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Line transect sampling is a common method used in ecology for sampling the sample required. It is 

an important procedure for estimating the population density of objects in interested study area. 

There are  two main ways to estimate the population density which are parametric and 

nonparametric estimation methods. In this paper, we present kernel  method to propose new 

estimator of the propose population density. Kernel estimation method is used due to avoid the 

assumption about the shape of the unknown detectable functions. We investigate the performance 

of the new estimator using simulation study and compared with the existing estimators. Based on 

the simulation study, the results show that the proposed estimator preforms better than other well -

known estimators. 
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I. INTRODUCTION 
 

There are many ways to estimate the population abundance, 

one of the methods is line transect sampling. In line transect 

sampling technique, the density (𝐷) of the objects on 

interested area depends on the measured distances between 

the detected objects and the line of transect, 𝐿 . Two key 

assumptions of line transect distances sampling (DS) are all 

objects on the line are certainty detected and the objects must 

be detected at their original location. If these two assumptions 

are valid, the DS gives unbiased estimators of the population   

Density (Buckland et al., 2001). These assumptions lead us to 

define the important concept in the DS, also called a detection 

function. Detection function plays the central role to the line 

transect sampling technique which can be defined as 

 

g(y) = P(observing object / its perpendicular distances y from 

center line).   (1) 

 

It is reasonable to assume that the detectability function g(y) 

is nonincreasing function on [0; ∞), that means the detection 

function have a monotone decreasing curve, the probability of 

detection should close to one as distance from the line 

increases from zero, that means the detection function 

satisfied shoulder property which is (𝑔(0) =  1). Let 𝑌1,…,𝑌𝑛 

donated to the nonpooled sighting perpendicular distances 

which selected randomly and independently from the 

transect strips, with common density function 𝑓(𝑦) , 

defined on [0; 𝑤], 𝑓(𝑦) was considered by Burnham and 

Anderson (1976) as   

  

𝑓(𝑦) =
𝑔(𝑦)

∫ 𝑔(𝑡)𝑑𝑡
𝑤

0

 ; 0 ≤ 𝑦 ≤ 𝑤.   (2) 

 

By assuming that all objects on the line and have perfect 

probability, Burnham and Anderson (1976) showed that 

the density 𝐷 of the objects in surveyed area related to the 

probability density function (pdf) 𝑓(𝑦) which evaluated at 

𝑦 =  0 as 

𝐷 =
𝐸(𝑛)𝑓(0)

2𝐿
   (3) 

 

where 𝐸(𝑛) is the expected value of sighted objects. Since 

𝐷  depends to 𝑓(0) , the density 𝐷  estimated by  𝑓 (0) . 

Based on Burnham and Anderson (1976) and Buckland et 

al., (1993; 2015), the density 𝐷 can be estimated by 

 

𝐷̂ =
𝑛

2𝐿
𝑓(0)  (4) 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

138 

Let  𝑌1,…,𝑌𝑛    be a set of perpendicular distances which are 

usually assumed to be a random sample, having a density 

function 𝑓(𝑦;  𝜃)  depends on unknown parameter 𝜃, where 𝜃  

may one parameter or vector of parameters. Since the 𝑓(0)  is 

function of the parameter  𝜃 therefore, the estimate of 𝜃  lead 

us to estimate  𝑓(0) =   𝑓(0; 𝜃)  . The exponential detection 

function is presented by Gates et al. (1968) given as 

 

𝑔(𝑥; 𝜃) =  𝑒−𝑦 𝜃⁄ ;  𝑦 ≥ 0 , 𝜃 > 0  (5) 

 

with corresponding pdf, 

𝑓(𝑥; 𝜃) =
1

𝜃
 𝑒−𝑦 𝜃⁄ ;  𝑦 ≥ 0 , 𝜃 > 0  (6) 

The maximum likelihood estimator (MLE) of 𝑓(0) is, 

𝑓𝑀𝐿𝐸(0) =
1

𝑌̅
 ,  (7) 

 

where 𝑌̅ is the sample mean. It is important to refer that the 

negative exponential (NE) model does not satisfy 𝑓́(0) = 0  

while half normal (HN) model satisfies 𝑓́(0) =  0. This means 

half normal detection deals with the property of the shoulder. 

In contrast, the NE detection 𝑔(𝑦)  does not achieve the 

shoulder condition. Hemingway (1971) suggested the half 

normal model with pdf 

 

𝑓(𝑦; 𝜎2) = √
2

𝜋𝜎2
 𝑒−𝑦2 2𝜎2⁄ ; 𝑦 ≥ 0 , 𝜎2 > 0 ,  (8) 

and the half normal detection function is, 

𝑔(𝑦; 𝜎2) =  𝑒−𝑦2 2𝜎2⁄ ; 𝑦 ≥ 0 , 𝜎2 > 0 .  (9) 

The main estimator to estimate  𝜎2  for density in equation 

(8) is 
1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 , given by using MLE to estimate 𝑓(0). Since  

𝑓(0) = √
2

𝜋𝜎2 , the MLE of 𝑓(0) is given by 

𝑓𝑀𝐿𝐸(0) = √
2

𝜋
 (

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )

−1 2⁄

  (10) 

 

II. MATERIALS AND 
METHOD 

 

Let 𝑌1,…,𝑌𝑛  random variables of size n representing the 

perpendicular distances have probability density function (pdf) 

𝑓(𝑦), and independent and identically distributed (iid) have a 

detection function 𝑔(𝑦 ). Saeed et al., (2017) introduced 

𝑔(𝑦; 𝜎2)  which is given as 

 

𝑔(𝑦; 𝜎2) = (2 − 𝑒−𝑦2 2𝜎2⁄ )𝑒−𝑦2 2𝜎2⁄ ; 𝑦 ≥ 0 , 𝜎2 > 0 ,  (11) 

and the first derivative of 𝑔(𝑦; 𝜎2)  is given as 

𝑔′(𝑦; 𝜎2) =
2

𝜎2
 𝑦𝑒−𝑦2 2𝜎2⁄ (𝑒−𝑦2 2𝜎2⁄ − 1). (12) 

 

For all 𝑦 ≥ 0; 𝜎2  >  0 , we can easily observe that 0 ≤

𝑒−𝑦2 2𝜎2⁄ ≤ 1 , then equation (12) can be shown that 

𝑔′(𝑦; 𝜎2) < 0, therefore, the detection function 𝑔(𝑦; 𝜎2)   is 

monotone decreasing function on  [0; ∞ ). In addition, 

𝑔(𝑦; 𝜎2)     continuous function satisfies the condition 

𝑔′(0; 𝜎2) = 1, which means that the probability of sighted 

object on the line equals to one. Figure 1 shows the shapes 

of the detection function for certain values of 𝜎2. Moreover, 

𝑓(𝑦; 𝜎2)   is continuous function and proportional to the 

𝑔(𝑦; 𝜎2),  𝑓(𝑦; 𝜎2) is decreasing function and related with 

𝑔(𝑦; 𝜎2)   as 

 

𝑔(𝑦; 𝜎2) = 𝜇𝑓(𝑦; 𝜎2),  (13) 

 

where 

𝜇 = ∫ 𝑔(𝑦; 𝜎2)𝑑𝑦
∞

0
.  (14) 

 

Then, the corresponding pdf of 𝑔(𝑦; 𝜎2), given by Saeed et 

al., (2017) as 

 

𝑔(𝑦; 𝜎2) = 𝑓(𝑦; 𝜎2)(2 − 𝑒−𝑦2 2𝜎2⁄ )𝑒−𝑦2 2𝜎2⁄ ; 𝑦 ≥ 0 , 𝜎2 > 0 

(15) 

 

By solving the integration in equation (14), the 𝑓(0; 𝜎2)  is 

given as (Saeed et al., 2017) 

 

𝑓(0; 𝜎2) =  
2

(2√2−1)√𝜋𝜎2
  (16) 

 

Equation (16) shows that the 𝑓(0; 𝜎2)  is a function with the 

parameter 𝜎2 . Therefore, it is enough to estimate 𝜎2  for 

estimating  𝑓(0; 𝜎2) . The considered model in equation (15) 

was studied by Noryanti et al. (2018), the maximum 

likelihood (MLE) method is used to estimate the proposed 

estimator, the performance of the proposed estimator is 

evaluated by simulation study. In next section, for this 

purpose, kernel method with the proposed model are used 

to compute the smoothing parameter and studied the 

proposed estimator performance. 
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Figure  1. The detection function 𝑔(𝑦)  graph of the proposed 

model for different parameter 𝜎2  

 

III. KERNAL ESTIMATORR 
 

Consider 𝑌1,…,𝑌𝑛  be random sample of size 𝑛, distributed from 

continuous probability density function (pdf) 𝑓(𝑦). According 

to in Silverman (1986) and (2018), the kernel estimate  𝑓(𝑦) of 

𝑓(𝑦) supported on [0; ∞), is given by 

 

𝑓(𝑥) =
1

𝑛ℎ
∑ (𝐾 (

𝑦−𝑌𝑖

ℎ
) + 𝐾 ((

𝑦+𝑌𝑖

ℎ
)))𝑛

𝑖=1 ;  𝑦 ≥ 0  ,  (17) 

 

where ℎ is the bandwidth, which controls the smoothness of the 

fitted function shape and 𝐾 is  a kernel function, assumes to be 

symmetric function and satisfies the following 

 

∫ 𝐾(𝑡)𝑑𝑡 = 1
∞

−∞
, ∫  𝑡𝐾(𝑡)𝑑𝑡 = 0

∞

−∞
, ∫ 𝑡2𝐾(𝑡)𝑑𝑡 = 𝑐

∞

−∞
≠ 0  . 

(18) 

 

the standard kernel estimate 𝑓(0)  of 𝑓(0)  is given by Chen 

(1996) as, 

𝑓(0) =
2

𝑛ℎ
∑ 𝐾 (

𝑌𝑖

ℎ
)𝑛

𝑖=1 .  (19) 

 

By assuming 𝑛ℎ →  ∞ as 𝑛 → ∞, the bias and variance of  𝑓𝑘(0) 

can be represented as 

 𝐵𝑖𝑎𝑠 (𝑓𝑘(0)) = 2ℎ𝑓′(0) ∫ 𝑢𝑘(𝑢)𝑑𝑢 
∞

0
+

ℎ2𝑓′′(0) ∫ 𝑢2𝑘(𝑢)𝑑𝑢 + 𝑜(ℎ2)
∞

0
  (20) 

and 

𝑉𝑎𝑟 (𝑓𝑘(0)) =  
4𝑓(0)

𝑛ℎ
∫ 𝐾2(𝑢)𝑑𝑢

∞

0
+  𝑜(𝑛−1 ℎ−1 )   (21) 

Depending on the assumption that the shoulder condition 

is true, and the function 𝑓(0) has continuous derivative. 

Thus, lead us to introduce the following estimator. 

 

𝑓(0) = 𝑓𝑘(0) − ℎ2 𝑓′′(0) ∫ 𝑢2𝐾(𝑢)𝑑𝑢 
∞

0
 . (22) 

 

The 𝑓′′(0) is the second derivative of 𝑓(𝑦) at 𝑦 =  0.  Based 

on equation (22) and for underlying 𝑓(𝑦) which satisfies 

the shoulder condition, the bias of  𝑓(0) is given as  

 

𝐵𝑖𝑎𝑠 (𝑓(0)) =
2ℎ3𝑓(3)(0)

6
∫ 𝑢3𝐾(𝑢)𝑑𝑢

∞

0
+

2ℎ4𝑓(4)(0)

24
∫ 𝑢4𝐾(𝑢)𝑑𝑢 

∞

0
+ 𝑂(ℎ5) .  (23) 

 

and the variance of  𝑓(0) is  

𝑉𝑎𝑟 (𝑓(0)) =  
4

𝑛ℎ
𝑓(0) ∫ (𝐾(𝑢))

2
𝑑𝑢

∞

0
+  𝑜(𝑛−1 )  

 (24) 

 

From equations (23), (24) and the assumption that 

 

𝑓′(0) = 𝑓′′′(0) = 0 , 

the asymptotic mean square error (AMSE) can be written 

as 

𝐴𝑀𝑆𝐸 ( 𝑓(0)) =
4

𝑛ℎ
𝑓(0) ∫ (𝐾(𝑢))

2
𝑑𝑢

∞

0
+

2ℎ8

576
(𝑓(4)(0) ∫ 𝑢4𝐾(𝑢)𝑑𝑢 

∞

0
)

2
  (25) 

 

The key aspect in nonparametric kernel method the value 

ℎ which plays the major milestone in the performance of 

 𝑓𝑘(0). A large smoothing parameter ℎ leads to an estimate 

with small variance and large bias while a small h produces 

a large variance and small bias. Then, the minimisation of 

the AMSE in equation (25) leads to compute the optimal 

value of ℎ, which is given by 

 

ℎ = (
72𝑓(0) ∫ (𝐾(𝑢))

𝟐
𝑑𝑢 

∞

0

(𝑓(4)(0) ∫ 𝑢4𝐾(𝑢)𝑑𝑢 
∞

𝟎
)

𝟐)

1 9⁄

𝑛−1 9⁄   . (26) 

 

The smoothing parameter h in equation (26) depends on 

𝑓(0) , 𝑓(4)(0) and the kernel function 𝐾(𝑢). The negative 

exponential, half normal models and the proposed model 

in equation (15) are used as references to compute the 

smoothing parameter ℎ. In this paper for all models, we 

use standard normal 𝑁(0;  1)  as a kernel function. The 

optimal values ℎ  for the different estimators have been 

computed and give ℎ1  =  1.18229 𝑌̅𝑛−1 9⁄   for  𝑓1;𝑘(0), ℎ2 =
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 0.949713𝑇𝑛−1 9⁄  for 𝑓2;𝑘(0)  and ℎ3  =  0: 904949𝑌̅𝑛−1 9⁄  for 

the proposed estimator  𝑓3;𝑘(0) , respectively, where  𝑌̅  is 

sample mean and 𝑇 = √
1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 . 

 

IV. SIMULATION RESULT 
AND DISCUSSION 

 

A simulation study is performed in order to investigate the 

performances of the considered estimators in Section 3. The 

data is simulated using one of commonly models used in line 

transect which is Hazard-Rate (HR) model (Hemingway (1971) 

given as 

𝑓(𝑥) =
1

𝛤(1−1 𝛽)⁄
(1 − 𝑒−𝑥−𝛽

) ,    𝑥 ≥ 0 , 𝛽 ≥ 1.        (27) 

 

 

 

For this purpose, we used HR model to generate  400 

samples of sizes 𝑛 =  50, 100  and 𝑛 =  200  of 

perpendicular distances data set. Four HR models is 

selected with parameter values 𝛽  and the corresponding 

truncated value 𝑤  are given as (𝛽; 𝑤) =

{(1.5, 20), (2, 12), (2.5, 8); (3, 6)}. The Relative Mean Error 

(RME) and Relative Bias (RB) be estimated to evaluate the 

performance of the estimators 𝑓1;𝑘(0), 𝑓2;𝑘(0),   and  𝑓1;𝑘(0). 

The RME and RB is given by 

 

𝑅𝑀𝐸 =
√𝑀𝑆𝐸(𝑓̂(0))

𝑓(0)
 ,  (28) 

and 

𝑅𝐵 =
𝐸(𝑓̂(0))−𝑓(0)

𝑓(0)
 .  (29) 

 

The results of RME and RB are summarised in Table 1.

 

Table  1. Simulated values of RB and RME for the different estimators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows that the results of RB and RME in of the three 

considered estimators which demonstrated in Section 3. The 

estimator 𝑓1;𝑘(0)  is performed better than  𝑓2;𝑘(0)  for all 

considered cases regardless of sample size n. For each sample  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

size and for all considered cases, the estimator 𝑓1;𝑘(0) 

provides the smallest value of RME and RB comparing to 

the estimators 𝑓1;𝑘(0)and  𝑓1;𝑘(0). Indeed, the significant 

result is that the performance of proposed estimator 

𝑓3;𝑘(0)is outperformed well-known considered estimators. 

 
𝒏 

 

𝒘 

 

𝜷 

  

𝒇̂𝟏;𝒌(𝟎) 

 

𝒇̂𝟐;𝒌(𝟎) 

 

𝒇̂𝟑;𝒌(𝟎) 

50   RB -0.40688 -0.50084 -0.30589 
   RME 0.42316 0.50911 0.33455 

100 1.5 20 RB -0.38122 -0.38122 -0.27824 

   RME 0.39244 0.48645 0.29807 

200   RB -0.35529 -0.45676 -0.25086 

   RME 0.36101 0.45947 0.26129 

50   RB -0.26845 -0.35539 -0.17278 

   RME 0.29379 0.37279 0.21703 

100 2 12 RB -0.24750 -0.33672 -0.15292 

   RME 0.26519 0.34771 0.18513 

200   RB -0.22132 -0.31187 -0.12957 

   RME 0.23039 0.31683 0.14770 

50   RB -0.14835 -0.20491 -0.06831 

   RME 0.18622 0.23302 0.14057 

100 2.5 8 RB -0.13294 -0.18801 -0.05846 

   RME 0.15791 0.20408 0.11091 

200   RB -0.10605 -0.15896 -0.03845 

   RME 0.12484 0.17095 0.08168 

50   RB -0.09536 -0.12424 -0.03392 

   RME 0.14688 0.16463 0.13001 

100 3 6 RB -0.07614 -0.10291 -0.02344 

   RME 0.10982 0.12760 0.09334 

200   RB -0.05828 -0.08309 -0.01275 

   RME 0.08253 0.09942 0.06988 
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Another noticeable results, the values of RME decrease as the 

sample size increases for all estimators which indicates that 

the consistency of the proposed estimators for 𝑓(0) . This 

result can be shown in Figures 2 and 3. 

 

 

Figure  2. RME values for the different estimators 

 

V. CONCLUSION 
 

In this paper, parametric model is used to construct the 

nonparametric kernel estimator 𝑓(0).  Moreover, the 

smoothing parameter of the kernel estimator is computed for 

considered estimators, which plays a major milestone in the 

performance of the kernel estimator. Simulation study is 

constructed to compare the performance of the proposed 

estimator with other existing estimators. The simulated 

results of RB and RME indicate that the proposed estimator 

is performed better than other estimators considered. In 

general, the proposed model be recommended to estimate 

𝑓(0) and then to estimate the population density 𝐷. 
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Figure  3. RB values for the different estimators 
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