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This paper investigates the characteristics of the zeros of the Riemann zeta function (of s) in the 

critical strip by using the Dirichlet eta function, which has the same zeros. The characteristics of 

the implicit functions for the real and imaginary components when those components are equal are 

investigated and it is shown that the function describing the value of the real component when the 

real and imaginary components are equal has a  derivative that does not change sign along any of 

its individual curves - meaning that each value of the imaginary part of s produces at most one 

zero. Combined with the fact that the zeros of the Riemann xi function are  also the zeros of the zeta 

function and xi(s) = xi(1-s), this leads to the conclusion that the Riemann Hypothesis is true. 
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I. INTRODUCTION 
 

This paper investigates one of the key unresolved questions  

arising from Riemann's original 1859 paper regarding the 

distribution of prime numbers ('Ueber die Anzahl der 

Primzahlen unter einer gegebenen Grősse'  - translation in 

Edwards)  - the nature of the roots of the Riemann xi function 

( 'One finds in fact about this many real roots within these 

bounds and it is very likely that all of the roots are real' - 

referring to the roots of the Riemann Xi function). 

This paper starts in section 2 from Riemann's original 

definition of ζ(s) and ξ(s) and notes the implications of ξ(s) in 

power series form for the roots of ξ(s) and therefore of ζ(s). 

Section 2 also highlights the characteristics of the real and 

imaginary components of ζ(s) and investigates the behaviour 

of the function re(ζ(s))=im(ζ(s)) for a specific example, 

showing the unlikely nature of there being two zeros of the 

entire function for a fixed value of the imaginary part of s. 

Section 3 looks more formally at the Dirichlet eta function 

(η(s)) which has the same zeros as ζ(s). The implicit function 

described by the real component being equal to the imaginary 

component of η(s) is established as a series and substituted 

into the function describing the value of the real component 

when the real and imaginary components are equal 

(recognising that a necessary condition for a zero of η(s) 

is a zero of the real component of η(s). Using the 

Harmonic Addition Theorem the derivative of the real 

component of η(s) when the real component is equal to 

the imaginary component is shown not to change sign 

along any of its individual curves. This leads to the 

conclusion that any fixed imaginary component of s can 

produce at most one zero for the real component of η(s). 

Section 4 develops the implications of the earlier 

investigations, leading to the conclusion that the Riemann 

Hypothesis is true. 

 

II. PRELIMINARY - 
OBSERVATIONS OF THE 

CHARACTERISTICS OF THE 
REAL AND IMAGINARY 
COMPONENTS OF THE 

RIEMANN ZETA FUNCTION 
HIGHLIGHTING WHEN THEY 

HAVE THE SAME VALUE 
 

A. Riemann Zeta Function and Riemann Xi 
Function Definitions 

 

Riemann's paper starts from the definition: 
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ζ(s)= ∑
1

𝑛𝑠𝑛 =∏
1

1−𝑝−𝑠𝑝  (Absolutely convergent for Re(s)>1) 

 

Riemann then extends the zeta function analytically for all s 

and defines the xi function (which has the same zeros as the 

zeta function) and shows that it can be written as a power 

series (Edwards, 2001): 

 

ξ(s)=∑ 𝑎2𝑛 (𝑠 −
1

2
)

2𝑛
∞
𝑛=0 where 

𝑎2𝑛= 4 ∫ (
𝑑

𝑑𝑥
(𝑥

3

2𝜑′(𝑥)) 𝑥−
1

4
 𝑙𝑜𝑔𝑥2𝑛

22𝑛(2𝑛)!

∞

1
)𝑑𝑥 

 

Now, using Riemann's s = 1/2+it and defining  t=(a+bi), 

then (s-1/2) = it = (ai-b), and: 

 

ξ(s)=∑ 𝑎2𝑛(𝑎𝑖 − 𝑏)2𝑛∞
𝑛=0  

 

Note that the functional equation of the zeta function is 

equivalent to ξ(s)=ξ(1-s)  (Edwards p16). This, combined with 

the fact that any complex root of the power series will also 

have the complex conjugate of that root as a root, means 

that if (b+ai) is a root of ξ(s), then so are all of (b-ai), (-

b+ai) and (-b-ai). This, in turn, means that (1/2+b +ai), 

(1/2+b -ai), (1/2-b +ai) and (1/2-b -ai) are all roots of  ζ(s). 

 

For convenience, the real part of s (equivalent to (1/2 +/- 

b)) will be referred to as σ in the rest of this paper. 

 

B. Riemann Zeta Function Real and Imaginary 
Component Characteristics Observations 

 

Analytic extensions of the function valid for all s are well 

documented and have been used to make useful 

(numerical) applications for calculating ζ(s). One of these 

numerical applications (from matlab) was used to create 

the  2 figures following, before we look at a more formal 

approach. 

Observing the characteristics of the real and imaginary 

parts of ζ(s) for various values of σ and a in figure 1 below, 

it is useful to note the following: 

 

 

Figure  1. Riemann Zeta Function 

 

Firstly, the real component of ζ(s) is reflected across the 

vertical axis, while the imaginary component is rotated by π 

around the origin, highlighting the fact that in general, ζ(s) 

does not necessarily equal ζ(1-s)  (contrasting with the 

Riemann xi function, where ξ(s)=ξ(1-s). 

 

Secondly, looking carefully at the points of intersection 

of the real and imaginary parts of ζ(s) (ie where the real 

part of ζ(s) is equal to  the imaginary part of ζ(s)), we can 

start to see the path that the implicit function described by 

Re (ζ(s))=Im (ζ(s)) traces. This curve is the value of the 
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real (or imaginary) component when the real component   is 

equal to the imaginary component. 

 

 

Figure  2. Riemann Zeta Function Detail Around a Known Zero 

 

Focussing on the points where the real and imaginary parts 

intersect for various values of σ around a known zero of the 

zeta function in figure 2, we can see that the intersection 

points are at different values along an apparent single valued 

curve with an always positive derivative. This already gives an 

indication that it is very unlikely that there can be more than 

one zero along the curve depicting Re(ζ(s))=Im(ζ(s)) in the 

region of a specific value of a (ie that each value of a can have 

at most one zero of the eta function). 

The next step is to follow a more formal approach to showing 

that that there can be not be more than one zero along the 

curve depicting the value of Re(ζ(s)) when (Re (ζ(s))=Im (ζ(s)) 

in the region of a specific value of a (ie that each value of a can 

have at most one zero of the zeta function). 

 

III. METHODOLOGY - FORMAL 
APPROACH TO DESCRIBING 

THE PATH OF THE 
FUNCTION DEPICTING THE 

VALUE OF Re(ζ(s)) when 
(Re(ζ(s))=Im(ζ(s))) IN THE 

CRITICAL STRIP BY USING 
THE DIRICHLET ETA 

FUNCTION. 
 

For all that follows, we shall restrict the value of b between 

+1/2 to –1/2 (which means restricting σ between 0 and 1).  

Riemann proved in his original paper that all zeros of the 

Riemann xi function have t with imaginary parts inside the 

region of +
1

2
i to -

1

2
i, which is equivalent to restricting b and 

σ. This means that the zeta function only has zeros in this 

region (the critical strip). 

 

A. Zeta Function Zeros for 0<Σ<1. 
 

In the well known Dirichlet η function (DLMF25.2.3) (also 

known as the alternating zeta function, which is 

continuous and continuously differentiable), which is 

related to the zeta function by η(s)=(1 − 21−𝑠)ζ(s) and is 

convergent (uniformly not absolutely) for σ>0, we have an 

expression that can be used to explore the characteristics 

of the real component, imaginary component and/or 

function zeros of the zeta function in the critical strip. It is 

important to note that (1 − 21−𝑠) does not have any zeros 

for 0≤σ<1. It has an infinite number of zeros for σ=1. 

It is important to emphasize that the relation between 

ζ(s) and η(s) shows that the two functions have the same 

zeros for 0<σ<1. 

A zero of η(s) requires coincident zeros of both real and 

imaginary components of the function. 
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B. Eta Function Real and Imaginary Components 
for σ>0. 

 

Investigating the real and imaginary components of η(s). 

Starting with: 

η(s) = ∑
(−1)𝑛−1

𝑛𝑠
∞
𝑛=1 = (1 - 

1

2𝑠
+

1

3𝑠
−

1

4𝑠
 +...) 

 

Extracting the real and imaginary parts for one term 

(remembering that s= (σ+ai)): 

1

𝑛𝑠
 = 

1

𝑛𝜎(cos(𝑎𝑙𝑜𝑔(𝑛))+𝑖𝑠𝑖𝑛(𝑎𝑙𝑜𝑔(𝑛)))
 

= 
𝑛𝜎 (cos(𝑎𝑙𝑜𝑔(𝑛))−𝑖𝑠𝑖𝑛(𝑎𝑙𝑜𝑔(𝑛)))

(𝑛𝜎cos (𝑎𝑙𝑜𝑔(𝑛)))^2+(𝑛𝜎sin(𝑎𝑙𝑜𝑔(𝑛)))^2
 

=  
(cos(𝑎𝑙𝑜𝑔(𝑛))−𝑖𝑠𝑖𝑛(𝑎𝑙𝑜𝑔(𝑛)))

𝑛𝜎
 

 

This leads to the series representation of the real part as: 

 

1 – 
cos (𝑎𝑙𝑜𝑔(2))

2𝜎
+

cos (𝑎𝑙𝑜𝑔(3))

3𝜎
−

cos (𝑎𝑙𝑜𝑔(4))

4𝜎
+...               Exp 1  

 

 

 

 

This leads to the series representation of the imaginary 

part as: 

 

sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

sin (𝑎𝑙𝑜𝑔(4))

4𝜎
− ...               Exp 2 

 

C. Investigating Eta Function Real 
Component Equal to Imaginary 

Component and Value of the Real 
Component. 

 

Firstly equating the expressions for the real and imaginary 

components: 

 

1 – 
cos (𝑎𝑙𝑜𝑔(2))

2𝜎
+

cos (𝑎𝑙𝑜𝑔(3))

3𝜎
−... = 

sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

⋯         

⇒1 – 
cos (𝑎𝑙𝑜𝑔(2))

2𝜎
+

cos (𝑎𝑙𝑜𝑔(3))

3𝜎
−... –( 

sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ ) = 0                                                             Exp 3 

  

This gives an an implicit function which describes the 

values of σ and a when Re(η(s))=Im(η(s)). Figure 3 below 

illustrates the implicit function: 

 

Figure  3. Implicit Function Re(eta) = Im(eta) 
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Note the separation of the points on the curve with horizontal 

and vertical tangents.  

 

Totally differentiating Exp 3: 

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎

𝑑𝜎

𝑑𝑎
+

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎

𝑑𝜎

𝑑𝑎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ +

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎

𝑑𝜎

𝑑𝑎
−

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎

𝑑𝜎

𝑑𝑎
+

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ = 0  

⇒ 
𝑑𝜎

𝑑𝑎
 = (−

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
+

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ )/(+

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ )                                                Exp 4 

 

If we now totally differentiate Exp 1 and substitute in the 
𝑑𝜎

𝑑𝑎
 

expression above (since we are investigating the real 

component value when the real component is equal to the 

imaginary component), we will have an expression that 

describes the derivative of the expression that describes the 

real component value when the real component equals the 

imaginary component: 

 

Totally differentiating Exp 1: 

 

D(Exp 1) = 
log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎

𝑑𝜎

𝑑𝑎
 +

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

                           
log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎

𝑑𝜎

𝑑𝑎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ 

⇒ D(Exp 1) = 
𝑑𝜎

𝑑𝑎
( 

log (2)cos (𝑎𝑙𝑜𝑔(2))

2𝜎 −
log (3)cos (𝑎𝑙𝑜𝑔(3))

3𝜎 +...) 

+
log (2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎 −
log (3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎 + ⋯                       Exp 5 

 

Expressions 4 and 5 are convergent for σ>0 (from the 

uniform convergence of the eta function series, but can also be 

seen from the fact that 
log(𝑛)

𝑛𝜎  eventually becomes a 

monotonically reducing series tending to zero from a (large) 

value of n for any value of σ>0, which together with the 

Dirichlet test shows convergence). 

The implicit function theorem (DLMF1.5) tells us that 

expression 4 (since expression 3 is continuously differentiable) 

describes a curve with neighbourhoods where σ is a function 

of a, except where 
𝑑𝜎

𝑑𝑎
 is undefined as the denominator is zero. 

 

 

The same process can be used to show that: 

𝑑𝑎

𝑑𝜎
 = (−

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
+

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
−

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
+

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ )/(+

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
−

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
+

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ )                                           Exp 6 

And: 

D(Exp 1) = 
𝑑𝑎

𝑑𝜎
(

log (2)sin (𝑎𝑙𝑜𝑔(2))

2𝜎
−

log (3)sin (𝑎𝑙𝑜𝑔(3))

3𝜎
+...) 

+
log (2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log (3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯             Exp 7 

 

It is important to note that expression 7 is equivalent to 

expression 5 (they describe the same function). 

Similarly the implicit function theorem tells us that 

expression 6  describes a curve with neighbourhoods 

where a is a function of σ, except where 
𝑑𝑎

𝑑𝜎
 is undefined as 

the denominator is zero. 

At this point it is useful to note the Harmonic Addition 

Theorem (Oo and Gan, 2010) and its implications for 

expressions 5 and 7 when expressions 4 and 6 are 

substituted in. 

Restating the harmonic addition theorem: 

 

Given 𝑥𝑠(𝑡) = ∑ 𝛼𝑖
𝐿
𝑖=1 sin(𝜔0𝑡 + 𝜙𝑖)   or 

𝑥𝑐(𝑡) = ∑ 𝛼𝑖
𝐿
𝑖=1 cos(𝜔0𝑡 + 𝜙𝑖),  it is possible to find 𝛽 and 𝜓  

so that 𝑥𝑠(𝑡) = 𝛽sin(𝜔0𝑡 + 𝜓)  or 𝑥𝑐(𝑡) = 𝛽cos(𝜔0𝑡 + 𝜓), 

where: 

𝛽 = (∑ 𝛼𝑖
𝐿
𝑖=1

2
+ 2 ∑ ∑ 𝛼𝑖

𝐿
𝑗=𝑖+1 𝛼𝑗cos(𝜙𝑖 − 𝜙𝑗))

1

2
𝐿−1
𝑖=1 and: 

Ψ = arg
∑ 𝛼𝑖𝑠𝑖𝑛𝜙𝑖

𝐿
𝑖=1

∑ 𝛼𝑖𝑐𝑜𝑠𝜙𝑖
𝐿
𝑖=1

 , -π < 𝜓 ≤ π. 

 

In the limit as L increases, the expression for 𝛽 does not 

appear to converge. For the next steps of the process, we 

shall consider partial sums of the Dirichlet eta function (ie 

n ranges from 2 to L (however large) and not necessarily to 

∞. 

With the above constraint, if we now use the harmonic 

addition theorem combined with expressions 5 and 4, 

substituting log(2) for 𝜔0 and a for t and noticing that the 

𝛼𝑖 and 𝜙𝑖 terms are identical for both the sin and cos series: 
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𝑑𝜎

𝑑𝑎
=(−

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
+

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ )/(+

log(2)sin(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)sin(𝑎𝑙𝑜𝑔(3))

3𝜎
+

log(2)cos(𝑎𝑙𝑜𝑔(2))

2𝜎
−

log(3)cos(𝑎𝑙𝑜𝑔(3))

3𝜎
+ ⋯ ) 

⇒ 
𝑑𝜎

𝑑𝑎
 =(-𝛽 sin(log(2) 𝑎 + 𝜓) + 𝛽 cos(log(2) 𝑎 + 𝜓))/(𝛽 cos(log(2) 𝑎 +

𝜓) + 𝛽 sin(log(2) 𝑎 + 𝜓)) Exp 8 

And: 

D(Exp 1)= 

((-𝛽 sin(log(2) 𝑎 + 𝜓) + 𝛽 cos(log(2) 𝑎 + 𝜓))/(𝛽 cos(log(2) 𝑎 + 𝜓) +

𝛽 sin(log(2) 𝑎 + 𝜓)))*( 𝛽 cos(log(2) 𝑎 + 𝜓))+ 𝛽 sin(log(2) 𝑎 + 𝜓) 

⇒ D(Exp 1)= 𝛽/(cos(log(2) 𝑎 + 𝜓) + sin(log(2) 𝑎 + 𝜓)) or: 

D(Exp 1) = 𝛽 csc(log(2) 𝑎 + 𝜓 + 𝜋/4)/√2    Exp 9 

 

Using the same approach with expressions 7 and 6: 

𝑑𝑎

𝑑𝜎
 = 

(-𝛽 sin(log(2) 𝑎 + 𝜓) − 𝛽 cos(log(2) 𝑎 + 𝜓))/(−𝛽 cos(log(2) 𝑎 + 𝜓) +

𝛽 sin(log(2) 𝑎 + 𝜓)) Exp 10  

And: 

D(Exp 1) = −𝛽 csc(log(2) 𝑎 + 𝜓 − 𝜋/4)/√2    Exp 11 

Note that expressions 9 and 11 are equivalent - they describe 

the same function. 

 

Expressions 8-11 deserve close study. 

Firstly, we can look at 𝛽 in more detail. Starting from the 

definition of 𝛽 above:  

𝛽 = (∑ 𝛼𝑖
𝐿
𝑖=1

2
+ 2 ∑ ∑ 𝛼𝑖

𝐿
𝑗=𝑖+1 𝛼𝑗cos(𝜙𝑖 − 𝜙𝑗))

1

2
𝐿−1
𝑖=1  

 

Note that 𝛽 as an amplitude does not change sign for varying 

values of σ and a (given we that we do not rearrange any 

series),  but potentially has a minimum of zero. It is also 

useful to note that in general, the limit as x→0 of yx/x is y and 

of y(x^2)/x is 0. 

In fact, it seems that 𝛽 does not equal zero in any of the 

above expressions (although this is not a necessary result for 

the purposes of this paper). This is because for 𝛽 to be zero 

then in the expression 𝑥𝑐(𝑡) = ∑ 𝛼𝑖
𝐿
𝑖=1 cos(𝜔0𝑡 + 𝜙𝑖),  , 𝑥𝑐(𝑡) 

would be zero for all t (ie the expression would be identically 

zero for all t). This would mean that, given that  𝜙𝑖  are all fixed, 

they would need to be zero or multiples of π (or appropriate 

multiples of expressions including π, such that the 

∑ 𝛼𝑖
𝐿
𝑖=1 cos(𝜔0𝑡 + 𝜙𝑖)  summed identically to zero for any t). In 

the particular case here, where 𝜙𝑖   = (alog(n)-alog(2)), this is 

not the case. This means that in this case, 𝛽 ≠ 0. 

The csc function has no zeros (and is undefined in 

between sections of alternating all positive values and all 

negative values) . All expressions are valid for all σ and a 

values for the eta function (and describe a single valued 

function for each σ,a input) - except those points where 
𝑑𝜎

𝑑𝑎
 

and 
𝑑𝑎

𝑑𝜎
are undefined. 

More specifically, firstly looking at expressions 8 and 9: 

Expression 8 describes a number of curves with 

neighbourhoods where σ is a function of a, except where 

expression 8 is undefined when the denominator is zero. 

Expression 9 gives the derivative of the function which 

describes the value of the real part of η(s) in those 

neighbourhoods, which is positive(negative) in one 

neighbourhood where σ is a function of a (ie the value of 

the real part of η(s) increases(decreases) for increasing a), 

is undefined at the same points where expression 8 is 

undefined and is negative(positive) in the adjacent 

neighbourhood (ie the value of the real part of η(s) 

increases(decreases) for decreasing a). This means that 

each separate curve segment describing the value of the 

real part of η(s) when Re(η(s)) = Im(η(s)) always has a 

positive(negative) derivative. 

The same argument holds for expressions 10 and 11 

(except that a is now a function of σ) and Expression 11 

gives the derivative of the function which describes the 

value of the real part of η(s) in those neighbourhoods, 

which is positive(negative) in one neighbourhood where a 

is a function of σ (ie the value of the real part of η(s) 

increases(decreases) for increasing σ), is undefined at the 

same points where expression 10 is undefined and is 

negative(positive) in the adjacent neighbourhood (ie the 

value of the real part of η(s) decreases(increases) for 

increasing σ. This means that each separate curve segment 

describing the value of the real part of η(s) when Re(η(s)) 

= Im(η(s)) always has a positive(negative) derivative. 

 It is important to note that expressions 8 and 10 are 

undefined at different values - which means that we can 

define the function completely (with no change of sign for 

the total derivative of the function) at all points since 

expressions 8 and 10 describe the same function. 

This means that the separate curve segments described 

by expression 9 and expression 11 either have all positive 
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or all negative derivatives (derivative does not change sign but 

might equal zero, although individual segments might have 

positive or negative derivatives) - which means that they can 

only have a single zero per curve. This, in turn, means that 

there can be only one zero in the local region of any particular 

value of a. 

The result of this is that the function approximating the 

value of the real component of the eta function when the 

partial sums of the series representing the real and imaginary 

components of η(s) have the same value can have at most one 

zero for a discrete complete section of curve. This means that 

for any fixed value of a, η(s) can only have one zero (in order 

to have more zeros, then the derivative would need to change 

sign at some point). This, combined with the facts that  1) the 

eta function zeros are the same as the zeta function zeros and 

2) The Riemann xi function shows that a zeta function zero at 

s means there is a corresponding zero at (1-s), means that s 

and (1-s) must have the same real component (1/2). 

These results hold for any value of a and for any value of L. 

This means that even though the expression for 𝛽 does not at 

first sight appear to converge, we could argue that the 

derivative will not change sign when L tends to the limit. More 

rigorously, we can argue that (based on the fact that partial 

sums of series approach the value of the series with a known 

estimate of the error as the number of terms in the partial sum 

increases) for any value of a we can show that the real 

component of the eta function has a single zero to any 

required degree of accuracy (by increasing L). 

We can further note that in the expression for 𝜓 that is:  

 

Ψ = arg
∑ 𝛼𝑖𝑠𝑖𝑛𝜙𝑖

𝐿
𝑖=1

∑ 𝛼𝑖𝑐𝑜𝑠𝜙𝑖
𝐿
𝑖=1

 , -π < 𝜓 ≤ π. 

 

The two series in the expression both converge (the 𝛼𝑖 terms 

are of alternating sign and strictly reducing in magnitude and 

both the sin and cos series are actually phase shifted versions 

of the cos(xlog(n)) and sin(xlog(n)) series - by xlog(2) - which 

have already been proved to be bounded for all partial sums) - 

which means that 1) in the limit the expression for Ψ 

converges and 2) we can evaluate the value of 𝛽 by using the 

value of Ψ and thee values of the convergent series for real and 

imaginary components. This in turn means that we can 

evaluate 𝛽 in the case of the infinite series without formally 

proving the convergence of the series for 𝛽 (although I suspect 

it may converge). 

The implication is that the Riemann Hypothesis is true. 

 

IV. CONCLUSIONS 
 

Known previously - The Riemann zeta function does not 

have zeros outside the critical strip. 

In Section 2 the apparent behaviour of the paths of the 

points where Re(ζ(s))=Im(ζ(s)) were observed, showing 

that it was unlikely that there would be 2 zeros of ζ(s) for 

the same value of a (the imaginary component of s). In 

addition, the property of the Riemann xi function that ξ(s) 

= ξ(1-s) was noted. 

In section 3A the Dirichlet eta function was introduced 

as an appropriate mechanism for investigating the zeros of 

the zeta function for ζ(s) where σ>0. 

In Section 3B the convergent series representation of the 

real and imaginary parts of the eta function were 

established. 

In section 3C the convergent series representations of 

the derivative of the implicit function describing the 

function where the real part is equal to the imaginary part 

of the eta function was established. Combined with the 

series representations of the derivative of the real part of 

the function when the real part is equal to the imaginary 

part and using the harmonic addition theorem (and 

initially working with partial sums due to the apparent 

non-convergence of resulting expressions) it was shown 

that the derivative will not change sign along any specific 

curve (ie curves that have all positive derivatives or all 

negative derivatives). This is then extended to infinite 

series. 

This leads to the conclusion that the real component of 

the eta function where the real part of eta equals the 

imaginary part of eta has only a single zero for a fixed 

value of a (the imaginary part of s), which can be shown to 

any required degree of accuracy by increasing L (the 

number of terms in the partial sum). It is also implied (by 

the non-converging expression) that the derivative does 

not change sign for any value of L, removing the need for 

relying on partial sums. 

Combining these conclusions, all of the roots of η(s)and 

therefore ζ(s) are such that for each value of the imaginary 
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component (a) there is at most one root, which means that 

since ξ(σ+ai) = ξ(1-(σ+ai)) those roots will be at σ=1/2 - which 

means that the Riemann Hypothesis is true. 
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