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Bus dwell time estimation is very important for public transport planners and bus operators. 

Modeling bus dwell time is challenging, both theoretically and computationally, in the presence of 

censored observations. Common linear regression models are parametric models that involve 

assumptions that are difficult to satisfy in applications. Rank regression based on the accelerated 

failure time model is a semiparametric model that does not involve assumptions about the model 

variables or the model error terms. Hence, this paper proposes rank estimators for modeling bus 

dwell time on the basis of Gehan and log-rank weight functions. An iterative algorithm is introduced 

that involves a monotone estimating function of the model parameter, and its minimization is a 

computationally simple optimization problem. A resampling technique is used for estimating the 

distribution of the rank estimator through its empirical distribution. The proposed methodology is 

performed on a real data set to assess the efficiency of the rank estimators in applications. The results 

illustrate that the proposed parameter estimators are fairly unbiased and censored observations do 

not significantly impact the performance of the rank estimators. 
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I. INTRODUCTION 
 

The bus dwell time is defined as the time that is consumed by 

a bus at a scheduled bus stop without moving, which includes 

the time that the bus spends for passengers boarding and 

alighting and the time of opening and closing bus doors [1]. 

The bus dwell time is greatly important since it is essential for 

estimating bus station capacity [2], and it has been regarded 

as a significant component of bus travel time [3-5]. Moreover, 

the dwell time functions are fundamental in the analysis of the 

transit network reliability [6-9] as well as the transit 

assignment models [10-11]. Therefore, modeling and 

estimating bus dwell time is substantial for public transport 

designers as well as bus operators [12]. 

The earliest research on the estimation of bus dwell time was 

conducted by [13]. He modeled the bus dwell time by using the 

linear regression approach and considered the number of 

boarding and alighting passengers and the consumed time 

during the opening and closing bus doors as two primary 

contributing factors. Since then, a number of case studies were 

implemented to estimate the bus dwell time with respect to 

some secondary contributing factors. For instance, the 

relationship between the bus fare payment system and bus 

dwell time was investigated by [14]. The influence of bus 

floor types on the bus dwell time was examined by [15]. The 

impact of platform walking on bus rapid transit (BRT) 

stations on the bus dwell time was studied by [1]. The 

influence of fare collection technology in city bus services 

was analyzed by [5]. It has been well established by [16-17] 

that the most significant contributing factors to the bus 

dwell time are the number of boarding and alighting 

passengers and other parameters are the secondary 

contributing factors. 

Since the dwell time for a bus in a bus stop is a time 

interval that begins once the bus arrives at the bus stop and 

ends once the bus departs the bus stop, the bus dwell time 

data could be considered as time-to-event data. In 

particular, the event of interest in such case is the bus 

departure from the bus stop, and the bus dwell time is the 

time-to-departure. Censored observations are very 

common in analyzing time-to-event data. A bus dwell time 

is censored if the actual bus departure time is unknown 

since the observation period ended before the bus 

departure time. Modeling time-to-event data through 
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commonly used linear models and parametric approaches is 

quite challenging in the presence of censored observations.  

Accelerated failure time (AFT) models are very suitable for 

modeling time-to-event data with censored observations [18]. 

The greatest advantage of AFT models that makes them 

appealing to researchers is that they are easy to interpret since 

they relate a set of independent variables to the logarithm of 

dwell time [19-20]. In order to estimate the AFT model 

parameters, Prentice [21] proposed rank estimators as a 

semiparametric inference procedure. Rank estimators based 

on the weighted log-rank statistics are computationally simple 

since they do not involve complex assumptions about the 

distribution of the model variables and error terms [22-25]. 

The asymptotic properties of the rank estimators were widely 

studied by [26-28] among others.  

In the present paper, simple and authentic methods is 

provided for modeling bus dwell time through the AFT models 

by using the rank estimators. The proposed inference 

procedure is based on two well-known estimating functions for 

the rank estimators, which are the Gehan and the log-rank 

estimating functions. Solving the estimating equations with 

the Gehan weight function can be readily done through regular 

optimization techniques, since the Gehan estimating function 

is a monotone function of the model parameters. However, the 

log-rank estimating function is a step function of the model 

parameters and its corresponding estimating equation 

potentially has multiple roots. An iterative algorithm is used to 

solve the estimating equations that are corresponding to a 

class of monotone weighted log-rank estimating functions. 

Each iteration of the algorithm involves a standard 

optimization technique and it yields a consistent root of the 

estimating equations. Moreover, a resampling method is used 

to approximate the distribution of the rank estimators which 

leads to calculating the Wald statistics and constructing the 

confidence intervals. The proposed methodology is applied to 

a real data set to illustrate the efficiency and usefulness of the 

rank estimators and the resampling technique for modeling 

the bus dwell time. 

 

II. ACCELERATED FAILURE 
TIME MODEL AND RANK 

ESTIMATORS 
 

Let random variable 𝑇𝑖 denote the bus dwell time and 𝑍𝑖 denote 

the 𝑃 × 1 associated vector of independent variables for the 𝑖th 

subject, where 𝑖 = 1,2, . . . , 𝑛 . Subjects are assumed to be 

independent. The accelerated failure time model is  

log(𝑇𝑖) = 𝛽0
′ 𝑍𝑖 + 𝜀𝑖  (𝑖 = 1, . . . , 𝑛)                     (1) 

 

In this regression model, 𝛽0  is a 𝑃 × 1 vector of unknown 

regression parameters and 𝜀𝑖 's are independent random 

error terms with an unspecified distribution function. Let 

𝐶𝑖 denote the censoring time for the 𝑖th bus dwell time 𝑇𝑖. 

The data consist of (𝑇̃𝑖 , Δ𝑖 , 𝑍𝑖), where 𝑇̃𝑖 = min (𝑇𝑖 , 𝐶𝑖), and 

Δ𝑖 = 1 when 𝑇𝑖 ≤ 𝐶𝑖 and Δ𝑖 = 0 otherwise.  

Define 𝑒̃𝑖(𝛽) = log(𝑇̃𝑖) − 𝛽′𝑍𝑖 , 𝑁̃𝑖(𝑡; 𝛽) = Δ𝑖𝐼{𝑒̃𝑖(𝛽) ≤ 𝑡} and 

𝑌̃𝑖(𝑡; 𝛽) = 𝐼{𝑒̃𝑖(𝛽) ≥ 𝑡}  when the indicator function 𝐼{𝐴} 

specifies whether condition 𝐴 is true or not by the values 1 

and 0, respectively. Define 𝑆(0)(𝑡; 𝛽) = 𝑛−1 ∑ 𝑌̃𝑖(𝑡; 𝛽)𝑛
𝑖=1  and 

𝑆(1)(𝑡; 𝛽) = 𝑛−1 ∑ 𝑌̃𝑖(𝑡; 𝛽)𝑍𝑖
𝑛
𝑖=1 . 

Regarding to the weighted log-rank estimating function for 

the AFT model [19], the estimating function for 𝛽0 is given 

by 

𝑈𝜙(𝛽) = ∑ Δ𝑖𝜙(𝑒̃𝑖(𝛽); 𝛽){𝑍𝑖 − 𝑍̅(𝑒̃𝑖(𝛽); 𝛽)}𝑛
𝑖=1          (2) 

 

where  𝜙  is a specified weight function and 𝑍̅ = 𝑆(1) 𝑆(0)⁄ . 

The estimating function  𝑈𝜙(𝛽)  is called the log-rank 

estimating function if 𝜙 = 1 [29], and it is called the Gehan 

estimating function if 𝜙 = 𝑆(0)  [30]. The estimator of 𝛽0 , 

denoted by 𝛽̂𝜙 , is the solution of the estimating equation 

𝑈𝜙(𝛽) = 0. The random vector 𝑛
1

2(𝛽̂𝜙 − 𝛽0) has asymptotic 

normal distribution with mean zero [27-28]. 

The main difficulty with solving the equation 𝑈𝜙(𝛽) = 0 in 

case of log-rank weight function is that 𝑈𝜙(𝛽)  is a step 

function of 𝛽  and this non-monotonicity may result 

multiple solutions to the equation, especially with high-

dimensional 𝛽. Such problems do not arise in case of the 

Gehan weight function, since the Gehan estimating 

function is a monotone function of the model parameter 

[31].  

The Gehan estimating function for the model parameter 

takes the form of 

 

𝑈𝐺(𝛽) = 𝑛−1 ∑ ∑ Δ𝑖{𝑍𝑖 − 𝑍𝑗}𝐼{𝑒̃𝑖(𝛽) ≤ 𝑒̃𝑗(𝛽)}𝑛
𝑗=1

𝑛
𝑖=1    (3) 

 

Clearly 𝑈𝐺(𝛽) is the gradient in 𝛽 of  

 

𝐿𝐺(𝛽) = 𝑛−1 ∑ ∑ Δ𝑖{𝑒̃𝑗(𝛽) − 𝑒̃𝑖(𝛽)}𝐼{𝑒̃𝑖(𝛽) ≤ 𝑒̃𝑗(𝛽)}𝑛
𝑗=1

𝑛
𝑖=1  (4) 
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Thus, the minimizer of 𝐿𝐺(𝛽) is equivalent to the solution of the 

equation 𝑈𝐺(𝛽) = 0.  

On the basis of the Gehan estimating function, [19] proposed 

a general weight estimating function. Consider the following 

modification of 𝐿𝜙(𝛽): 

 

𝐿̃𝜙(𝛽̂; 𝛽) = 𝑛−1 ∑ ∑ 𝜓(𝑒̃𝑖(𝛽̂); 𝛽̂)Δ𝑖{𝑒̃𝑗(𝛽) − 𝑒̃𝑖(𝛽)}𝐼{𝑒̃𝑖(𝛽) ≤𝑛
𝑗=1

𝑛
𝑖=1

𝑒̃𝑗(𝛽)} (5) 

 

where 𝜓 = 𝜙 𝑆(0)⁄  and 𝛽̂ is a preliminary estimator of 𝛽0, such 

as 𝛽̂𝐺.  

Estimating the AFT model parameter 𝛽0 could be implemented 

through an iterative algorithm. starting with an initial value of 

𝛽̂(0) = 𝛽̂𝐺, at the 𝑟th iteration of the, for 𝑟 ≥ 1  

 

𝛽̂(𝑟) = Arg min
𝛽

𝐿̃𝜙(𝛽; 𝛽̂(𝑟−1))                          (6) 

 

For approximating the distribution of the rank estimator 𝛽̂ a 

resampling technique similar to those of [32-33] is suitable to 

approximate the distribution of 𝛽̂. To be specific, define a new 

function  

 

𝐿̃𝜙
∗ (𝛽̂; 𝛽) = 𝑛−1 ∑ ∑ 𝜓(𝑒̃𝑖(𝛽̂); 𝛽̂)Δ𝑖{𝑒̃𝑗(𝛽) − 𝑒̃𝑖(𝛽)}𝐼{𝑒̃𝑖(𝛽) ≤𝑛

𝑗=1
𝑛
𝑖=1

𝑒̃𝑗(𝛽)}𝑊𝑖 (7) 

 

where 𝑊𝑖  for 𝑖 = 1, … , 𝑛  are independent random variables 

with positive values and 𝐸(𝑊𝑖) = 𝑉𝑎𝑟(𝑊𝑖) = 1 . The 

corresponding iterative algorithm is given by  

 

𝛽̂∗(𝑟) = Arg min
𝛽

𝐿̃𝜙
∗ (𝛽; 𝛽̂∗(𝑟−1))                            (8) 

 

The distribution of 𝛽̂  can be approximated through the 

empirical distribution of 𝛽̂∗. To be precise, the random sample 

(𝑊1, … , 𝑊𝑛)  must be repeatedly generated while holding the 

data (𝑇̃𝑖 , Δ𝑖 , 𝑍𝑖) at their observed values for 𝑖 = 1, . . . , 𝑛 to obtain 

a large number of realizations of 𝛽̂∗. The limiting distribution 

of 𝑛
1

2(𝛽̂ − 𝛽0) can be approximated by the limiting distribution 

of 𝑛
1

2(𝛽̂∗ − 𝛽0) [33]. Wald statistics for hypothesis testing and 

the confidence intervals for 𝛽̂ can be readily obtained from the 

empirical distribution of 𝛽̂∗.  

III. A CASE STUDY 
 

The primary data for evaluating this study was collected at 

route U32, located at Kuala Lumpur City Centre, Malaysia, 

during October 2015 and November 2015 for buses that 

were operating under RapidKL public transport corporate. 

Figure 1 depicts the layout of route U32. This route is a high-

frequency route with high passenger demand that passes 

across the most congested sections of the Kuala Lumpur 

City Centre. Bus dwell times were recorded through site 

observation. The data collection period was categorized into 

two categories including peak hour which was 6 AM to 9 AM 

and 4 PM to 7 PM, and non-peak hour which was 10 AM to 

12 PM and 7 PM to 9 PM. A set of bus stops were selected 

along the route as the data collection sites and the observers 

were asked to record passenger movement, boarding, and 

alighting activities as well as on-board passengers. 

 

 

Figure  1. Route U32 layout 

 

The data set did not include censored observations. To 

demonstrate the proposed methodology and assess its 

performance in applications in the presence of censored 

observations, censored versions of the data set were 

generated. Specially, for generating the data sets with 10%, 

20%, or 30% censored observations the bus dwell time 

values greater than or equal to 90, 80, or 70 quantiles were 

considered as censored, respectively. The summary of the 

data and the corresponding descriptive statistics are 

presented in Table 1.  

The accelerated failure time models were fit for the bus 

dwell time with respect to peak hour, on-board passengers, 

and boarding passengers as independent variables. The 

regression model is given by 

 

log(𝑇) = 𝛽1 × Peak hour + 𝛽2 × on-board + 𝛽3 ×

Boarding + 𝜀 (9) 
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The accuracy of 0.0001 between successive estimates was set as 

the convergence criterion. 

The standard error of the estimators, p-values, and 

confidence intervals were estimated by using the Wald 

statistics based on 100 resamples with standard exponential 

random variables satisfying 𝐸(𝑊) = 𝑉𝑎𝑟(𝑊) = 1.  

Table 2 summarizes the results of the rank regression model 

for the bus dwell time. In all cases the algorithm converged in 

less than 5 iterations. According to Table 2, for both Gehan and 

log-rank weight functions the parameter estimates are positive 

and since all the p-values are less than 0.05 all the parameter 

estimates are significant. 

 

Table  1. Summary of descriptive statistics of the bus dwell 

time data 

 

 

 

 

 

 

 

 

 

 

 

Table  2. Accelerated failure time analysis for the bus dwell 

time 

 

This means that for AM peak hour and for the bus stops 

with smaller number of on-board and boarding passengers 

the bus dwell time tends to be shorter, and for PM peak 

hour and for the bus stops with larger number of on-board 

and boarding passengers the bus dwell time tends to be 

longer. Although for larger percentage of censoring the 

parameter estimates are slightly greater than the 

uncensored data estimates, the difference is very small and 

negligible. Therefore, censoring does not have considerable 

impacts on the efficiency of the parameter estimators, since 

the estimated values are fairly close before and after 

censoring. 

 

IV. CONCLUSION 
 

Accelerated failure time models are suitable for modeling 

bus dwell time with respect to independent variables, 

specifically in the presence of censored observations. While 

parametric approaches are challenging due to their 

assumptions about the distribution of the variables and 

model error term, semiparametric methods are 

computationally simple alternatives with significantly 

reliable performance in applications. In this paper, rank 

regression was introduced as a semiparametric approach 

for estimating bus dwell time. Rank estimators were 

Censoring Variable Peak hour N Mean SD 

0% Dwell time AM & PM 180 115.197 45.276 

AM 90 127.970 49.749 

PM 90 102.425 36.303 

On-board AM & PM 180 21.189 11.843 

AM 90 19.133 11.753 

PM 90 23.244 11.637 

Boarding AM & PM 180 14.356 6.812 

AM 90 17.422 7.576 

PM 90 11.289 4.111 

10% Dwell time AM & PM 162 105.942 37.163 

AM 77 115.226 41.224 

PM 85 97.532 30.968 

On-board AM & PM 162 19.019 10.031 

AM 77 15.948 8.885 

PM 85 21.800 10.246 

Boarding AM & PM 162 13.272 6.032 

AM 77 16.026 6.928 

PM 85 10.776 3.613 

20% Dwell time AM & PM 144 98.345 31.986 

AM 63 103.400 35.883 

PM 81 94.414 28.199 

On-board AM & PM 144 17.847 9.613 

AM 63 13.667 7.447 

PM 81 21.099 9.886 

Boarding AM & PM 144 12.625 5.610 

AM 63 15.206 6.602 

PM 81 10.617 3.625 

30% Dwell time AM & PM 126 91.249 27.601 

AM 51 92.906 31.664 

PM 75 90.123 24.621 

Censoring Weight Parameter Estimate SE P-value 

0% Gehan Peak hour 0.1707 0.0513 0.0004 

On-board 0.0205 0.0015 0.0000 

Boarding 0.0197 0.0045 0.0000 

Log-rank Peak hour 0.2712 0.0163 0.0000 

On-board 0.0235 0.0009 0.0000 

Boarding 0.0106 0.0017 0.0000 

10% Gehan Peak hour 0.1688 0.0552 0.0001 

On-board 0.0234 0.0023 0.0000 

Boarding 0.0236 0.0054 0.0000 

Log-rank Peak hour 0.2924 0.0206 0.0000 

On-board 0.0276 0.0013 0.0000 

Boarding 0.0132 0.0026 0.0000 

20% Gehan Peak hour 0.1694 0.0470 0.0002 

On-board 0.0244 0.0019 0.0000 

Boarding 0.0268 0.0061 0.0000 

Log-rank Peak hour 0.3097 0.0226 0.0000 

On-board 0.0301 0.0018 0.0000 

Boarding 0.0152 0.0027 0.0000 

30% Gehan Peak hour 0.1629 0.0420 0.0001 

On-board 0.0261 0.0028 0.0000 

Boarding 0.0317 0.0043 0.0000 

Log-rank Peak hour 0.2982 0.0272 0.0000 

On-board 0.0319 0.0031 0.0000 

Boarding 0.0200 0.0025 0.0000 
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considered with both Gehan and log-rank weight functions. 

On the basis of general weighted estimating functions, an 

iterative algorithm was proposed for estimating the model 

parameters that involves a simple optimization problem. A 

resampling technique was implemented to estimate the 

distribution of the proposed parameter estimators. The 

results of the real data analysis illustrated that the proposed 

methodology is completely reliable and efficient in 

applications. The parameter estimators were fairly unbiased, 

and the censored observations did not have considerable 

influences on the performance of the proposed estimators. 
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