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Boxplot is a simple graphical method for identifying of outliers. It indicates the location, spread and 

skewness of the data. The common fences procedures are too liberal and conservative. When the data 

are skewed, many observations cross the whisker and are erroneously declared as outliers. 

Sequential fences is a multiple outliers’ detection method based on specified probability. However, 

this method works nicely for detection of outliers for symmetric and fairly symmetric distributions. 

It is unable to detect outliers in skewed distributions but misclassify some observations as outliers. 

This paper presents a solution to address this problem and proposes an adjusted sequential approach 

to detect outliers in skewed distributions. Simulation technique has been applied by constructing 

fences for different sample sizes from chi square, gamma, weibull, normal and lognormal 

distributions to check the performance of the method. Several real problems have also been used to 

show the benefits of this new adjusted approach. The results showed that the new approach 

performed better in reducing the swamping rate and increasing the accuracy than the standard 

boxplot and ordinary sequential fences.  
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I. INTRODUCTION 
 

Outliers are observations that lies an abnormal distance from 

the majority of the data and distinct from overall pattern of a 

distribution. The existence of outliers in data set can bring 

some consequences to statistical data analysis and might 

further affect decision making. Thus, it is vital for data analysts 

to inspect for the outliers in the data before conduct the data 

analysis. One of the common graphical methods is boxplot 

which was introduced by Tukey (Tukey, 1977). The method 

involves the interquartile range or known as H-spread which is 

the difference between third quartile, 𝑄3, and first quartile, 𝑄1, 

or 𝐼𝑄𝑅 = 𝑄3 − 𝑄1. In addition, the boxplot gives insight of the 

shape of univariate data distribution, namely, minimum, 

maximum, first quartiles, third quartiles and median (Tukey, 

1977). Extreme outliers are the observations that lie above three 

times 𝐼𝑄𝑅 or more above the 𝑄3 or three times 𝐼𝑄𝑅 or more 

below the 𝑄1, [𝑄1 − 3𝐼𝑄𝑅, 𝑄3 + 3𝐼𝑄𝑅] . Observations that 

fall 1.5 times interquartile range apart from the first and 

third quartile, [𝑄1 − 1.5𝐼𝑄𝑅, 𝑄3 + 1.5𝐼𝑄𝑅]  are known as 

suspected outliers. 

  The constant of fences which is fixed as 1.5 is considered 

too liberal for detecting outliers in random normally 

distribution data (Hoaglin et al., 1986). In addition, the 

utilization of first quartile and third quartile in the 

formulation of Tukey’s boxplot are considered too 

conservative and may lead to some outlying data are 

neglected (Schwertman et al., 2004). Furthermore, the 

classical boxplot method use single criterion to identify 

outliers regardless of the different sample sizes of data 

(Schwertman et al., 2004). This may resulted in some 

outlying data in small sample will be unsuccessfully to be 
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detected while the observation in large sample will be 

incorrectly classified as an outlier.  

  In order to overcome this issue, Schewertman and de Silva 

(2007) proposed an approach to adjust the fences for various 

sample sizes of data. The sequential fences were constructed 

based on different sample sizes using the Poisson distribution 

to reduce the tail probabilities. Outstanding performance can 

be seen when this method is applied on normal or 

approximately normal distributions but problems arise with 

the construction of sequential fences in skewed distributions. 

In symmetric distribution, many uncontaminated data will fall 

beyond the fence at heavy tail whereas regular data from light 

tailed distributions will scarcely exceed the outlier cut off value. 

Identical issue happens in skewed distributions when the 

thickness of tails of data distributions are in different 

directions. For instance, chi-square distribution is positively 

skewed, so the observations have low probability to exceed the 

lower fence whereas the regular observation exceed the upper 

fence with high probability. Consequently, this outlier labelling 

approach cannot work effectively when data are skewed.  

  In the past literatures, numerous outlier identification 

methods have been proposed. Most of these methods work 

efficiently under assumption that data come from a symmetric 

distribution but fail in skewed distributions (Dovoedo & 

Chakraborti, 2012). For instance, Tukey’s boxplot is the most 

common outlier identification technique but this method tends 

to give false outcomes when the distributions are being 

considered as skewed (Hubert & Vandervieren, 2008). Myriad 

of methods have been suggested to increase the precision in 

detecting of outliers in skewed distribution data. Meanwhile, 

the shape of the underlying distribution is vital in labelling the 

outliers (Dovoedo & Chakraborti, 2012). Kimber (1990)  

introduced the fences procedure of a constant multiple of the 

lower semi-interquartile range, 𝑆𝐼𝑄𝑅𝐿 = 𝑄2 − 𝑄1 , and the 

upper semi-interquartile range, 𝑆𝐼𝑄𝑅𝑈 = 𝑄3 − 𝑄2.  Carling 

(2000) made modification to the boxplot method as the 

distance from median instead of first and third quartiles and 

constant 1.5 was substituted by a size-dependent formula to 

regulate the fences of boxplot. Another simple outlier 

identification procedure which was proposed by Banerjee and 

Iglewicz (2007) for random sample in case of univariate data 

according to the popular boxplot outlier labeling rule. Huber 

and Vandervieren (2008) proposed an adjustment to the 

Tukey’s boxplot by introducing a robust measure of skewness, 

namely medcouple (MC) which was introduced by Aucremanne 

et al. (2004). Constant 3.5 and 4 were used on the both sides of 

fences and thus this lead to the changes to the constant location 

with respect to the sign of the MC. Dovoedo and 

Chakraborti (2015) remodeled the traditional boxplot by 

formulating the fences with multiples of the lower and 

upper semi-interquartile range measured from the sample 

median. The outside rate per sample is the probability that 

minimum one data is misclassified as an outlier which is 

derived for the location-scale distributions family which is 

utilized to determine to the constants of fences. Adil and 

Irshad (2015) and Babangida et al. (2017) modified the 

approach which was proposed by Hubert and Vandervieren 

(2008) by suggesting the use of classical skewness 

measurement instead of constants. This modified method 

generates broader fences especially for those data which 

come from skewed distributions and thus this overcome the 

trouble in using these constants as power of exponential 

times MC.  

  Babangida et al. (2017) improved the boxplot for extreme 

data by adjusting fences constant using a robust skewness 

measure, namely Bowley coefficient. This modified boxplot 

able to identify unusual data and solve the major restriction 

to outlier detection in different distributions for 

generalization aim.  Besides, this approach is capable to 

show the location parameter region of Gumbel or 

Generalized Extreme Value Distribution (GEV) fitted 

extreme data. Extreme data are history of events that are 

more extraordinary than any that have been noticed. The 

extreme value can be low extreme or high extreme which 

are known as minima or maxima respectively. The recent 

growth in global warming which mark a substantial interest 

in financial crisis such as volatility in financial area and 

environment issue that resulted in a universal interest in 

modeling and forecasting of an extreme events. Exploratory 

data analysis towards extreme data is not highly given 

attention in spite of its importance toward confirmatory 

data analysis.   

  Hence, these provide us an idea of incorporating robust 

measure of skewness in regulating the sequential fences. 

Robust measure of skewness can display the pattern of the 

distribution curve whether is symmetric or being distorted 

with negative or positive skewness. The shape and 

asymmetry of a distribution can be assessed by interpreting 

the skewness of distribution. For any symmetric 

distribution, the skewness is approaching zero and the tails 

on either side of the curve reflect as mirror images of each 

other. For unimodal distribution, the value of skewness 

indicate the direction of the tail in the distribution. Positive 

skewness and negative skewness indicate the tail is on right 
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and left respectively. Similarly, positively skewed distribution 

display larger right tail compared to the left tail.  

  In this research, an adjustment to the sequential fences based 

on the skewness of the distribution to improve the outlier 

identification in skewed distributions is presented. A technique 

of incorporating the Bowley coefficient, a robust skewness in 

the formulation of sequential fences is proposed in order to 

detect the multiple outliers in symmetric and skewed 

distributions. This research focus on detecting extreme data in 

right skewed underlying distribution univariate data. The 

objective of this study is to improve sequential fences which is 

robust to outlier and applicable in skewed distributions. Thus, 

a modified sequential fences method is proposed by 

considering the skewness of the underlying distributions in 

order to enhance the performance of the coverage of sequential 

fences in outlier detection.  

 

A. Tukey Boxplot 
 

One of the standard and common graphical method in 

detecting outliers is boxplot which is proposed by Tukey (1977). 

The lower and upper fences of boxplot is defined as 

 

[𝑄1 − 1.5 𝐼𝑄𝑅 ; 𝑄3 + 1.5 𝐼𝑄𝑅]                       (1) 

 

where 𝑄1 and 𝑄3 are first and third quartile respectively while 

the interquartile range is denoted by 𝐼𝑄𝑅 =  𝑄3 − 𝑄1.  Any 

observation that fall beyond the fences is considered as 

potential outlier.  

 

B. Sequential Fences 
 

Since our purpose is based on checking for outliers by adjusting 

sequential fences which was proposed by Schewertman and de 

Silva (2007), we first describe how the outliers are detected in 

this method. Schewertman and de Silva (2007) proposed a 

graphical approach to construct the outlier identification fences 

with sequential procedure for detecting multiple outliers. The 

fences are defined as  

𝐹𝑛,𝑚 = 𝑞2 ±
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝐼𝑄𝑅                          (2) 

 

where 𝐼𝑄𝑅  is the interquartile range which is the difference 

between third quartile and first quartile. The 𝑘𝑛 is the value 

that are the appropriate adjustment regarding to the expected 

value of the 𝐼𝑄𝑅 to the standard deviation for different sample 

sizes. The conversion coefficients for 𝐼𝑄𝑅  to the standard 

deviation can be referred to Schwertman and Silva (2007). 

Due to the sensitivity of the fourth moment of a distribution 

toward the tail thickness, thus probabilities associated with 

the tails. Hence, the degree of freedom for the 

approximating 𝑡  distribution is determined based on the 

fourth moment of the 𝑡 distribution to the fourth empirical 

moment acquired from 10 000 simulations of the 𝐼𝑄𝑅 using 

sample sizes between 20 to 100 from a standard normal 

distribution. Based on the sample size between 20 and 100, 

the least squares quadratic equation for obtaining the 

degree of freedom which is approaching 𝑡 distribution is 

 

𝑑𝑓 = 7.6809524 + 0.5294156𝑛 − 0.00237𝑛2.       (3) 

 

The sample sizes were adjusted for the construction of 

sequential fences using the Poisson distribution in order to 

reduce the tail probabilities which is similar to the 

adjustment done in Davies and Gather (1993) and Gather 

and Becker (1997). This method increased the accuracy in 

identifying the outliers, reduced the swamping effect and 

lower the chance of mislabelling an uncontaminated 

observations as outliers in large sample size data sets. By 

using Poisson model, 𝑚 contaminated observations can be 

checked. Let 𝑋 be the number of observations outside the 

computed fences. The Poison model is written as 

   𝑃(𝑋 < 𝑚) = 𝑒−𝑛𝛼𝑛𝑚 (1 + 𝑛𝛼𝑛𝑚 +
(𝑛𝛼𝑛𝑚)2

2!
+ ⋯ +

(𝑛𝛼𝑛𝑚)𝑚−1

(𝑚−1)!
)                                                                              

                      = 1 − 𝛾,                                                                     (4) 

 

where m is the number of contaminated observations, 𝑛 is 

sample size, and 𝛾 is probability that 𝑚  or more 

observations beyond the fences are uncontaminated. The 

solution of Equation (4) for 𝑛𝛼𝑛𝑚  value can be obtained 

from Schwertman and Silva (2007). The constant is divided 

by the sample size in order to obtain the value of 𝛼𝑛𝑚. The 

probability of at most (𝑚 − 1)  uncontaminated 

observations beyond the constructed fences is 1 − 𝛾.  The 

identification of outlier has to be checked until the (𝑚 + 1 −

𝑡ℎ) fence which has only 𝑚 observations beyond the fence. 

For example, if there is no observation detected beyond the 

first fence (𝑚 = 1), this meaning that there is no outlier 

present, then the investigation procedure stop. Otherwise, 

repeat the outlier checking procedures by constructing the 

fences continuously until there is no additional 

observations fall outside the next fence. 
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II. ADJUSTMENT OF 
SEQUENTIAL FENCES FOR 

ASYMMETRIC 
DISTRIBUTIONS 

 
The adjusted sequential fences with the combination of a 

robust skewness is proposed. 

 

A. Generalized Extreme Value Distribution (GEV) 

 
Sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} exist, as 𝑛 → ∞, such 

that 𝑃𝑟{(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛 ≤ 𝑥} → 𝐺(𝑥)  where 𝑀𝑛  is a block 

maximum of 𝑛  observations and 𝐺  is a non-degenerate 

distribution function, then 𝐺 is a member of the GEV family. 

The GEV includes three types of extremal distribution which 

are determined by the shape parameter 𝜉  in the distribution 

function  

𝐺(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−
1

𝜉
}                       (5) 

 

which is defined on {𝑥: 1 + 𝜉 (
𝑥−𝜇

𝜎
) > 0}, where 𝜎 > 0 and 𝜇, 𝜉 ∈

ℜ. 

  Hence, 𝐺(𝑥) is said to be Weibull if 𝜉 < 0, Gumbel when 𝜉 =

0 , and Freichet if 𝜉 > 0  with re-expression of the limiting 

distribution as (Coles et al., 2001; Thas et al., 1997) 

 

𝐺(𝑥) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑥−𝜇

𝜎
)]}.                         (6) 

 

B. Robust Measure of Skewness 

 
Bowley (1920) proposed a robust coefficient of skewness and 

is denoted as 

𝜁 =
𝑄3+𝑄1−2𝑄2

𝑄3−𝑄1
,                                       (7) 

 

where 𝑄𝑖’s are the 𝑖𝑡ℎ quartiles of 𝑥𝑖 (Kim & White, 2004).    

  Any reasonable coefficient of skewness 𝜁(𝑥𝑖) should satisfy the 

following four characteristics which are categorized by 

Groneveld and Meeden (1984) whereby (i) for any 𝑎 ∈ (0, ∞) 

and 𝑏 ∈ (−∞, ∞), 𝜁(𝑥𝑖) = 𝜁(𝑎𝑥𝑖 + 𝑏) ; (ii)  for symmetric 

distribution, then 𝜁(𝑥𝑖) = 0 ; (iii) if 𝑦𝑖 = −𝑥𝑖 , then −𝜁(𝑥𝑖) =

𝜁(−𝑥𝑖); (iv) if 𝐹 and 𝐺 are cumulative distribution functions of 

𝑥𝑖 and 𝑦𝑖, and 𝐹 < 𝐺 (component wise), then 𝜁(𝑥𝑖) ≤ 𝜁(𝑦𝑖). 

 

C. Incorporating Bowley Coefficient of Skewness 
into Sequential Fences 

In order to construct sequential fences for the skewed data, 

we incorporate Bowley coefficient of skewness 𝜁  into the 

sequential fences. The coefficient of 𝐼𝑄𝑅 is substituted by 

some functions related to 𝜁, such that 𝑓𝑙(𝜁) and 𝑓𝑙(𝜁). The 

proposed fences is defined by 

 
[𝑄2 − 𝑓𝑙(𝜁)𝐼𝑄𝑅, 𝑄2 + 𝑓𝑢(𝜁)𝐼𝑄𝑅].                  (8) 

Let 𝑓𝑙(0) = 𝑓𝑢(0)  to similar to the standard sequential 

fences at symmetric distribution. For asymmetric 

distributions, 𝑓𝑙(𝜁) and 𝑓𝑢(𝜁) can be utilised to adjust the 

fences according to the skewness of the distribution. 

Comparison of different functions has been made.  

  The following two functions were considered: 

(1) Linear function is described as 

𝑓𝑙(𝜁) =
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
+ 𝑎𝜁,                       (9) 

𝑓𝑢(𝜁) =
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
+ 𝑏𝜁. 

 

(2) Exponential function is written as 

𝑓𝑙(𝜁) =
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒𝑐𝜁 ,                       (10) 

𝑓𝑢(𝜁) =
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒𝑑𝜁 , 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℜ.  

 

D. Determination of the Functions Parameters 
 

In order to determine the functions parameters 𝑎, 𝑏, 𝑐, 𝑑, the 

expected percentage of outliers was set to 0.7% according to 

the rule of Tukey boxplot of the Gaussian distribution. 

According to the rule, the fences cut off should satisfy 

 
𝑄2 − 𝑓𝑙(𝜁)𝐼𝑄𝑅 ≈ 𝑄𝛼,                        (11) 

𝑄2 + 𝑓𝑢(𝜁)𝐼𝑄𝑅 ≈ 𝑄𝛽,   

 

where 𝑄𝛼  and 𝑄𝛽  denotes the 𝛼𝑡ℎ  and 𝛽𝑡ℎ  quantile of the 

distribution respectively, and 𝛼 =
0.7%

2
= 0.0035  and 𝛽 =

1 − 𝛼 = 0.9965. 

  Thus, the functions (9), (10) and (11) can be combined and 

written as  

{

𝑄2−𝑄𝛼

𝐼𝑄𝑅
−

𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
≈ 𝑎𝜁,

𝑄𝛽−𝑄2

𝐼𝑄𝑅
−

𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
≈ 𝑏𝜁,

                        (12) 

{
𝑙𝑛 (

𝑘𝑛

𝑡𝑑𝑓,𝛼𝑛𝑚

∙
𝑄2−𝑄𝛼

𝐼𝑄𝑅
) ≈ 𝑐𝜁,

𝑙𝑛 (
𝑘𝑛

𝑡𝑑𝑓,𝛼𝑛𝑚

∙
𝑄𝛽−𝑄2

𝐼𝑄𝑅
) ≈ 𝑑𝜁,

                 (13) 
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The parameter values of the two functions could be derived 

using median resistant line fit. In order to simulate the 

quantities in both sides of Equations (12) and (13), GEV 

distribution is generated with a sample size of 100, location and 

scale parameters are set to 0 and 1 respectively with various 

shape parameter 𝜉 within the interval of -0.8 and 10 with an 

increment of 0.01. The setting of the interval for 𝜉 is based on 

the Extreme Value Theory practical recommendation in the 

past literature. For non-typical cases for the estimation of 

parameters of GEV distribution has been explained by Coles et 

al. (2001)  such that the GEV distribution will possess short 

upper tail when 𝜉 ≤ −0.5. Hence, simulation can be generated 

without given weight to the non-typical cases. This evolution 

shows to be reasonable to consider 𝜉 =-0.8 as a lower limit for 

𝜉 in the simulation study. In spite of that, the setting of 10 as 

the upper limit for 𝜉  due to the value Bowley coefficient of 

skewness is very close to 1.0 when 𝜉 = 10 (Babura et al., 2017). 

In the simulation, thus we fixed the sample size as 100 and 

computed the first fence, 𝑚 = 1  with  γ = 0.0035  such that 

there is 0.9965 probability of no uncontaminated observations 

exceed the fence and only 0.0035 probability that an 

observation exceed the fence is uncontaminated. The simulated 

samples with the constant location, scale and shape was 

repeated for 5000 replications. The average 𝜁  and 

corresponding average quantities in Equations (12) and (13) 

from each sample were obtained as finite sample estimate of 

the quantities. The returned simulated quantities is sorted 

whereby those with nonnegative skewness 𝜁 were chosen since 

the assumption is that the estimated parameters can be easily 

exchanged with the coefficient of function with negative 

skewness. The returned quantities were further sorted into two 

categories whereby 𝜁 ≤ 0.9  is for fitting the lower fence 

function whereas 0 ≤ 𝜁 ≤ 0.6 is for the upper fence function. In 

order to compare the behaviour of the two functions, these 

quantities were applied to fit lower and upper fences. The 

results show that the exponential function fit the samples better 

than linear function. Thus, the exponential function was chosen 

to conduct the adjusted sequential fences. 

 

E. Proposed Adjusted Sequential Fences 
 

In order to simplify the practical implementation of proposed 

approach, the estimated parameters of the exponential 

function in Equation (13) obtained are rounded off to the 

nearest smaller integer. The estimated values 𝑐 = −4.35  and 

𝑑 = 6.68  are rounded off to 𝑐 = −4  and 𝑑 = 6 . Thus, the 

proposed adjusted sequential fences can be written as 

 

when 𝜁 ≥ 0, 

{
𝑄2 −

𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒−4𝜁𝐼𝑄𝑅,

𝑄2 +
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒6𝜁𝐼𝑄𝑅,

                        (14) 

 

when 𝜁 < 0, 

{
𝑄2 −

𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒6𝜁𝐼𝑄𝑅,

𝑄2 +
𝑡𝑑𝑓,𝛼𝑛𝑚

𝑘𝑛
𝑒−4𝜁𝐼𝑄𝑅.

                      (15) 

 

III. SIMULATION STUDY 
 

The proficiency comparisons between adjusted sequential 

fences against standard Tukey boxplot and standard 

sequential fences are presented in this section due to the 

interest to know the effectiveness of outlier identification of 

these three methods.   

  A simulation study has been carried out for the verification 

of the claim in varying levels of asymmetric distributions. 

From the stimulation study, it is desired to know the 

possible outlier percentage of the methods detected in 

uncontaminated data and also which method is more 

robust according to the two determinants, skewness of the 

underlying distributions and sample size. Besides standard 

normal distribution, 𝑁(0,1),  with a mean of 0 and a 

standard deviation of 1, and the lognormal which represent 

symmetric and fairly symmetric distributions, χ2 , gamma 

and weibull distributions are chosen as the representative 

of asymmetric distribution for the purpose of testing the 

efficiency of outlier detection in skewed data. Sample size 

has been taken equivalent to 20, 50, and 100 in all the 

distributions. The study has been done on the lognormal 

with a mean of 5 and a standard deviation of 0.6 while for 

the χ2  with 2 and 4 degree of freedom. For the gamma 

distribution, the shape parameter is 0.5 and the scale 

parameter is 1, and for the weibull distribution are with a 

shape parameter of 1 and scale parameter of 2.  For each 

sample, 10 000 replications have been conducted in the SAS 

software.  

  For the implementation of sequential fences, in order to 

identify the first potential outlier, we compute the first 

fence 𝑚 = 1   with 𝛾 = 0.05  whereby there is 0.95 
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probability of no good data identified as outliers and only 0.05 

probability that a data beyond the fence is uncontaminated. By 

calculating the mean percentage of observations flagged as 

potential outliers (MP), the comparison results between the 

three methods are displayed in Table 1. The MP is defined as  

 

MP =
number of good data identified as outliers

total number of good data
× 100.    (16) 

 

Table 1. Mean percentage of observations flagged as Potential 

Outliers in uncontaminated data. 

Distribution 𝑛 Tukey Standard Adjusted 

Normal (0,1) 20 0.0568 0.0607 0.0391 

 50 0.0391 0.0835 0.0104 

 100 0.0272 0.0416 0.0183 

Log Normal (5, 0.6) 20 0.5034 0.4288 0.3844 

 50 0.5319 0.4374 0.2938 

 100 0.7168 0.7082 0.2701 

Chi-Squared (2) 20 0.6140 0.5157 0.1681 

 50 0.7463 0.7304 0.3189 

 100 0.8351 0.8280 0.4623 

Chi-Squared (4) 20 0.4596 0.3590 0.0873 

 50 0.6833 0.5733 0.1611 

 100 0.8330 0.8487 0.4081 

Gamma (0.5,1) 20 0.7285 0.6599 0.3148 

 50 0.9278 0.8811 0.4165 

 100 0.9947 0.9893 0.5125 

Weibull (1,2) 20 0.6196 0.5214 0.1768 

 50 0.9503 0.9191 0.2877 

 100 0.9599 0.9273 0.5050 

 
 

For the symmetric or fairly symmetric distributions, the 

performance of three methods in misdetection minimum one 

observation as outlier in normal and lognormal distributions 

are very similarly or slightly better. However, in asymmetric 

case, adjusted sequential fences is outperforming compared to 

the other two methods. For 𝜒2  distribution with degree of 

freedom 2 and 4, the proportion of mistakenly labelling at least 

one observation as an outlier for proposed adjustment method 

is recorded much lower than Tukey boxplot and standard 

sequential fences. As the sample size grow, the proportion of 

falsely labelling at least one observation as an outlier increases. 

In high skewed data such as gamma and weibull distribution, 

for Tukey boxplot and standard sequential fences, the 

proportion of incorrectly classifying at least one observation as 

an outlier is approaching 1 as sample size is increased to 100. 

However, better performance can be seen for adjusted 

sequential fences with lower proportion of misidentifying 

regular observations as outlying data when simulating no 

outlier. 

 

IV. NUMERICAL EXAMPLES 
USING REAL DATA 

 

Two real data examples are presented to illustrate the 

usefulness of the proposed adjusted sequential fences in 

identifying multiple outliers and comparison has been 

made with both Tukey boxplot and standard sequential 

fences. For both examples, a one sided 80% confidence 

interval was necessary to identify these extreme data in 

order to have a clearer picture on the comparison among 

the methods. Then 𝛄 = 𝟎. 𝟐𝟎, which indicates that there is 

0.20 or less probability of misidentifying a good data as an 

outlier for being too extreme and similarly at most 0.20 

probability of misidentifying a good data as an outlier for 

being too mild.  

 

A. Oil Yield for the Belle Ayr Liquefactioin Data 
 

First, we consider a sample which is “Belle Ayr liquefaction” 

data in Montgomery et al. (2001). The data is about thermal 

liquefaction of coal. The variable “Oil Yield” is the results of 

conversion of coal to (production of) oil for 27 runs of the 

experiment. The robust Bowley measure of skewness value 

is -0.0228. This shows that the underlying distribution of 

this data is slightly asymmetric with two higher value 

observations which can be observed from the Normal Q-Q 

plot in Figure 1. These two observations are distant from 

majority of the observations. In Figures 3 and 4, for both 

sequential fences methods, it can be noted that there are 

two observations fall beyond upper first fence 𝑚 = 1. Then, 

the checking procedures keep continuing till 𝑚 = 3, there 

are still two observations be over the upper fence. Thus, 

both sequential fences detect two outliers. As illustrated in 

Figures 2-4, all the three methods are able to identify the 

two outliers. The fences of proposed adjusted sequential 

fences are slightly shifted upward due to the adjustment 

using robust skewness.  

 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

113 

 

Figure  1. Normal Q-Q plot of Belle Ayr liquefaction data 

 

 

Figure  2. Tukey boxplot of Belle Ayr liquefaction data 

 

 

 Figure  3. Standard sequential fences of Belle Ayr 

liquefaction data 

 

Figure  4. Adjusted sequential fences of Belle Ayr 

liquefaction data 

B. Belgium CPI Data  
 

As a second illustration, Belgium consumer price index 

(CPI) for monthly relative price differences of data which 

consists of 60 items is selected. The data is asymmetrically 

distributed with a positively skewness with two outliers on 

the right tail (Dutter et al., 2003). The value of Bowley 

coefficient is 0.3614, which indicates that the distribution is 

highly skewed. From Normal Q-Q plot in Figure 5, there is 

obviously two observations deviate from the majority of the 

data. The upper whisker of the adjusted sequential fences 

extends further away from the median than that of the 

Tukey boxplot as shown in Figure 8. From both sequential 

fences in Figures 6-8, the Tukey boxplot and standard 

sequential fences are affected by the asymmetrical property 

distribution whereas the adjusted sequential fences is able 

to adjust the fences to the skewed data.  As a consequence 

of this substantial asymmetry, the upper fence of Tukey 

boxplot and standard sequential fences inaccurately 

capture uncontaminated observations as outliers. However, 

the adjusted boxplot performs better in capturing all the 

extreme data as atypical but indicates that several 

observations below the lower fence as potential outliers that 

require special attention. 

 

Figure  5. Normal Q-Q plot of Begium CPI data 

 

 

Figure  6. Tukey boxplot of Belgium CPI data 
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Figure  7. Standard sequential fences of Belgium CPI 

data 

 

 

Figure  8. Adjusted sequential fences of Belgium CPI 

data 

 

 

V. CONCLUSION 
 

In this paper, we presented an adjusted sequential fence to 

create fences for detecting outliers with a continuous 

distribution that might be skewed and/or heavy-tailed. This 

approach can be utilised to identify atypical observations as it 

is exclusively constructed based on the skewness of 

distributions. Moreover, it is robust with respect to the 

outliers. The adjusted sequential fences method takes into 

account the skewness of the underlying distribution of data 

by incorporating the robust Bowley coefficient of skewness 

into the sequential fences to adjust lower and upper cut off 

values. It has clear advantages over the Tukey boxplot as well 

as the standard sequential fences.  

  Comparative study between proposed adjusted sequential 

fences and Tukey’s boxplot and standard sequential fences 

method has been done. In symmetric and fairly symmetric 

case, these three methods behave very similarly. However, 

the results on simulation study and real data indicate that the 

proposed method perform better in identifying the outliers 

and is stable with lower error of misclassified regular 

observations as outlying data as the data is skewed and 

sample size increases. This makes the adjusted sequential 

fences an appropriate approach in detecting outliers for 

variety of distributions data.  

  In this paper, we focused on the identification of univariate 

outliers in symmetric and moderately skewed distributions. 

In future, the extension of the idea of adjusted sequential 

fences method can be applied to more highly skewed 

distributions to detect multivariate outliers. 
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