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The modified complex variable function method with the continuity conditions of the resultant force, 

displacement and heat conduction functions are used to formulate the hypersingular integral equation 

(HSIE) for a thermally insulated circular arc crack or a thermally insulated inclined crack in the upper 

part of bonded dissimilar materials subjected to remote stress. The HSIE is solved numerically for the 

unknown crack opening displacement function and the known traction along the crack as the right hand 

term using the appropriate quadrature formulas. Numerical results showed the behavior of the 

nondimensional stress intensity factor (SIF) at all crack tips. The nondimensional SIF depends on the 

crack geometries, the distance between crack and the boundary, the elastic constants ratio, the heat 

conductivity ratio and the thermal expansion coefficients ratio.  
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I. INTRODUCTION 
 

The strength and life cycles of the engineering structure can 

be effected by emergence of the crack and this situation 

makes more worsen when the structures are exposed to the 

thermal. This phenomenon has interested many researchers 

to investigate the behaviour of stress intensity factors (SIF), 

which control the stability behaviour of bodies or materials 

containing cracks or flaws, for the thermoelastic crack 

problems in an infinite plane (Chen & Hasebe, 2003; Zhong 

et al., 2018), half plane (Jin & Noda, 1993; Li et al., 2015) and 

bonded dissimilar materials (Chao & Shen, 1995; Shevchuk, 

2017; Mishra & Das, 2018; Zhou & Kim, 2016; Choi, 2016; 

Ding & Li, 2015) subjected to remote stress. 

The singular integral equations was derived and solved 

numerically by using the appropriate interpolation formulas 

for two dimensional thermoelastic crack problems in bonded 

dissimilar materials (Chao & Shen, 1995). The 

nondimensional SIF for an undercoat crack perpendicular to 

the interface of multilayer materials subjected to 

convective thermal loading were formulated into the 

system of singular integral equations (Shevchuk, 2017). 

The nondimensional SIF at the crack tips of the interface 

crack in bonded thermo-elastic half planes subjected to a 

uniform heat flux were calculated using the Fredholm 

integral equations (Mishra & Das, 2018). A system of 

singular integral equations was derived and solved 

numerically by using collocation methods for thermally 

insulated interface crack in functionally graded interlayer 

materials (Zhou & Kim, 2016). The Mode III 

nondimensional SIF for the edge interfacial cracks in 

bonded dissimilar materials were calculated using a 

system of singular integral equations (Choi, 2016). The 

thermal SIF and strain energy density for a insulated 

interface crack in nonhomogeneous structural materials 

under uniform heat flow was calculated reducing the 

Fourier transform to the singular integral equations (Ding 

& Li, 2015). 
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Figure 1. Three types of modes in fracture mechanics 

 

There are three types of modes in fracture mechanics such 

as tensile opening (Mode I), in plane shear (Mode II) and out 

of plane tearing (Mode III) as shows in Figure 1 (Shields et 

al., 1992). The Mode I corresponds to normal separation of 

the crack faces under the action of tensile stresses. The Mode 

II is the shear stress acting parallel to the crack faces and 

perpendicular to the crack front. Whereas the Mode III is a 

shear stress acting parallel to the crack faces and parallel to 

the crack front. 

The aim of this paper is to investigate the behavior of 

nondimensional SIF for a thermally insulated circular arc 

crack or a thermally insulated inclined crack in the upper part 

of bonded dissimilar materials subjected to the remote shear 

stress 
1 2x x p = = . 

 

II. MATHEMATICAL 
FORMULATION 

 

The complex potentials for heat conduction problem 

introduced by Muskhelishvili (1953) is expressed as 

 ( ) ( ) ( ), ,z T x y iQ x y = +  (1) 

where ( ) ( ), ReT x y z =    is temperature distribution, 

( ) ( ), ImQ x y k z = −    is resultant heat flux function and k 

stands for the heat conductivity. Generally the stress 

components ( ), ,x y xy   , the resultant force function (X, Y), 

and the displacements (u, v) for thermally insulated crack in 

an infinite plane are expressed in terms of three complex 

potential functions ( )z , ( )z  and ( )z  as follows 

 ( ) ( )2 2 " 'y x xyi z z z     − + = +
 

 (2) 

 ( ) ( ) ( )'f Y iX z z z z  = − + = = +  (3) 

( ) ( ) ( ) ( ) ( ) ( )2 ' 1G u iv z z z z G z dz     + = − − + +   (4) 

where z x iy= +  denotes complex variable, G is shear 

modulus of elasticity, 3 4v = −  and ( )( ) ( )( )1 2 1v v = + −  

for plane strain, ( ) ( )3 1v v = − +  and ( )1 2v = +  for 

plane stress, v is Poisson's ratio and   is the thermal 

expansion coefficient. A derivative in a specified direction 

of Eqn. (3) with respect to z, yields the normal (N) and 

tangential (T) components of traction along the segment 

,z z dz+ , which is defined as follows 

  ( ) ( ) ( ) ( )' ' " ' .
d d z

f z z z z z N iT
dz dz

    = + + + = +
  

 (5) 

According to Nik Long and Eshkuvatov (2009) and 

Chen et al. (2003), complex potentials for the crack L in 

an infinite thermoelastic modeled by the distribution of 

crack opening displacement (COD) function, ( )g t , and 

the temperature jump along the crack faces, ( )t , can be 

expressed as 

 ( )
( )

1

1

2
p

L

g t dt
z

t z



=

−  (6) 

 
( )

( )
( )

1 2

1 1

2 2
p

L L

g t dt dt tdt
g t

t z t z t z


 

 
 = + −
 − − − 

   (7) 

 ( )
( )

1

1
p

L

t dt
z

i t z





=

−  (8) 

where ( )g t  is defined by 

( )
( )

( ) ( )( ) ( ) ( )( )
2

,
1

G
g t u t iv t u t iv t t L

i 

+ − 
= + − + 

 +  
 (9) 

( ) ( )( )u t iv t
+

+  and ( ) ( )( )u t iv t
−

+  denote the 

displacements at point t of the upper and lower crack 

faces, respectively. Substituting Eqns. (4), (6), (7) and (8) 

into dislocation distribution ( )'g t , yields 

 ( ) ( ) ( )' 2g t g t i t= − . (10) 

The single-valuedness condition for the displacement 

 ( )' 0
L

g t dt = . (11) 

Apply Eqn. (11) into (10), yields 

 ( ) ( )
2L L

i
t dt g t dt



−
=  . (12) 

Substituting Eqn. (12) into (8) to represent the complex 

potential of the temperature jump in terms of COD as 

 ( )
( )

1

1

2
p

L

g t dt
z

t z



= −

− . (13) 

The condition for the stress components in the upper, 

1x
 , and lower parts, 

2x , of bonded dissimilar materials 

by consider only the shear stress and all other stresses do 

not exist, then the stress component is reduced to 
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1 2

1 2
1 2

1 1

x x

x x
E E

 

  

=

=
 (14) 

where ( )1 1 12 1E G v= +  and ( )2 2 22 1E G v= +  are Young's 

modulus of elasticity for upper and lower parts of bonded 

dissimilar materials, respectively. 

The modified complex potentials (MCP) for the crack in the 

upper part of bonded dissimilar materials involve the 

principal parts ( ) ( ) ( )( )1 1 1, ,p p pz z z    and the 

complementary parts ( ) ( ) ( )( )1 1 1, ,c c cz z z    of the complex 

potentials defined as 

 ( ) ( ) ( )1 1 1p cz z z  = +  (15) 

 ( ) ( ) ( )1 1 1p cz z z  = +  (16) 

 ( ) ( ) ( )1 1 1 .p cz z z  = +  (17) 

Whereas, for a crack in the lower part, the complex potentials 

are represented by ( )2 z , ( )2 z  and ( )2 z . The principal 

parts of complex potentials are referred to the complex 

potentials for the thermally insulated cracks in an infinite 

plane. 

Since the temperature and resultant heat flux are 

continuous across the boundary, the heat conduction 

problem (1), yields 

 ( ) ( ) ( ) ( )1 1 2 2 ,t t t t t L   
+ −

   + = + 
      

 (18) 

 ( ) ( ) ( ) ( )1 1 1 2 2 2 ,k t t k t t t L   
+ −

   + = + 
      

 (19) 

Applying Eqn. (15) into Eqns. (18) and (19), the following 

expressions are obtained 

 

( ) ( )

( ) ( )

1 2
1 1 1

1 2

1
2 1 2

1 2

, ,

2
, ,

c p b

p b

k k
z z z S L

k k

k
z z z S L

k k

 

 

−
=  +

+

=  +
+

 (20) 

where ( ) ( )1 1p pz z = , Lb is boundary of bonded dissimilar 

materials, S1 and S2 are upper and lower parts of bonded 

dissimilar materials, respectively. Whereas the continuity 

conditions for resultant force (3) and displacement (4) are 

defined as 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2' ' ,t t t t t t t t     
+ −

   + + = + +
      

 (21) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2

' 1

' 1

G t t t t G t dt

G t t t t G t dt

      

      

+

+

 − − + +
  

 = − − + +
  





 (22) 

where t L . Applying Eqns. (15), (16), (17) and (20) into 

Eqns. (21) and (22), the following expressions are 

obtained 

( ) ( ) ( )

( )
( )

2

1

2 1
1 1 1

1 1

1 1 2 1 2 1
1 1

1 1 2 1 2

'

1
,

c p p

p b
L

G G
z z z z

G G

G G k k
z dz z S L

G G k k

  


 




−  = +
 +

+ −
+  +

+ + 

 (23) 

( ) ( ) ( )

( ) ( )

( )
( )

1

2

1 2 2 1
1 1 1

2 2 1

1 2
1 1 1

2 2 1

2 1 2
1 1

1 2

'

1

2 1
,

c p c

p
L

p b
L

G G
z z z z

G G

G G
z dz

G G

k
z dz z S L

k k

 
  



  


 


−
= −

+


+ ++ 

+
−  +

+ 





 (24) 

( )
( )

( )

( ) ( )

( )
( )

1

2

1 2
2 1

2 2 1

1 2
1 1 1

2 2 1

2 1 2
1 2

1 2

1

1

2 1
,

p

p
L

p b
L

G
z z

G G

G G
z dz

G G

k
z dz z S L

k k


 



  


 


+
=

+

+ ++

+
−  +

+ 





 (25) 

( )
( )

( ) ( ) ( )

( )
( )

1

1 2
2 1 1 2

1 1 2

1 1 2 1 2 1
1 2

1 1 2 1 2

1
' '

1
, .

p p

p b
L

G
z z z z z z

G G

G G k k
z dz z S L

G G k k


   



 




+
 = + −
 +

+ −
+  +

+ + 

 (26) 

The principal part of the traction for a thermally 

insulated crack in the upper part of bonded dissimilar 

materials can be obtained by substituting Eqns. (6) and (7) 

into (5) and letting point z approaches t0 on the crack. 

Changing d z dz  into 0 0dt dt , yields 

( ) ( ) 
( )

( )
( ) ( )

( ) ( )

0 0 1 021
0

2 0

1 1
,

2

1
,

2

p L L

L

g t dt
N t iT t A t t g t dt

t t

A t t g t dt

 



+ = +
−

+

 



 (27) 

where 

 

( )
( ) ( )

( )
( )

( )

( )

0
1 0 2 2

00 0

0 00
2 0 3 3

0 0
0 0

1 1
, ,

21
,

dt dt
A t t

dt dtt t t t

t tdt dt dt dt
A t t

dt dt dt dt
t t t t

= − +
− −

  −
= + − 

 
 − −

 

For the complementary part, substitutes Eqns. (23) and 

(24) into (5) and applying (6), (7) and (13), and letting 

point z approaches t0 on the crack and changing d z dz  

into 0 0dt dt , yields 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

101 
 

( ) ( )  ( ) ( )

( ) ( )

0 0 1 01

2 0

1
,

2

1
,

2

c L

L

N t iT t D t t g t dt

D t t g t dt





+ =

+




 (28) 

( )
( )

( )

( ) ( ) ( )

( )

( )

( )( )

( ) ( ) ( )

( )

( )

0
2 1

1 0 2 3 2 2
1 1 2

0 0 0 0

0 0 00 00

3 3 2 2
0

0 0 0 0

0 0 01 2 2 1
3

2 2 1 0
0

21 1 1
,

2 2 3 6 1 1

2 1

t tG G dt
D t t

G G dt
t t t t t t t t

t t t t t t tdt dt

dt dt
t t t t t t t t

t t G G dt

G G dt
t t



 



   
−   −

= + + +   
+    − − − −

   

 
− + − − 

+ − − − 
 − − − −




−  −

+ +
+− 


( )

( )

( )

( ) ( )

2

0

001 1 2 1 02 1
2

0 01 1 1 2 1 2 0
0

0 1 1 2 1 21 2

0 02 2 1 0 1 2

11 1 1

1 2 1 1

t t

G G t tk k dt

G G k k dtt t t t t t

kG G dt

G G dt k kt t t t

 

 

   



−

  
  +  −−

− − +   
+ + − −    − 

  

 + +
+ −   + +− −  

 

( )
( ) ( ) ( )

( )

( )

( )

( )

( )
( )

( )

02 1
2 0 2 2 2 3

1 1 2
00 0 0

000 1 1 2 1 2 1
2 2

0 1 1 2 1 2 1 00 0

21 1 1
,

2 11 1 1

t tG G dt
D t t

G G dt
t t t t t t t t

t t G Gdt k k dt

dt G G k k dtt tt t t t



 

 

  
 − −

= + + +  
+   − − − −

  

 
−  +  −

− − + 
+ + − − −

 

 

Summing Eqns. (27) and (28) yields the following HSIEs for 

a thermally insulated crack in the upper part of bonded 

dissimilar materials 

( ) ( )  ( ) ( )  ( ) ( ) 

( )

( )
( ) ( ) ( ) ( )

0 0 0 0 0 01 1 1

1 0 2 02
0

1 1 1
, ,

2 2

p c

L L L

N t iT t N t iT t N t iT t

g t dt
E t t g t dt E t t g t dt

t t  

+ = + + +

= + +
−

  
 (29) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0 1 0 2 0 2 0 2 0, , , , , , , .E t t A t t D t t E t t A t t D t t= + = +  

Note that the first integral in Eqn. (29) with the equal sign 

represent the hypersingular integral and must be defined as a 

finite part integral (Nik Long & Eshkuvatov, 2009). If 2 0k =  

and 2 0G =  the Eqn. (29) reduce to the equation for a crack in 

half plane elasticity (Chen et al., 2009). If 1 2,k k=  1 2 =  

and 1 2G G=  the Eqn. (29) reduce to the equation for a crack 

in an infinite plane (Rafar et al., 2017). 

For solving the HSIEs (29), the function ( )g t  is mapped on 

a real axis s with an interval 2a as follows 

 ( ) ( ) ( )2 2 ,t t sg t a s H s= = −  (30) 

where ( ) ( ) ( )1 2 .H s H s iH s= + Then we apply the 

quadrature formulas introduced by Mayrhofer and  

Fischer (1992). 

 

III. NUMERICAL RESULTS 
 

Stress intensity factor (SIF) at the crack tips Aj is defined 

as 

( ) ( )1 2 2 lim '
j j jj

Aj

A A AA t t
K K iK t t g t a F 

→
= − = − =  (31) 

where 1,2j = and 1 2j j jA A AF F iF= +  is the 

nondimensional SIF at cracks tips Aj. Note that in the 

sequel we denote 2 1G G  the elastic constants ratio, 2 1k k  

heat conductivity ratio and 2 1   thermal expansion 

coefficients ratio. Whereas for comparison purposes, we 

use 2 1 5.0k k =  and 2 1 1.0  =  for crack with thermal, 

1 2 0.0k k= =  and 1 2 0.0 = =  for crack without thermal, 

and elastic constant ratio is 2 1 2.0G G = . 

 

(a) 

 

(b) 

Figure 2. A thermally insulated crack in the upper part of 

bonded dissimilar materials 
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Consider a thermally insulated circular arc crack facing to 

the left (Figure 2(a)) and a thermally insulated inclined crack 

(Figure 2(b)) in the upper part of bonded dissimilar materials 

subjected to remote stress 
1 2x x p = = . 

Table 1 displays the nondimensional SIF for the problem 

defined in Figure 2(a) when 2h R= , 2 1 1.0G G = , 2 1 1.0k k = , 

2 1 1.0  =  and   varies. It is observed that F1 at crack 

tip A1 is equal to F1 at crack tip A2, whereas F2 at crack tip 

A1 is equal to the negative of F2 at crack tip A2. Our results 

are good agreement with those of Chen and Hasebe 

(2003). 

 

 

Table  1. SIF for a thermally insulated circular arc crack when 2h R= , 2 1 1.0G G = , 2 1 1.0k k = , 2 1 1.0  =  and   varies 

SIF 
  

100 200 300 400 500 600 700 800 900 

F1A1* 0.9735 0.8970 0.7783 0.6278 0.4583 0.2823 0.1115 -0.0441 -0.1764 

F1A1** 0.9736 0.8970 0.7779 0.6272 0.4575 0.2815 0.1107 -0.0447 -0.1768 

F2A1* 01727 0.3317 0.4672 0.5704 0.6362 0.6630 0.6516 0.6057 0.5306 

F2A1** 01723 0.3318 0.4673 0.5703 0.6359 0.6625 0.6511 0.6053 0.5303 

        * Current study 

        ** (Chen & Hasebe, 2003) 

 

 

(a) 

 

(b) 

Figure 3. Comparison of the nondimensional SIF with and 

without thermal when 2h R=  and   varies (Figure 2(a)) 

 

Figure 3 shows the comparison between the 

nondimensional SIF at crack tips A1 and A2 with and 

without thermal when 2h R=  and   varies for the problem 

defined in Figure 2(a). It is found that at crack tip A1, F1 and 

F2 for the crack without thermal is higher than F1 and F2 for 

the crack with thermal. While at crack tip A2, F1 for the 

crack without thermal is lower than F1 for the crack with 

thermal, however F2 for the crack without thermal is higher 

than F2 for the crack with thermal for 80o  . For different 

values of 2 1G G
 
when 2 1 0.5  = ,  2 1 2.0k k = , 2h R=  and 

  varies the nondimensional SIF at crack tips A1 and A2 are 

presented in Figure 4. It is found that at crack tip A1, as   

increases F1 decreases and F2 decreases for 60o  , and as 

2 1G G  increases F1 and F2 decrease. Whereas at crack tip 

A2, as   increases F1 decreases and F2 decreases for 

60o  , and as 2 1G G  increases F1 increases and F2 

increases for 90o  . For different values of 2 1k k  when 

2 1 0.5G G = , 2 1 2.0  = , 2h R=  and   varies the 

nondimensional SIF at crack tips A1 and A2 are presented in 

Figure 5. It is observed that at crack tip A1, as   increases 

F1 decreases and F2 decreases for 60o  , and as 2 1k k  

increases F1 decreases and F2 increases. Whereas at crack 

tip A2, as   increases F1 decreases and F2 decreases for 

50o  , and as 2 1k k  increases F1 increases and F2 

decreases for 50o  .  For different values of 2 1   when 

2 1 0.5k k = , 2 1 2.0G G = , 2h R=  and   varies the 

nondimensional SIF at crack tips A1 and A2 are presented in 

Figure 6. It is found that at crack tip A1, as   increases F1 

decreases and F2 does not show any significant for 
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2 1 5.0  =  and for other values of 2 1   F2 increases 

when 60o  , and as 2 1   increases F1 increases and F2 

decreases. Whereas at crack tip A2, for 2 1 5.0  =  F1 

increases when 60o   and F2 increases when 30o  , for 

other values of 2 1   F1 decreases as   increases and F2 

decreases for 50o  , and as 2 1   increases F1 decreases 

and F2 increases. 

Figure 7 presents the comparison between the 

nondimensional SIF at all crack tips in bonded dissimilar 

materials with and without thermal when 0.9R h =  and   

varies for the problem defined in Figure 2(b). It is observed 

that F1 for the crack without thermal is higher than F1 for 

the crack with thermal at all crack tips, while F2 for the 

crack without thermal is lower than F2 for the crack with 

thermal. 

 

 

(a) 

 

(b) 

Figure 4. Nondimensional SIF for different values of 

2 1G G  when 2 1 0.5  = ,  2 1 2.0k k = , 2h R=  and   

varies (Figure 2(a)) 

 

 

(a) 

 

(b) 

Figure  5. Nondimensional SIF for different values of 

2 1k k  when 2 1 0.5G G = , 2 1 2.0  = , 2h R=  and   

varies (Figure 2(a)) 

 

 

(a) 

 

(b) 

Figure  6. Nondimensional SIF for different values of 

2 1   when  2 1 0.5k k = , 2 1 2.0G G = , 2h R=  and   

varies (Figure 2(a)) 
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(a) 

 

(b) 

Figure  7. Comparison of the nondimensional SIF with and 

without thermal versus   when 0.9R h =  (Figure 2(b)) 

 

 

(a) 

 

(b) 

Figure  8. Nondimensional SIF for different values of 

2 1G G  when 2 1 0.5  = ,  2 1 2.0k k = , 0.9R h =  and   

varies (Figure 2(b)) 

 

 

(a) 

 

(b) 

Figure  9. Nondimensional SIF for different values of 

2 1k k  when 2 1 0.5G G = , 2 1 2.0  = , 0.9R h =  and   

varies (Figure 2(b)) 

 

Figure 8 presents the nondimensional SIF for different 

values of 2 1G G  when 2 1 0.5  = , 2 1 2.0k k = , 0.9R h =  

and   varies (Figure 2(b)). It is found that at crack tip A1, 

as   increases F1 decreases and F2 decreases for 45o  , 

and as 2 1G G  increases F1 decreases and F2 decreases for 

25o  . Whereas at crack tip A2, F1 behaves as F1 at crack 

tip A1, while F2 increases for 45o   and as 2 1G G  

increases. Figure 9 presents the nondimensional SIF for 

different values of 2 1k k  when 2 1 0.5G G = , 2 1 2.0  = , 

0.9R h =  and   varies (Figure 2(b)). It is found that F1 

decreases for 20o   and F2 increases for 50o   at all 

crack tips. Whereas F1 and F2 increase at all crack tips as 

2 1G G  increases. 

 

IV. CONCLUSION 
 

In this paper, the HSIE for a thermally insulated crack 

problems in the upper part of bonded dissimilar materials 

is formulated by using the modified complex variable 

function method with the COD function as the unknown. 
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The HSIE reduces to a crack problem in a half plane when 

2 0k =  and 2 0G = , and for 1 2k k= , 1 2 =  and 1 2G G=  the 

HSIE reduce to a crack problem in an infinite plane. The 

Mode I and Mode II nondimensional SIF at the crack tips 

depends on the elastic constant ratio 2 1G G , heat 

conductivity ratio 2 1k k , thermal expansion coefficients 

ratio 2 1   and cracks geometries. The nondimensional 

SIF at crack tips for a crack without thermal is higher than 

nondimensional SIF for a crack with thermal, however the 

position and crack geometries play an important role to the 

behaviour of nondimensional SIF. 
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