 

momentum equation as derived by (Tipei, 1979) and 

(Eremeyev et al., 2013) is incorporated in our fluid model 

to describe the rotation and movement of the 

microstructures in the complex fluid. The microinertia 

density and the spin gradient viscosity in the equation are 

defined as 
a

j
U





= and 
2

j
 


+ 

=  
 

. An extra parameter,

  has also been added in the momentum equation to 

further explain the characteristics of micropolar fluid.  
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III. MATHEMATICAL 
ANALYSIS 

 

A set of governing dimensional equations are derived from 

equation (1) to (4) and written in two-dimensional Cartesian 

coordinate system as follows.  

 

Continuity equation: 

0
u v

x y

 
+ =

 
 (5) 

 

x-momentum equation: 

2 2

2 2

3 3 3 3

3 2 2 3

2 2 2 2
0

2 2

2

1

3

2

u u p u u N
u v

x y x yx y

u u u u
u v

x x y x y y

k u v u u v u

y x y x x yx y

v u

x x y

g T

     +     
+ = − + + + 

         

       
+ + + −    

            
 

         
− + + +                  

 
  −

   
 

+  −( ) 2 2x
T sin uB sin

a


 
−  
 

 (6) 

 

y-momentum equation: 

2 2

2 2

3 3 3 3

3 2 2 3

2 2 2 2
0

2 2 2

2

1

3

2

v v p v v N
u v

x y y xx y

v v v v
u v

x x y x y y

k v u v v v v

x x y yy y x

u v

y x y

g T T

    +   
+ = − + + + 

      

       
+ + +    

            
 

         
− − + − −                

 
  −

   
 

− −

  

  



 ( ) 2 2x
cos vB sin

a


 
− 

 






 (7) 

 

Angular momentum equation: 

2 2

2 2
2

H H u v H H
j u v H

x y y x x y

         
+ = − + − + +               

    (8) 

 

Energy equation: 

2 2

2 2

T T T T
u v

x y x y

    
+ = + 

     

  (9) 

 

Then  equation (5) to (9) are transformed to dimensionless 

form by using these variables (Kasim, 2014; Mohammad 2015) 

to simplify our computation by eliminating the unit of each 

variable and parameter involved.  

1 1
2 2

1
2

2
w

x y u v
x ,y Re ,u ,v Re ,

a a U U

a p T T
H Re H , p ,

U T TU

 

− 

 

= = = =

−
= = =

−




 (10) 

 

and  

( ) 32

2

0
12 2

wg T T aB a U a
M ,Re ,Gr ,

U

k ReGr
,K ,K

Re a





−
= = =

= = =



  




 

  

 

A. Dimensionless Equation 

 
As a result, these dimensionless equations are produced.  

 

Continuity equation: 

0
u v

x y

 
+ =

 
 (11) 

 

x-momentum equation: 

( ) 2 2
1

2 2

2
1

3 3 2 2

3 2 2

3 3 2 2

2 3 2

2

1

1
3

2

Ku u p u u
u v Re

x y x Re x y

N
K sin x Mu sin

y

u u u v u v
u v

Re y x x yx x y x

u u u u u u
K u v

y x y xx y y y

v u

Re x x y

 +    
+ = − + + 

      


+ + −



       
+ − +  

         

       

− + + − +          


 −
   
 

 











 

(12) 

 

y-momentum equation: 

( ) 2 2
1

2 2

21
1

2

3 3 2 2

2 3 2 2

3 3 2 2

2 3 2 2

2

11 1

1

3
1

2

Kv v p v v
u v

Re x y y Re Re x y

K H Mv
cos x sin

Re x Re
Re

v v v v v v
u v

x x y yRe x x y x

v v v u v vK u v
x yx y y y y

Re u v

y x y

 +     
+ = − + +           


− + −



      
+ − + + 

        

      − + − −
     

 
−

  


 

 
 
 
 

 
  
  
  
  
   

 

(13) 
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Angular momentum equation: 

1

2 2
1

2 2

1
2

1 1

2

H H u v
u v K H

x y y Re x

K H H

Re x y

    
+ = − + − 

    

 +   
+ +       

 (14) 

 

Energy equation: 

2 2

2 2

1 1

Pr
u v

x y Re x y

    
+ = + 

     

   
 (15) 

 

B. Boundary Layer Approximation 

 

Due to the complex nature of the fluid, the governing 
equations are fairly as complicated. With the purpose to 
reduce the complexity, some of the partial derivative terms are 
eliminated by using the boundary layer approximation. Since 

Re→    in boundary layer flows, hence 
1

0.
Re

→  As a result, 

all terms with reciprocal of the Reynold numbers can be 
discarded  from our model.  

 
Continuity equation: 

0
u v

x y

 
+ =

 
 (16) 

 

Momentum equation: 

( )
2

1 12

3 3 2 2

2 3 2

2

1
u u p u N

u v K K
x y x yy

u u u u u u
K u v

y x y xx y y y

sin x Mu sin

    
+ = − + + +

   

      
− + − + 

        

+ − 

 
(17) 

 

Angular momentum equation: 

2
1

1 2

1
2

2

H H u K H
u v K H

x y y y

    +  
+ = − + +   

     
 (18) 

 

Energy equation: 

2

2

1

Pr
u v

x y y

  
+ =

  

  
 (19) 

 

For the momentum equation, only one equation remains in 

the model since for y-momentum equation, 0
p

.
y


− =


This 

implies that the pressure of the flow is only dependant on x.  

Considering the case of mixed convection, referring to 

(Mohammad ,2015), the momentum equation outside the 

boundary layer region is given by  

e
e e

dup
u Mu

x dx


− = +


 (20) 

where the velocity for the region is represented by eu .  

Substituting equation (20) into (17), the momentum 

equation can be rewritten as  

   

( )

( )

2

1 12

3 3 2 2

2 3 2

2

1e
e

e

duu u u N
u v u K K

x y dx yy

u u u u u u
K u v

y x y xx y y y

sin x M u u sin

   
+ = + + +

  

      
− + − + 

       

+ − − 

               (21) 

 
 

IV. CONCLUSION 
 

Equation (16), (18) - (21) are now ready to be applied with 

stream function which will further reduced the complexity 

of the model by reducing the number of variables in our 

computation. Then, these equations can be reduced to 

ordinary differential equation as shown by (Aziz et al., 

2017) and solved using finite difference method.  

This study is particularly important to demonstrate every 

single step involved in order to come out with the 

viscoelastic micropolar model. Without a valid model, any 

solution or results produced would be impractical. 

Moreover, this model could not only represent viscoelastic 

fluid with microrotation effect, but can also model the flow 

of viscoelastic and micropolar fluid when both fluids are 

considered separately.  
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