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Urban transit frequency setting is one of the multiobjective problems in public transportation 

system, which aims to find optimal time interval between subsequent buses along the routes. In this 

study, a Multiple Tabu Search (MTS) algorithm is employed to determine the bus frequency of the 

routes that minimize the number of buses, total waiting times and overcrowding simultaneously. 

The efficiency of the algorithm is tested on benchmark dataset by changing the value of the total 

domains. The chosen parameter gives considerable effect on the objective functions compared to 

other parameters such as the size of tabu list and the number of iterations. Using statistical 

hypotheses evaluation, the results indicate that the number of domains determines the quality of 

solutions for different instances of the problem. Additionally, the frequency setting problem is 

extended by revising the passenger assignment procedure and frequency optimization process with 

time-dependent demand in order to reflect a real-world scenario. The extended results from 

different size of routes are presented to show the effectiveness of the proposed algorithm. 
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I. INTRODUCTION 
 

The continuous rise in private car ownership leads to several 

transportation problems such as air pollution, high carbon 

emission and traffic congestion. The improvement of public 

transportation system can increase its ridership by satisfying 

the transportation demand which consequently reduces the 

problems in a cost-effective manner using available resources. 

One of the important practices in urban public transit 

planning is to determine service frequency based on passenger 

demand, passenger waiting time, transit capacity and available 

resources. Since frequency setting is tackled at tactical 

planning level of urban transportation, the decision maker 

may needs to explore different variant of solutions from the 

conflicting objectives between the operators and the 

passengers. This leads to the formation of a multiobjective 

combinatorial optimization problem. 

Multiple Tabu Search (MTS) is a metaheuristic method that 

proven to solve many NP-hard optimization problems. It 

employs adaptive memory properties to record attractive 

moves, apply responsive exploitation and exploration to 

avoid being trapped in local optimum and use multiple 

initial solutions to speed up the process for searching the 

best-known solution. A MTS algorithm includes a set of 

parameters such as tabu tenure, maximum iteration for 

intensification and termination as well as the number of 

initial solutions that need to be assigned appropriately to 

obtain desirable results. The importance of a parameter is 

usually depends on different versions of an algorithm that 

suit specific problem. The process of determining suitable 

values for the parameters during execution are time 

consuming and more challenging than before running the 

algorithm as it required automated scheme to control the 

parameters.  

This paper is the extension of Uvaraja and Lee (2019) by 

evaluating the effectiveness of MTS algorithm with a 

parameter tuning. Section II describes the transportation 

related work for parameter control in TS algorithm. 
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Section III explains the statistical test that will be applied for 

evaluating the MTS algorithm. A brief explanation on 

passenger assignment procedure and frequency optimization 

process are also presented. Section IV addresses the 

benchmark datasets and presents the computational results. 

Various number of domains for refining the algorithm are 

examined thoroughly in this section. Finally, Section V 

summaries the findings and concludes the paper. 

 

II. LITERATURE REVIEW 
 

The combination of different set of parameter values affects the 

rank of optimization algorithm in terms of computational time 

and the objective functions values. The parameter control in 

metaheuristic approaches can be conducted in several 

directions which are either fixed the parameter values before 

the execution or altering them during the process of 

optimization by dynamic and self-adaptive approaches (Xu et 

al., 1998). The study of parameter control is still inadequate in 

urban transportation problem. Only a limited number of 

studies are conducted for parameter identifications in TS 

algorithm. Since the focus of this research is on the 

improvement of MTS algorithm, the studies of frequency 

optimization problem are omitted. 

A local search approach based on network flow model and TS 

algorithm is proposed by Xu and Kelly (1996) to solve a vehicle 

routing problem. The capacity constraints are relaxed using 

penalty terms whose parameter values are altered according to 

time and search feedback. The total number of network moves 

is also changed dynamically throughout the iterations. A 

computational experience is conducted on a set of benchmark 

test problems and compare them with the best-known 

solutions in the literature. Based on the experiment, higher 

value for penalty term and network moves able to drive the 

search toward feasibility and diversity respectively.   

A combined simulated annealing and TS strategy (SA-TABU) 

for network design problem ranging from 36 to 332 links is 

developed in Zeng (1998). A heuristic evaluation function (HEF) 

is used according to the characteristic of the problem and 

search strategy. The main features of SA-TABU are error 

variable of HEF, Markov chain length, temperature dropping 

rate and tabu list length. The sensitivity analysis conducted to 

find best parameter values for all the components showed that 

good solutions are recorded in relatively short computational 

times. Expanding approximately 10% of the links, produce 

high percentage improvement ranging from 73% to 97% for 

the five test networks.  

The research by Gendreau et al. (1999) analysed user 

control parameters that require calibration such as 

neighbourhood size, tabu tenure and scaling parameter for 

diversification. A sensitivity analysis is performed by 

sequential process to find best possible values for solving 

heterogeneous fleet vehicle routing problem. After some 

experimentations, the adapted TS algorithm is able to find 

a good compromise results between the execution time and 

the solution quality by setting appropriate values for the 

parameters. 

A simplex based TS algorithm is designed for capacitated 

network design (Crainic et al., 2000). The experiment 

results show that the algorithm is robust with respect to the 

parameter values in 16 parameter combinations and 10 

problem instances. The criteria including tabu tenure 

chosen from higher value interval, initial solution with the 

activation of tabu logic and three paths for each commodity 

performed better than other alternatives. 

Most of the studies show that the determination of 

suitable parameter values for TS algorithm based on the 

problems involved is an important criteria to produce 

significant results. This type of experiment is highly 

conducted in early years in 90’s by employing different 

strategies such as comparing the success rate of each 

parameter values. In recent years, the contribution of its 

methodological structure becomes the primary concern. 

Despite its effectiveness in numerous types of problems, the 

algorithm can be improved further by assigning appropriate 

values for the selected parameters that directly influence 

the algorithm. 

 

III.   MULTIPLE TABU SEARCH 
ALGORITHM FOR 

FREQUENCY OPTIMIZATION 

 
In this section, the process for choosing the best value of a 

selected parameter and procedure of optimizing frequency 

are discussed. 
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A. Problem Formulation and Algorithm 
Development 

 

The setting of transit frequency can be expressed as a bi-level 

process that consist of passenger assignment procedure and 

frequency optimization. This is an iterative procedure to 

achieve consistency in the route frequencies as both demand 

and frequency are dependent on each other. The assignment 

model takes initial setting of route frequencies and origin-

destination demand as the input. Its output is the passengers 

demand flow for all the routes. The frequency share rule and 

multinomial logit model are adopted from Baaj and 

Mahmassani (1991) and Afandizadeh et al. (2013) respectively 

to determine the passenger route choice as these models are 

able to approximate better passenger’s behaviour using the 

total travel time and have been employed extensively in the 

previous literature. Thus, the same procedures from the 

respective researchers are applied in this paper to allow for a 

fair comparison between the algorithms. 

After generating the number of passengers travelling at each 

route, frequency of routes are determined using multiobjective 

optimization model with the aim of minimizing the number of 

buses, total waiting times and overcrowding. The first objective 

represents the operator cost such that higher frequency can 

directly affect the number of buses required. At the same time, 

the second and third objectives represent the preferences of 

passengers which also influenced by the frequency. Both of 

their preferences are contrary to each other where operators 

intended to reduce the total buses needed with lower frequency 

while passengers prefer to wait less at bus stops which require 

more bus frequency. The assignment strategy and model 

formulations are defined further in Uvaraja and Lee (2019). 

The first model finds the suitable frequencies based on total 

passenger’s demand of each route, similar to the approaches 

done in many literatures; the second extends the previous 

model by including timeslots to optimize routes frequencies 

according to time-dependent demands assumption that reflects 

the actual situation in real life. In other words, the passenger’s 

demand obtained from the first level is divided into peak and 

off-peak hours throughout the time horizon studied. The 

demand on the peak hours is assumed to be doubled the 

demand on the off-peak hours. 

For frequency optimization, the MTS algorithm is employed 

with appropriate parameter values as mentioned in Uvaraja 

and Lee (2019). The MTS algorithm is an iterative 

procedure that select the best move to find optimal solution 

from solution space beyond local optimality and implement 

intensification and diversification with adaptive memory 

structure to exploit and explore the search space 

respectively. The MTS algorithm works with several initial 

frequency that chosen from different subsets (domains) of 

the search space within the minimum frequency of 1 per 

hour and a maximum of 20 per hour. The neighborhood 

solutions are formed by adjusting the current solution 

based on a variable step size. To access a potential move, 

every solution in the neighborhood is evaluated for its 

dominance. The dominated solutions at every iteration are 

grouped together. The selected solution is kept in a tabu list 

for a number of iteration based on its size to avoid repeated 

moves. For this study, the tabu list size is set to be doubled 

the number of routes. When there is no acceptable solution 

available, intensification or diversification are conducted 

subject to the availability of the feasible solution in the 

intermediate memory structure. This process is repeated 

until there is no improvement in the best-known solution 

for a number of iterations for all the routes. As there are 

several solutions from different domains, the best result 

among the domains which minimize all the objectives is 

chosen.  

 

B. Statistical Analysis 
 

The direct comparison of the objective function values for 

different number of domains are not applicable because 

each of them do not completely dominate with one another. 

Therefore, a hypothesis test is applied to find the significant 

difference between each best solution for different number 

of domains. The purpose of this hypothesis testing is to 

show the existence of statistical significance and not caused 

by random variations. This testing is based on a null 

hypothesis which always assume that the variables have no 

effect on the results and alternative hypothesis which shows 

contradiction opinion with the previous one. A p-value is a 

calculated probability of acquiring a result at least as 

extreme given the null hypothesis is true while chi-square 

value is used to analyze Test of Independent for categorical 

variables.  
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At first, the chi-square value is calculated using equation (1) 

and the p-value is approximated. These statistical analysis are 

performed using Microsoft Excel 2010. By using the chi-square 

distribution table, the acceptance of the hypothesis is decided 

according to the degree of freedom (equation (3)) and the 

significant level. The observed values represent the objective 

function values, the number of rows indicate total number of 

domains which is 8 (3 – 10 domains) in this experiment and the 

columns show the number of objective functions. The expected 

values are computed based on the observed values using 

equation (2). 

 

𝜒2 = ∑ ∑
(𝑂𝑖,𝑗−𝐸𝑖,𝑗)

2

𝐸𝑖,𝑗

𝑐
𝑗=1

𝑟
𝑖=1  ,              (1) 

𝐸𝑖𝑗 =
∑ 𝑂𝑖𝑗

𝑟
𝑖=1  × ∑ 𝑂𝑖𝑗

𝑐
𝑗=1

∑ ∑ 𝑂𝑖𝑗
𝑐
𝑗=1

𝑟
𝑖=1

 ,               (2) 

Degree of freedom = (𝑟 − 1) × (𝑐 − 1),             (3) 

 

where, 

𝜒2 = Chi-square probability 

𝑂𝑖,𝑗 = observed values in the 𝑖-th row and 𝑗-th column 

𝐸𝑖,𝑗 = expected values in the 𝑖-th row and 𝑗-th column 

𝑟    = number of rows 

𝑐    = number of columns 

 

The dependency on the number of domains on the solution 

quality is analyzed from the values of every objective functions. 

The value of overcrowding is not included as it is always zero. 

The number of buses and the total waiting times are compared 

using p-value and chi-square value under the confidence level 

of 95%. The null hypothesis states that the capability of 

obtaining best solution is not depends on the number of 

domain used. The p-value must be higher than 0.05 (alpha) and 

the chi-square value should be lesser than 14 to accept the null 

hypothesis and conclude that there is no significant difference 

exist between the means. Conversely, if the statistical values are 

not within the limits, then the dependency to the total domains 

is assured. 

 

IV. COMPUTATIONAL 
EXPERIMENT 

 

In this section, two computational experiments are performed. 

First, the effect of number of domains on the solution quality in 

term of total buses and waiting times are investigated. The 

purpose of this experiment is to affirm the analysis 

conducted in Uvaraja and Lee (2019) that the total domains 

used will affect the performance of the algorithm. Then, the 

capability of MTS algorithm on the extended model is tested 

for higher number of routes using the accepted number of 

domains. The MTS algorithm with a parameter tuning is 

tested on Mandl’s Swiss Network. The network is defined 

with 15 nodes, 21 undirected edges and 15570 passenger 

demands. The MTS algorithm is coded in ANSI-C language 

and executed on 2.30 GHz Intel® Core™ i3-2350M CPU 

with 2GB of RAM under Windows 7 operating system. 

 

A. Analysis of Total Domains 
 

In the MTS algorithm, the number of domains is used to 

divide the search space into several subsets. This parameter 

is chosen as it gives significant effect on the quality of 

solutions and computational times.  Note that if the number 

of domains increases, the computational time also increases 

as the algorithm runs sequentially according to the domains. 

The number of domains within the interval of 3–10 is used 

to conduct the analysis. The total domain of 1 is not 

considered because the feature of MTS algorithm to start 

the search with multiple solutions is not utilized whereas 

the total domain of 2 might not always produce significant 

solutions as the division of the search space is not effective.  

In the research of Uvaraja and Lee (2019), frequency 

optimization problem is studied with MTS algorithm using 

the similar route sets. They set the total domain of 10 as a 

parameter and found that the algorithm is able to produce 

superior solutions than the previous results for most of the 

route sets. Hence, the results from different parameter 

values in this research are compared with their solutions. If 

the number of buses required for each route set and the 

passengers total waiting times are reduced, then the 

improvement in the solution quality becomes apparent. As 

there are several solutions based on the number of domains 

used, the best solution among them that reduced the 

objective function values or closely related to the previously 

published results is selected. The comparison of solutions 

produced from various number of domains with the value 

from existing literature are excluded in this research as 
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most of the solutions from every route set are equivalent to the 

previous results that generated using different algorithms. 

Therefore, the comparison does not give significant indication 

on the effectiveness of MTS algorithm.  

Based on Table 1, the source of route sets are stated in the first 

column. The second column indicate the objective functions 

studied. Columns 3–10 record the values of respective 

measurements in column 2 such that the values in last column 

is obtained from Uvaraja and Lee (2019). For all the routes of 

size 4, the solutions from the total domains of 3–9 are 

comparable with the domain of 10. The number of buses 

increases as the total waiting times decreases and vice-verse. 

The results of Uvaraja and Lee (2019) dominate the solutions 

from the total domains of 9 for Mandl (1980) and of 4 and 

8 for Chakroborty (2003). The total waiting times from the 

current experiment are higher although the total buses are 

greater or equal as compared to the previous results. On the 

other hand, the hypothesis test revealed that the number of 

domains does not affect the level of solutions for 4 routes as 

all the p-values are higher than 0.05 and the chi-square 

values are lower than 14 according to the distribution table.  

 

 

 

Table  1. Comparison of results between numbers of domains for 4 routes 

Source of 

route sets 
Objective Functions 

Total domains 

3 4 5 6 7 8 9 10 

[1] 

Total buses 45 48 52 52 51 52 54 54 

Total waiting times 33220 30558 28538 28718 29088 28710 27727 27563 

 p-value (0.6540) | Chi-square value (5.0490) 

[2] 

Total buses 76 80 83 82 82 81 86 80 

Total waiting times 20382 19306 18605 18771 18820 19291 17930 19247 

 p-value (0.8905) | Chi-square value (2.9396) 

[3] 

Total buses 83 70 71 77 78 75 74 79 

Total waiting times 20809 24581 24282 22677 22237 23338 23928 22110 

 p-value (0.4554) | Chi-square value (6.7494) 

[4] 

Total buses 87 87 90 81 83 83 87 86 

Total waiting times 18749 19081 18479 20646 19980 20131 19014 19440 

 p-value (0.8755) | Chi-square value (3.1009) 

[5] 

Total buses 92 87 90 92 91 94 94 86 

Total waiting times 17987 18578 18004 17541 17956 17376 17288 18767 

 p-value (0.9341) | Chi-square value (2.4050) 

[6] - passenger 

Total buses 83 86 89 93 92 92 94 88 

Total waiting times 20686 19801 19164 18374 18670 18555 18201 19489 

 p-value (0.7118) | Chi-square value (4.5736) 

[6] - operator 

Total buses 67 66 60 57 61 65 66 54 

Total waiting times 20046 20247 22371 23623 21786 20737 20219 24711 

 p-value (0.1716) | Chi-square value (10.3123) 

[7] 

Total buses 75 67 70 75 77 68 72 76 

Total waiting times 21663 23561 22431 21088 20587 23341 22004 20780 

 p-value (0.6178) | Chi-square value (5.3458) 

[8] 

Total buses 80 89 89 91 94 95 83 86 

Total waiting times 22457 20583 20376 20073 19604 19274 22139 21095 

 p-value (0.1128) | Chi-square value (11.6464) 

Note:  

[1]:Mandl (1980); [2]:Chakroborty (2003); [3]:Mumford (2013); [4]:Chew et al. (2013); [5]:Nikolić and Teodorović (2013); 
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[6]:Nikolić and Teodorović (2014); [7]:Arbex and da Cunha (2015); [8]:Buba and Lee (2018); [9]:Baaj and Mahmassani (1991); 

[10]:Shih and Mahmassani (1994); [11]:Bagloee and Ceder (2011) 

 

For 5 routes (see, Table 2), the solutions from every total 

domains are equivalent to each other except for the total 

domains of 7 and 9 where the total waiting times is reduced for 

the former solutions with equal number of buses. When 

compared with the solutions from Uvaraja and Lee (2019), the 

number of buses are greater with lesser total waiting times. The 

values of objective functions are significantly different in 

between the values of total domains which reflects its 

dependency. On the other hand, the number of domains does 

not affect the performance of MTS algorithm for some of the 

route sets of size 6 without including the route sets from Arbex 

and da Cunha (2015), Chew et al. (2013), Nikolić and 

Teodorović (2013) and Buba and Lee (2018). For these route 

sets, there are at least one parameter value that 

considerably different from the usual pattern. For examples, 

77 buses (total domain of 3) from Chew et al. (2013), 80 

buses (total domain of 5) from Nikolić and Teodorović 

(2013), 77 buses (total domain of 8) from Arbex and da 

Cunha (2015) and 75 buses (total domain of 3) from Buba 

and Lee (2018) are highly differ with the respective 

solutions from the total domain of 10. The statistical test 

also show that the number of domains affects the quality of 

solutions. Other route sets produce comparable solutions 

that are close to each other that prevent their dependency 

to the number of domains. 

 

 

Table  2. Comparison of results between numbers of domains for 5 and 6 routes 

Source of 

route sets 

Objective 

Functions 

Total domains 

3 4 5 6 7 8 9 10 

  5 routes 

[7] 

Total buses 87 71 79 73 74 69 74 64 

Total waiting times 19275 22856 21468 22696 22472 24326 22518 26262 

 p-value (0.01550) | Chi-square value (17.3039) 

  6 routes 

[9] 

Total buses 74 80 76 79 79 81 83 76 

Total waiting times 20181 18680 19647 18883 18713 18328 17911 19558 

 p-value (0.8590) | Chi-square value (3.2690) 

[10] 

 

Total buses 72 74 78 81 80 79 83 82 

Total waiting times 22547 21342 20883 20097 20281 20527 19686 19869 

 p-value (0.7010) | Chi-square value (4.6631) 

[3] 

Total buses 83 97 85 93 99 87 97 88 

Total waiting times 19869 16641 19361 17515 16201 18582 16709 18433 

 p-value (0.0728) | Chi-square value (12.9706) 

[4] 

Total buses 77 99 109 94 100 106 101 101 

Total waiting times 22902 17603 15789 18305 17142 16291 17028 17457 

 p-value (1.39 x 10-4) | Chi-square value (29.1021) 

[5] 

Total buses 90 97 80 92 82 89 100 100 

Total waiting times 20761 18485 22597 19147 21726 20200 18040 18147 

 p-value (0.0129) | Chi-square value (17.7984) 

[6] - 

passenger 

Total buses 103 84 91 98 101 102 94 98 

Total waiting times 18941 22898 21501 19850 19325 19001 20545 19697 

 p-value (0.1153) | Chi-square value (11.5248) 

[6] - 

operator 

Total buses 76 60 62 68 69 63 66 61 

Total waiting times 20780 26518 25595 23199 23164 25020 24198 25946 

 p-value (0.0931) | Chi-square value (12.2334) 

[7] 
Total buses 65 58 71 64 71 77 73 63 

Total waiting times 25545 28947 24182 26461 24098 22224 23330 26728 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

155 

 p-value (0.0384) | Chi-square value (14.8200) 

[8] 

Total buses 75 92 80 91 93 81 92 85 

Total waiting times 26554 21437 24580 21536 21157 24768 21310 23091 

 p-value (0.0099) | Chi-square value (18.5115) 

For 7 routes (see, Table 3), 5 out of 8 route sets able to 

maintain their independency towards the total domain. The 

route sets of Buba and Lee (2018), Mumford (2013) and Nikolić 

and Teodorović (2014) show their reliance on total domains 

based on the lower p-values and higher chi-square values. 

Likewise, for 8 routes (see, Table 4), the results for Chew et al. 

(2013), Nikolić and Teodorović (2013), Buba and Lee (2018) 

and Mumford (2013) depend on the number of domain used. 

Overall, the quality of solutions from every parameter values 

from 3 to 9 are quite similar to the solution from total 

domains of 10. Some of the solutions from this study are 

dominated by the solution published in Uvaraja and Lee 

(2019), by producing higher total waiting times with the 

same number of buses. Apart from that, the objective 

functions values for the route sets of Shih and Mahmassani 

(1994) from the total domain of 8 is better than the output 

from the total domain of 10 with lesser waiting times. 

 

 

Table  3. Comparison of results between numbers of domains for 7 routes 

Source of 

route sets 

Objective 

Functions 

Total domains 

3 4 5 6 7 8 9 10 

[9] 

Total buses 62 64 65 66 69 71 70 71 

Total waiting times 26872 26327 26036 25885 24563 23945 24051 23901 

 p-value (0.7087) | Chi-square value (4.6000) 

[3] 

Total buses 94 79 94 84 91 89 97 101 

Total waiting times 18399 21300 17785 20048 18570 18765 17227 16446 

 p-value (0.0254) | Chi-square value (15.9142) 

[4] 

Total buses 90 101 111 98 106 94 106 108 

Total waiting times 20433 18279 16782 18816 17290 19274 17271 17077 

 p-value (0.0530) | Chi-square value (13.9000) 

[5] 

Total buses 89 76 85 73 87 81 74 82 

Total waiting times 19620 23682 21382 24563 20177 21672 24085 21458 

 p-value (0.0525) | Chi-square value (13.9275) 

[6] - 

passenger 

Total buses 79 93 97 89 97 86 93 96 

Total waiting times 24535 20994 19709 21538 19853 22193 20668 20169 

 p-value (0.0913) | Chi-square value (12.2951) 

[6] -  

operator 

Total buses 74 58 71 63 72 69 74 63 

Total waiting times 29028 37295 30000 33827 29497 30725 28741 33700 

 p-value (0.0342) | Chi-square value (15.1400) 

[7] 

Total buses 77 67 77 70 63 75 65 76 

Total waiting times 21947 25717 22527 24193 26637 22392 26312 21955 

 p-value (0.0680) | Chi-square value (13.1742) 

[8] 

Total buses 93 77 91 83 95 83 95 90 

Total waiting times 24506 30942 25836 27807 24639 27315 25150 25584 

 p-value (0.0486) | Chi-square value (14.1512) 

For the route sizes from 9–12 as shown in Tables 5 and 6, 

solutions from all the route sets are highly dependent on the 

total domains. This is because the solutions between the total 

domains are highly varies to each other. Besides, solutions 

from the total domain of 3 to 9 are equivalent to the solution 

from the total domain of 10. Most of them increases the 
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number of buses while decreasing the total waiting times. 

Generally, the dependency of the solution towards number of 

domains increases as the route size becomes larger. It can be 

seen clearly that most of the solutions are analogous to each 

other. The objective functions values are always conflicting 

such that the increase in number of buses attributes to the 

reduction in total waiting times and vice versa. This 

experiment proves that the result produced by Uvaraja and 

Lee (2019) that total domain of 10 yield acceptable 

solutions for all the route sets.

 

Table  4. Comparison of results between numbers of domains for 8 routes 

Source of 

route sets 

Objective 

Functions 

Total domains 

3 4 5 6 7 8 9 10 

[9] 

Total buses 58 70 77 66 71 72 69 72 

Total waiting times 27266 22229 20626 23966 22363 23023 23125 22200 

 p-value (0.1001) | Chi-square value (3.2690) 

[10] 

 

Total buses 58 67 55 64 68 62 67 62 

Total waiting times 25600 21668 25856 22382 21149 23027 21379 23227 

 p-value (0.2023) | Chi-square value (9.7640) 

[3] 

Total buses 95 83 102 88 81 92 89 96 

Total waiting times 18863 22018 17972 20582 21807 19227 20539 18510 

 p-value (0.0409) | Chi-square value (14.6382) 

[4] 

Total buses 91 73 90 77 91 83 76 86 

Total waiting times 23287 28055 24292 27402 22937 24798 27957 23843 

 p-value (0.0203) | Chi-square value (16.5868) 

[5] 

Total buses 96 81 104 88 78 97 86 96 

Total waiting times 19532 23302 18165 21347 23977 19413 21787 19512 

 p-value (0.0009) | Chi-square value (24.3600) 

[6] - 

passenger 

Total buses 99 84 97 91 103 93 84 95 

Total waiting times 20411 23681 21168 21947 19190 21566 23398 20804 

 p-value (0.0711) | Chi-square value (12.9853) 

[6] - 

operator 

Total buses 70 60 69 77 68 60 70 65 

Total waiting times 23535 28320 23620 22043 24412 27641 23910 25479 

 p-value (0.0656) | Chi-square value (13.2803) 

[7] 

Total buses 72 74 76 69 75 70 62 71 

Total waiting times 23072 23261 21960 25083 22647 24133 27411 23803 

 p-value (0.3119) | Chi-square value (8.2395) 

[8] 

Total buses 90 79 106 112 100 92 105 93 

Total waiting times 28240 29658 22158 21534 23254 25846 22439 25083 

 p-value (3.43 x 10-6) | Chi-square value (37.7138) 

 

Table  5. Comparison of results between numbers of domains for 9, 10, and 11 routes 

Source of 

route sets 

Objective 

Functions 

Total domains 

3 4 5 6 7 8 9 10 

[7] 

 

9 routes 

Total buses 72 62 71 70 59 70 61 58 

Total waiting times 27738 31618 27166 28671 34001 28914 32775 34381 

 p-value (0.0312) | Chi-square value (15.4026) 

10 routes 

Total buses 106 80 70 94 80 74 87 81 

Total waiting times 18293 24373 28055 20285 24090 26009 22066 23903 

 p-value (7.88 x 10-8) | Chi-square value (46.2327) 
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11 routes 

Total buses 95 72 96 78 72 60 62 67 

Total waiting times 19509 25221 18885 23673 25257 30237 30009 26863 

 p-value (2.69 x 10-13) | Chi-square value (73.6541) 

 

Table  6. Comparison of results between numbers of domains for 12 routes 

Source of 

route sets 

Objective 

Functions 

Total domains 

3 4 5 6 7 8 9 10 

[11] 

Total buses 91 80 66 83 77 83 78 73 

Total waiting times 19511 20780 25625 20031 21649 20203 21259 22520 

 p-value (0.0162) | Chi-square value (17.1845) 

[6] - 

passenger 

Total buses 97 79 97 86 77 95 88 95 

Total waiting times 20910 29941 25181 27303 29892 24734 27178 24675 

 p-value (6.15 x 10-3) | Chi-square value (25.5122) 

[6] - 

operator 

Total buses 89 70 58 80 67 62 61 52 

Total waiting times 20949 26274 29243 22746 27905 28916 29665 33828 

 p-value (1.17 x 10-9) | Chi-square value (55.5247) 

[7] 

Total buses 48 95 71 62 84 74 68 62 

Total waiting times 43269 20854 27891 32334 23020 26169 29226 31162 

 p-value (4.21 x 10-17) | Chi-square value (92.2755) 

[8] 

Total buses 138 108 88 71 73 87 81 72 

Total waiting times 21453 28214 35844 42043 32989 37630 38458 42468 

 p-value (7.57 x 10-37) | Chi-square value (186.6765) 

 

B.  Results of Extended Model 
 

In Uvaraja and Lee (2019), the route set of size 4 from Buba 

and Lee (2018) are experimented. In this study, the 

investigation is continued for 6–12 routes using the extended 

model. The algorithm is run for 10 times and the average 

solution for every domain are tabulated. As there is no 

previous solution in the literature, comparison is not possible 

for all the routes.  

Based on the Table 7, the number of buses increase and the 

total waiting times decrease as the domains become higher. 

This is due to the range of frequency allocated for every 

domain also increases from 27 to 369 for the time period of 

18 hours. Moreover, the first two domains show 

overcrowding which caused by inadequate number of buses 

to fetch all the passengers at a timeslot of the routes. The 

number of buses and total waiting times are greater as 

compared to the solutions in Tables 1– 6 although same data 

sets and setting for the MTS algorithm are employed. For 

instance, the number of buses and total waiting times for the 

standard model without timeslot are 85 buses and 23091 

munites respectively for 6 routes from Buba and Lee (2018) 

as shown in Table 2. According to Table 7, the objective values 

from domain 6 for 6 routes are 121 buses and 44379 minutes 

of waiting times. The increase in total buses and waiting times 

are caused by the addition of layover time and dwell time into 

the bus route trip and the difference in frequency for various 

timeslots that changes the time interval between consecutive 

buses. Overall, the number of buses increase when the size of 

route sets also escalate. The total waiting times and 

overcrowding are not directly influenced by the increase in 

number of routes as they are calculated based on the routes 

frequency which is in the same range for each domain 

regardless of the number of routes. 

Among the 10 solutions, the values from domains 3 to 10 are 

more acceptable as there is no overcrowding. Since this is a 

multiobjective problem, the best solution within the domains 

are determined based on the objectives to be achieved. If the 

preference of operator is considered, then the solution with 

less number of buses is preferable. Otherwise, if the 
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passenger’s point of view is measured, the solution with lower 

total waiting times is chosen. 

 

V. CONCLUSIONS 
 

In this paper, we conducted an analysis with varies parameter 

values to evaluate the efficiency of MTS algorithm for urban 

transit frequency optimization problem. A statistical test is 

employed to check the dependency of the number of domains 

on the solution quality. Besides, in order to extend the 

computational study of frequency optimization problem, 

MTS algorithm is tested with larger route sets from Mumford 

(2013). The results of this study leads to the following 

remarks: (1) the values of total buses and waiting times are 

subject to the number of domains and its dependency 

increases as the route size becomes higher; (2) larger number 

of domains must be assigned to obtain better solutions that 

reduce both of the objective values and therefore the number 

of domains of 10 is most preferred as it is able to produce 

better solutions for most of the route sets than other number 

of domains; (3) feasible solutions are obtained for higher 

number of route sets with sizes 6, 7, 8, and 12 that indicates 

the effectiveness of MTS algorithm. Based on the experiments, 

the performance of MTS algorithm for frequency 

optimization problem is highly influenced by the number of 

domains although it gives comparable solutions as compared 

to other methods.  

 

Table  7. Results obtained for extended model 

Domain Number of buses  Total waiting times (min)  Overcrowding 

 [a] [b] [c] [d]  [a] [b] [c] [d]  [a] [b] [c] [d] 

1 24 30 30 41  224684 245168 200065 194664  6392 8738 2705 2848 

2 44 57 57 71  118787 124059 105327 105710  392 935 126 442 

3 62 78 83 103  84876 89896 72591 72522  0 0 0 0 

4 83 102 110 137  65045 69740 56400 55727  0 0 0 0 

5 102 126 132 167  52542 55994 47086 46191  0 0 0 0 

6 121 150 160 200  44379 46954 38414 38094  0 0 0 0 

7 139 176 183 233  38777 40432 33845 32796  0 0 0 0 

8 159 199 208 263  34177 35873 30037 29186  0 0 0 0 

9 181 226 235 296  29825 31399 26416 25895  0 0 0 0 

10 197 296 258 325  27540 28863 24042 23682  0 0 0 0 

Note:  [a]: 6 routes; [b]: 7 routes; [c]: 8 routes; [d]: 12 routes 

VI. ACKNOWLEDGMENT 
 

This research was supported by Fundamental Research Grant 

Scheme (FRGS) 01-01-16-1867FR (Ministry of Higher 

Education, Malaysia). The authors would like to thank 

reviewers for their time to thoroughly review and provide 

constructive comments for improvements of the manuscript. 

 

 

VII. REFERENCES 

 

Afandizadeh, S, Hassan, K & Narges, K 2013, ‘Bus fleet 

optimization using genetic algorithm a case study of 

Mashhad’, International Journal of Civil Engineering, vol. 11, 

no. 1, pp. 43–52. 

 

 

 

 

 

 

 

 

 

 

 

Arbex, RO & da Cunha, CB 2015, ‘Efficient transit network 

design and frequencies setting multi-objective 

optimization by alternating objective genetic algorithm’, 

Transportation Research Part B: Methodological, vol. 81, 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

159 
 

pp. 355–376. 

Baaj, MH & Mahmassani, HS 1991, ‘An AI-based approach for 

transit route system planning and design’, Journal of 

Advanced Transportation, vol. 25, no. 2, pp. 187–209. 

Bagloee, SA & Ceder, AA 2011, ‘Transit-network design 

methodology for actual-size road networks’, Transportation 

Research Part B: Methodological, vol. 45, no. 10, pp. 1787–

804. 

Buba, AT & Lee, LS 2018, ‘A differential evolution for 

simultaneous transit network design and frequency setting 

problem’, Expert Systems With Applications, vol. 106, pp. 

277–89. 

Chakroborty, P 2003, ‘Genetic algorithms for optimal urban 

transit network design’, Computer-Aided Civil and 

Infrastructure Engineering, vol. 18, no. 3, pp. 184–200. 

Chew, JSC, Lee, LS & Seow, HV 2013, ‘Genetic algorithm for 

biobjective urban transit routing problem’, Journal of 

Applied Mathematics, Article. ID 698645, 15 pages. 

Crainic, TG, Gendreau, M & Farvolden, JM 2000, ‘A simplex-

based tabu search method for capacitated network 

design’, INFORMS Journal on Computing, vol. 12, no. 3, pp. 

223-236. 

Gendreau, M, Laporte, G, Musaraganyi, C & Taillard, ÉD 1999, 

‘A tabu search heuristic for the heterogeneous fleet vehicle 

routing problem’, Computers & Operations Research, vol. 26, 

no. 12, pp. 1153-1173. 

Mandl, C 1980, ‘Evaluation and optimization of urban public 

transportation networks’, European Journal of Operational 

Research, vol.  5, no. 6, pp. 396–404. 

Mumford, CL 2013, ‘New heuristic and evolutionary operators 

for the multi-objective urban transit routing problem’, In 

IEEE Congress of Evolutionary Computation, pp. 939–46. 

Nikolić, M & Teodorović, D 2013, ‘Transit network design by 

bee colony optimization’, Expert Systems With Applications, 

vol. 40, pp. 5945–55. 

Nikolić, M & Teodorović, D 2014, ‘A simultaneous transit 

network design and frequency setting: Computing with bees’, 

Expert Systems With Applications, vol. 41, no. 16, pp. 7200–

09. 

Shih, MC & Mahmassani, HS 1994, ‘A design methodology for 

bus transit networks with coordinated operations’, Technical 

Report. 

Uvaraja, V & Lee, LS 2019, ‘Multiple tabu search for 

multiobjective urban transit scheduling problem’, ASM 

Science Journal, vol. 12, special issue 1, pp. 150–173. 

Xu, J & Kelly, JP 1996, ‘A network flow-based tabu search 

heuristic for the vehicle routing problem’, Transportation 

Science, vol. 30, no. 4, pp. 379-393. 

Xu, J, Chiu, SY & Glover, F 1998, ‘Fine‐tuning a tabu search 

algorithm with statistical tests’, International 

Transactions in Operations Research, vol. 5, no. 3, pp. 

233–44. 

Zeng, Q 1998, ‘A combined simulated annealing and tabu 

search strategy to solve a network design problem with 

two classes of users’, New Jersey Institute of Technology. 

 


