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Blömer-May’s attack is notable cryptanalysis towards RSA cryptosystem, which can be viewed as an 

extension of the Wiener’s attack such that focused on its generalized for of key equation. Note that 

the said attack can lead a polynomial-time factorization of modulus 𝑁 via continued fraction method. 

Later, the attack was reformulated to satisfies 𝑥𝑦 <
𝑁

4(𝑝+𝑞)
. In this paper, we propose an improved 

bound of Bl𝑜̈mer-May’s generalized key exponents that satisfies 𝑥𝑦 <
3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+(𝑝+𝑞)2)

. We show that 

our result is marginally better than the previous study. 

Keywords:  RSA cryptosystem; cryptanalysis; weak key; generalized key equation; continued 

fraction. 

 

 

I. INTRODUCTION 
 

The RSA cryptosystem (Rivest et al., 1978) has a global-wide 

use as a public key cryptosystem in the communication and 

banking fields. The strength of this cryptosystem is based on 

its integer factorization on a modulus 𝑁 = 𝑝𝑞  where 𝑝 and 𝑞 

are the prime numbers. Since then, it inspired many 

researchers to design public-key cryptosystems based on 

integer factorization problems such as Asbullah et al. (2018), 

Asbullah and Ariffin (2016) and Mahad et al. (2017). Focussed 

on the RSA design, there is public key 𝑒  satisfies a specific 

Diophantine equation 𝑒𝑑 = 1 + 𝑘𝜙(𝑁), which also knwon as 

the RSA key equation, where 𝑑 is a private exponent and 𝜙(𝑁) 

is the Euler totient function (Abu Bakar et al., 2017). The 

private exponent 𝑑  alongside with several other parameters 

such as 𝑝, 𝑞, and 𝜙(𝑁) must be kept the covert from the public. 

Therefore, the study on finding the limitation of RSA was 

started from the 1980s, especially on the factorization of 

modulus 𝑁 until recent publications such as Abu Bakar et al. 

(2018), Gafar et al. (2018) and Rahman et al. (2018). 

Historically, since the 1990s, the small private exponents had 

paid attention on RSA key generation. Wiener (1990) 

particularly introduced an attack on small private exponents. 

In the analysis of small private exponents, Wiener (1990) 

proved that if 𝑑 <
1

3
𝑁

1

4 , then modulus 𝑁  can factor in 

polynomial time via continued fraction method. Later, 

Nitaj (2013) improved the upper bound satisfying 𝑑 <

√6√2

6
𝑁

1

4. Recently, another proof to Wiener’s short secret 

exponent satisfying 𝑑 <
1

2
𝑁

1

4  (Asbullah & Ariffin, 2019). 

Blömer and May (2004) introduced an attack which extend 

from Wiener (1990) attack by proposing an RSA variant 

key equation where a public key 𝑒 satisfies 𝑒𝑥 = 𝑧 + 𝑦𝜙(𝑁), 

with 0 < 𝑥 <
1

3
√

𝜙(𝑁)

𝑒

𝑁
3
4

𝑝−𝑞
 and |𝑧| <

𝑝−𝑞

𝜙(𝑁)𝑁
1
4

𝑒𝑥. The attack is 

focused on the Diophantine equation problem which is 

solvable by continued fraction expansion and by 

Coppersmith’s method obtaining the prime factors of the 

modulus 𝑁. 

Nitaj (2013) revisited the Blömer-May’s attack and 

reformulate the attack which considering the case of 

unbalanced prime 𝑝  and 𝑞 . By using Blömer-May’s key 

equation, the key exponents in Nitaj (2013) satisfy 𝑥𝑦 <

𝑁

4(𝑝−𝑞)
 with |𝑧| <

𝑝−𝑞

3(𝑝+𝑞)
𝑁

1

4𝑦. The work of Nitaj (2013) can 

be viewed as a reformulation of the attack via generalized 

key exponents, which had given the motivation to this 

study; i.e. to revisit the study with the aims to improve the 

generalized key exponents. Thus, we present another proof 

of Blömer-May’s attack which improve the bound of 
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generalized key equation where 𝑥𝑦 <
3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+3(𝑝+𝑞)2)

. As a 

result, a new bound which shows some significant 

improvement as compared as result provided in Nitaj (2013). 

In this paper, there are four sections which are organized 

sequentially. In Section 2, existing yet important theorems and 

previous results were presented which will be used in this 

study. Next section presents the improved generalized key 

exponents bound, followed with a working algorithm and 

numerical example. In Section 4, we compared the result with 

the previous study. Finally, the conclusion in Section 5. 

 

II. PRELIMINARIES 
 

This section presents the fundamental technique of the 

continued fraction expansion and also the useful existing 

results that will be utilized throughout this paper. 

 

A. Continued Fraction 
 

Let 𝑟 be a real number which has unique continued fraction 

expansion, 

𝑟 = [𝑎0, 𝑎1, 𝑎2, … ] = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1
…

 

 

where we define the sequence {𝑟𝑘} and {𝑎𝑘} recursively with  

 

𝑟 = 𝑟0, 𝑎𝑘 = ⌊𝑟𝑘⌋, 𝑟𝑘+1 =
1

𝑟𝑘 − 𝑎𝑘
, for𝑘 ≥ 0 

 

The elements 𝑎0, 𝑎1, 𝑎2, …  are called partial quotients with 

𝑎0 ∈ ℤ and 𝑎1, 𝑎2, … ∈ ℤ+. The value 𝑟 be a finite number if 𝑟 =

[𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑖]  for 0 ≤ 𝑖 ≤ 𝑘  and be the convergents to the 

rational numbers 
𝑝𝑖

𝑞𝑖
 satisfying  

 

𝑝𝑖

𝑞𝑖
= 𝑎0 +

1

𝑎1 +
1

𝑎2 +
1

⋱ +
1
𝑎𝑖

 

 

 The following theorem is one of the important results related 

to continued fraction expansion and known as the Legendre’s 

theorem. This theorem was widely used for cryptanalytical 

results such as Asbullah et al. (2016) and Asbullah and Ariffin 

(2016).  

Theorem 1 (Asbullah et al., 2016) Let 
𝑦

𝑥
= [𝑎0, 𝑎1, 𝑎2, … ] be 

a continued fraction expansion of 𝑟. If x and y are coprime 

integers such that  

|𝑟 −
𝑦

𝑥
| <

1

2𝑥2
, 

 

then 
𝑦

𝑥
 is one of the convergents in continued fraction 

expansion of 𝑟.  

 

B. Coppersmith’s Method 

 

A method for finding small roots of univariate 

polynomial equation 𝑓(𝑥0) ≡ 0 (mod 𝑁)  was 

introduced by Coppersmith (1997). This method is 

useful for many applications especially in 

cryptanalysis on RSA cryptosystem. In this study, 

there is a partial knowledge prime 𝑝  is known in 

which the bound difference of approximation 𝑝 is at 

most 𝑁
1

4. Thus, we recall a theorem that can be used 

for factorization of 𝑁. 

 

Theorem 2 (Coppersmith, 1997) Let 𝑁 = 𝑝𝑞  be 

RSA Modulus with 𝑞 < 𝑝 < 2𝑞 . Suppose we know 

the most significant bit of one of the prime in 𝑁 with 

  

|𝑝 − 𝜌| < 𝑁
1
4 

 

then the modulus 𝑁 can be factored in polynomial 
time. 
 

C. Previous Result 

 

Blömer and May (2004) had study about the variant RSA 

key equation 𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 with small parameter of 𝑥, 𝑦, 

and 𝑧  that can factorise modulus 𝑁  as shown in the 

following theorems. 

 

Theorem 3 (Blömer & May, 2004) Suppose (𝑁, 𝑒) is an 

RSA public key and the key equation 𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 is 

satisfied by the public exponent 𝑒 with  
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0 < 𝑥 <
1

3
√

𝜙(𝑁)

𝑒

𝑁
3
4

𝑝 − 𝑞
 and |𝑧| <

𝑝 − 𝑞

𝜙(𝑁)𝑁
1
4

𝑒𝑥 

 

Then, Nitaj (2013) revisited the variant key equation to 

determine an polynomials time factorisation of modulus 𝑁 as 

following theorem.  

 
Theorem 4 (Nitaj, 2013) Suppose (𝑁, 𝑒) is an RSA public key 

and the key equation 𝑒𝑥 − 𝜙(𝑁)𝑦 = 𝑧 is satisfied by the public 

exponent 𝑒 with  

 

𝑥𝑦 <
𝑁

4(𝑝 + 𝑞)
and|𝑧| <

𝑝 − 𝑞

3(𝑝 + 𝑞)
𝑁

1
4𝑦 

 

Then, the polynomials time factorisation of modulus 𝑁 can be 

occured.  

Then, there are three lemmas that engage in this study (see 

(Nitaj, 2008)). For the first lemma, consider the primes 𝑝 and 

𝑞 have same bit size, as follows. 

 

Lemma 1 (Nitaj, 2008) Let 𝑁 = 𝑝𝑞 be an RSA Modulus with 

𝑞 < 𝑝 < 2𝑞. Then,  

√𝑁

√2
< 𝑞 < √𝑁 < 𝑝 < √2√𝑁. 

 

 Then, the inequalities for 𝑝 + 𝑞 and 𝑝 − 𝑞 based on Lemma 1 as 

lemma follows. 

 

Lemma 2 (Nitaj, 2008) Let RSA modulus 𝑁 = 𝑝𝑞  with 

balanced prime 𝑞 < 𝑝 < 2𝑞. Then  

 

2√𝑁 < 𝑝 + 𝑞 <
3

√2
√𝑁and

√𝑁

√2
< 𝑝 − 𝑞 < √𝑁. 

 

 The next lemma presents the factorisation of modulus 𝑁 

occured when there is the approximation of 𝑝 + 𝑞. 

 

Lemma 3 (Nitaj, 2013) Let RSA modulus 𝑁 = 𝑝𝑞  with 

balanced prime 𝑞 < 𝑝 < 2𝑞. Given an approximation of 𝑝 + 𝑞 

with at most 
𝑝−𝑞

3(𝑝+𝑞)
𝑁

1

4 , then, the polynomials time 

factorisation of modulus 𝑁 can be occured.  

 

III. RESULTS AND 
DISCUSSION 

 

This section presents the improved result on bound of 

generalized key exponents, which compared it with Nitaj’s 

bound 𝑥𝑦 <
𝑁

4(𝑝+𝑞)
  (Nitaj, 2013) as follows. 

 

Proposition 1 Let 𝑁 = 𝑝𝑞 with an RSA public key (𝑁, 𝑒) 

and 𝑞 < 𝑝 < 2𝑞 . Suppose that 𝑒  satisfies a key equation 

𝑒𝑥 − 𝑦𝜙(𝑁) = 𝑧 with gcd (𝑥, 𝑦)=1 and  

 

𝑥𝑦 <
3(𝑝 + 𝑞)𝑁

2((𝑝 − 𝑞)𝑁
1
4 + 3(𝑝 + 𝑞)2)

and|𝑧| <
𝑝 − 𝑞

3(𝑝 + 𝑞)
𝑁

1
4𝑦 

 

then, 
𝑦

𝑥
 is amongst the convergence of the continued 

fraction 
𝑒

𝑁
.  

 

Proof. Consider the generalized key equation 𝑒𝑥 − 𝑦𝜙(𝑁) =

𝑧 and then derive the following equation;          

 

𝑒𝑥 − 𝑦𝜙(𝑁) = 𝑧 

  𝑒𝑥 − 𝑦(𝑁 + 1 − (𝑝 + 𝑞)) = 𝑧 

                                    𝑒𝑥 − 𝑦𝑁 = 𝑧 − (𝑝 + 𝑞 − 1)𝑦  (1) 

 

 Multiply (1) with 
1

𝑁𝑥
 into yields 

 

|
𝑒

𝑁
−

𝑦

𝑥
| =

|𝑧 − 𝑦(𝑝 + 𝑞 − 1)|

𝑁𝑥
 

                                   ≤
|𝑧|+𝑦(𝑝+𝑞−1)

𝑁𝑥
                (2) 

 

Observed the numerator on right hand side of (2). Suppose 

|𝑧| <
𝑝−𝑞

3(𝑝+𝑞)
𝑁

1

4𝑦 and gcd (𝑥, 𝑦)=1. Hence, 

 

|𝑧| + 𝑦(𝑝 + 𝑞 − 1) <
𝑝 − 𝑞

3(𝑝 + 𝑞)
𝑁

1
4𝑦 + 𝑦(𝑝 + 𝑞 − 1) 

             <
𝑝−𝑞

3(𝑝+𝑞)
𝑁

1

4𝑦 + 𝑦(𝑝 + 𝑞) 

                                  = (
(𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)(𝑝+𝑞)

3(𝑝+𝑞)
) 𝑦 

                            = (
(𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)2

3(𝑝+𝑞)
) 𝑦                (3) 
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 Substituting (3) in (2) will give 

 

|
𝑒

𝑁
−

𝑦

𝑥
| <

(
(𝑝 − 𝑞)𝑁

1
4 + 3(𝑝 + 𝑞)2

3(𝑝 + 𝑞)
) 𝑦

𝑁𝑥
 

                    =
((𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)2)𝑦

3(𝑝+𝑞)𝑁𝑥
                (4) 

 

 Assuming 𝑥𝑦 <
3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+3(𝑝+𝑞)2)

, then 

 

       𝑥𝑦 <
3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+3(𝑝+𝑞)2)

 

 
2((𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)2)

3(𝑝+𝑞)𝑁
<

1

𝑥𝑦
 

 
((𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)2)𝑦

3(𝑝+𝑞)𝑁
<

𝑥

𝑥
⋅

1

2𝑥
 

 
((𝑝−𝑞)𝑁

1
4+3(𝑝+𝑞)2)𝑦

3(𝑝+𝑞)𝑁𝑥
<

1

2𝑥2
 

 

 By continued fraction computation and Theorem 1 implies 

that 
𝑦

𝑥
 is a convergent of the fraction of 

𝑒

𝑁
 (i.e. (4) which is less 

than 
1

2𝑥2). Follows Lemma 3 to factor the modulus 𝑁, hence the 

approximation of 𝑝 + 𝑞 can be define the following proposition. 

 

Proposition 2 Let 𝑥  and 𝑦  found from the list of the 

computed continued fraction 
𝑒

𝑁
. Let 𝑇 be the approximation of 

𝑝 + 𝑞 where 𝑇 = 𝑁 + 1 −
𝑒𝑥

𝑦
. Then, factorisation of modulus 𝑁 

can be occured in polynomials time.  

 

Proof. Suppose 𝑥  and 𝑦  are yields from the convergent of 

continued fraction expansion of 
𝑒

𝑁
. Then, from Blömer-May’s 

key equation, we get 

𝑒𝑥 − 𝑦𝜙(𝑁) = 𝑧 

      𝑒𝑥 − 𝑦(𝑁 − (𝑝 + 𝑞) + 1) = 𝑧 

             
𝑒𝑥

𝑦
− 𝑁 + (𝑝 + 𝑞) − 1 =

𝑧

𝑦
 

            𝑝 + 𝑞 − (𝑁 + 1 −
𝑒𝑥

𝑦
) =

𝑧

𝑦
 

 Let 𝑇 = 𝑁 + 1 −
𝑒𝑥

𝑦
. Using |𝑧| <

|𝑝−𝑞|

3(𝑝+𝑞)
𝑁

1

4𝑦  from 

Proposition 1, then 

          |𝑝 + 𝑞 − (𝑁 + 1 −
𝑒𝑥

𝑦
)| = |𝑝 + 𝑞 − 𝑇| =

|𝑧|

𝑦
 

                                                                       <

|𝑝−𝑞|

3(𝑝+𝑞)
𝑁

1
4𝑦

𝑦
 

                                                                       =

|𝑝−𝑞|

3(𝑝+𝑞)
𝑁

1

4(5) 

 

From (5) the approximation of 𝑝 + 𝑞 is computed through 

𝑇 = 𝑁 + 1 −
𝑒𝑥

𝑦
. By Lemma 3, if an approximation of 𝑝 + 𝑞 

is upper-bounded by 
|𝑝−𝑞|

3(𝑝+𝑞)
𝑁

1

4 , then the factorisation of 

modulus 𝑁 can be occured in polynomials time. Therefore, 

we show the workflow algorithm on Algorithm 1 on factor 

modulus 𝑁 based on Proposition 1 and Proposition 2. 

 

Algorithm 1. Factoring algorithm of the modulus 𝑁 

via Proposition 1 and Proposition 2. 

Input: Public key (𝑒,𝑁)  

Output: prime 𝑝 and 𝑞   

    i.  Compute the continued fraction 
𝑒

𝑁
.   

    ii. For every convergents of 
𝑒

𝑁
 denoted by 

𝑦′

𝑥′
, 

compute 𝑇 = 𝑁 + 1 −
𝑒𝑥′

𝑦′
.   

iii.  Applying Lemma 3 with 𝑇, 𝑒 and 𝑁.   

    iv. Output the prime factors 𝑝 and 𝑞.   

 v.  Else, repeat (ii)  

 

The above Algorithm 1 is actually the factoring algorithm 

of the modulus 𝑁  using the results of Proposition 1 and 

Proposition 2, respectively. The input is the public key 

(𝑒, 𝑁). Observe that the Step (2) will execute the continued 

fraction expansion of 
𝑒

𝑁
. Hence, each fraction among the list 

of the convergent are possible candidate of 𝑥  and 𝑦 

satisfying 𝑒𝑥 − 𝑦𝜙(𝑁) = 𝑧 . For each candidate will be 

assigned as 𝑥′and 𝑦′. For every 
𝑦′

𝑥′
, the approximation 𝑝 + 𝑞 

namely 𝑇  will be computed such as 𝑇 = 𝑁 + 1 −
𝑒𝑥′

𝑦′
. and 

approximation 𝑝, 𝜌 =
𝑇+√𝑇2−4𝑁

2
. By Lemma 3, if the value of 

𝑇 is upper-bounded by 
|𝑝−𝑞|

3(𝑝+𝑞)
𝑁

1

4, then the factorisation of 

modulus 𝑁  can be occured in polynomials time. If the 

factorization of modulus 𝑁 is success, then the Algorithm 3 

will output 𝑝 and 𝑞, which are the correct factorisation of 

the modulus 𝑁. Otherwise, the Algorithm 1 need to repeat 

with the next candidate of 
𝑦′

𝑥′
. The following is a numerical 

example in order to demonstrate the proposed algorithm. 
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Example 1. Given the modulus 𝑁 = 9550583597402242457 

and public exponent 𝑒 = 153613565783535 . By continued 

fraction compuation, the list of 
𝑦

𝑥
 is listed as follows.  

 

[…
33

2051702
,

80

4973823
,

113

7025525
,

532

33075923
, … ] 

Observe that 
113

7025525
 as a candidate of convergent 

𝑒

𝑁
.  

 

Then we compute 𝑇 = 6228564597. We undergo Lemma 3 

with 𝑁 and 𝑇, then we get the prime 𝑝 = 3499211623 and its 

correspending 𝑞 =
𝑁

𝑝
= 2729352959  thus, corresponding to 

Algorithm 3, we got 𝑦 = 𝑦′ = 113 and 𝑥 = 𝑥′ = 7025525. 

Let us compare the bound of generalized key exponents, by 

applying the same problem into Nitaj’s attacks. According to 

Example 1, the product of 𝑥 and 𝑦 obtained is 𝑥𝑦 = 793884325 

which is larger than and Nitaj’s bound (i.e 𝑥𝑦 <
𝑁

4(𝑝+𝑞)
=

383338066). Thus, the given example has covered the Nitaj’s 

bound. 

 

IV. COMPARATIVE ANALYSIS 
 

We recall Nitaj’s bound to compare with our work. Thus, by 

the following proving, we show our bound deduce in term of 

modulus 𝑁 supported by Lemma 1. We start our proving with 

 

𝑥𝑦 <
3(𝑝 + 𝑞)𝑁

2((𝑝 − 𝑞)𝑁
1
4 + 3(𝑝 + 𝑞)2)

 

Based on Lemma 2, suppose 
√𝑁

√2
< 𝑝 − 𝑞 and get 

 

 
3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+3(𝑝+𝑞)2)

<
3(𝑝+𝑞)𝑁

2(
√𝑁

√2
𝑁

1
4+3(2√𝑁)2)

 

                                   =
3(𝑝+𝑞)𝑁

2(
√𝑁

√2
𝑁

1
4+12𝑁)

 

                                       <
3(

3

√2
√𝑁)𝑁

2(
√𝑁

√2
𝑁

1
4+12𝑁)

 

                                 =
3(

3

√2
√𝑁)𝑁

2(
𝑁

3
4

√2
+12𝑁)

 

                                 =
9𝑁

3
2

2√2(𝑁
3
4)(

1

√2
+12𝑁)

 

                                 =
9𝑁

3
4

2√2(
1

√2
+12𝑁

1
4)

 

                                 <
9𝑁

3
4

2√2(12𝑁
1
4)

 

                                 =
9

24√2
√𝑁 ≈ 0.265√𝑁 

 

 Thus we get the size 𝑥𝑦 is about 
9

24√2
√𝑁 or approximately 

0.265√𝑁. For Nitaj, the size we get via parameter 𝑁 is  

 

𝑥𝑦 <
𝑁

4(𝑝 + 𝑞)
 

      <
𝑁

4(2√𝑁)
 

                     =
1

8
√𝑁 ≈ 0.125√𝑁 

As previously stated, we revisit Blömer - May’s attack with 

its variant key equation which then the attack is 

reformulated by Nitaj. We only compare our bound with 

Nitaj’s bound since both bound have the generalized key 

exponents 𝑥𝑦; unlike Blömer-May’s bound that has only key 

exponent 𝑥. Thus, we recall Nitaj’s and ours bound to be 

compared to this section. In this case, we have derived our 

bound to make it have the same term as Nitaj’s bound. The 

result is shown in Table 1. 

 

Table 1. The Comparison of Generalized Key Exponent’s 

Bound 𝑥𝑦 

Reference Bound of Key Exponents 𝑥𝑦 

(Nitaj, 2013) 0.125√𝑁 

Proposed Bound 0.265√𝑁 

 

Our aim in this study is to improve the bound generalized 

key exponents of Nitaj’s revisited bound from Blömer - May 

attack. By the observation from Table 1, our bound give is 

positively improved from the previous bound. Our bound 

enhances the Nitaj’s bound by 0.14√𝑁, thus, our bound is 

can attack more size of generalized key exponents than 

Nitaj (2013). 

 

V. CONCLUSION  
 

Blömer and May (2004) had extended Wiener’s attack to 

create one of notable attack in RSA cryptosystem where 

there is a public key 𝑒 satisfies a generalized key equation 

𝑒𝑥 + 𝜙(𝑁)𝑦 = 𝑧 with certain condition 𝑥 and 𝑧. Their attack 
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was revisited by Nitaj which reformulating the generalized key 

exponents 𝑥𝑦 <
𝑁

4(𝑝+𝑞)
 and |𝑧| <

𝑝−𝑞

3(𝑝+𝑞)
𝑁

1

4𝑦 . We introduced 

another proof of bound generalized key exponents for 𝑥𝑦 <

3(𝑝+𝑞)𝑁

2((𝑝−𝑞)𝑁
1
4+3(𝑝+𝑞)2)

 which give a positive result on extending the 

Nitaj’s revisit attack. 
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