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In this paper, a scheme for solving first order singular and stiff differential equations is proposed. 

The studied approaches, namely Modified Rational Method (MRM), are developed based on a 

rational function mentioned by an existing study and possess second and third order of accuracy. 

Some modifications is implemented in the derivation technique, where closest points of 

approximation are considered in the formula of the methods. The proposed methods are both A -

stable and suitable in solving problems with stiffness properties. The methods are not self-starting, 

thus the application of a suitable method to calculate the starting value is required in implementing 

these formulas. The results computed by the methods are found to be comparable to the existing 

methods. 
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I. INTRODUCTION 
 

Studies on numerical approaches that are developed for 

solving initial value problems (IVPs) of the form 

 

𝑦′ = 𝑓(𝑥, 𝑦),    𝑦(𝑎) = 𝑦0,    𝑥 ∈ [𝑎, 𝑏], 

 

where 𝑎 and 𝑏 are the initial and the end points of the interval 

of 𝑥  respectively, usually came from the class of linear 

methods, such as Linear Multistep Methods and Runge-Kutta 

Methods. Some methods are specially formulated for specific 

problems; for instance, Backward Differentiation Formula 

(BDF) for solving stiff problems and Rational Method for 

solving problems with singularity. 

The suitability of numerical approaches that are based on 

rational function, or better known as rational method in 

solving many types of problems has intrigued many 

researchers to study more on this topic. Some literature 

rational methods are such as (Lambert & Shaw, 1965; Niekerk, 

1987; Niekerk, 1988; Ikhile, 2001)  for one-step schemes, while 

(Luke et al., 1975; Fatunla, 1982; Fatunla, 1986; Abelman & 

Eyre, 1990; Okosun & Ademiluyi, 2007a; 2007b) for 

multistep schemes. Some studies on this topic focus on 

developing A-stable rational schemes so that the methods 

are suitable in solving stiff problems, for instance; (Ramos, 

2007; Ramos et al., 2015; Ramos et al., 2017; Teh et al., 

2011). 

One of the recent studies on rational multistep methods 

are done by (Teh & Yaacob, 2013), namely RMM3 which 

have the form of  

 
𝑦𝑛+2 = 𝑦𝑛 +

2ℎ(𝑦𝑛
′ )2

𝑦𝑛
′ − ℎ𝑦𝑛

′′ . (1) 

 

From the formula, it is obvious that the distance between 

the approximation points is two steplengths, or 2ℎ. 

Motivated by the study, we aim to develop a class of 

rational methods that will lessen the gap of the selected 

points of approximation. In order to develop such 

methods, we implement some modifications in the 

derivation technique of the proposed methods.  

In this paper, the similar rational function as in (Teh & 

Yaacob, 2013) is considered to derive the proposed rational 

methods and the A-stability feature of the methods is 
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ensured to facilitate the comparisons between the methods 

studied and some existing methods. The development, order, 

stability and implementations of the methods will be discussed 

in this paper. The presented methods in this article are 

examined on different types of problem; singular and stiff IVPs 

and the results are compared to the existing methods. 

 

II. FRAMEWORK OF 
MODIFIED RATIONAL 

METHODS (MRM) 
 

By referring to (Teh and Yaacob, 2013), we suggest the 

approximation for y(xn+2) denoted by yn+2 and is given by; 

 

 
𝑦𝑛+2 = 𝐵 + ℎ [

𝐴ℎ

∑ 𝑐𝑗ℎ𝑗𝐾
𝑗=1

], (2) 

   

where 𝐴  is real constant, while 𝐵  and 𝑐𝑗 , 𝑗 = 1,2, … , 𝐾  are 

parameters that may contain approximations of 𝑦(𝑥𝑛+1) and 

higher derivatives of 𝑦(𝑥𝑛+1). 

With the formula above, we associate the linear difference 

operator; 

𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀 = [𝑦(𝑥𝑛+2) − 𝐵] × [∑ 𝑐𝑗ℎ𝑗

𝐾

𝑗=1

] − 𝐴ℎ 

= [𝑦(𝑥𝑛+1 + ℎ) − 𝐵] × [∑ 𝑐𝑗ℎ𝑗

𝐾

𝑗=1

]

− 𝐴ℎ, 

 

(3) 

where 𝑦(𝑥𝑛+1 + ℎ) is chosen to represent 𝑦(𝑥𝑛+2) in order to 

lessen the gap between the approximated point and the point 

which is considered for the approximation process by the 

formula of the method. Meanwhile, 𝑦(𝑥)  is arbitrary and 

continuously differentiable on 𝑥 ∈ [𝑎, 𝑏] . Next is to expand 

𝑦(𝑥𝑛+1 + ℎ) as Taylor series around 𝑥𝑛+1and collecting terms in 

the difference operator in (3), and we will obtain an expression 

that can be generally written as; 

 

 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀 = 𝐶0ℎ0 + 𝐶1ℎ1 + ⋯ + 𝐶𝐾ℎ𝐾

+ 𝐶𝐾+1ℎ𝐾+1 + ⋯. 
(4) 

   

Note that 𝐶𝑖 , 𝑖 = 0,1, … , 𝐾, 𝐾 + 1 in expression (4) contain the 

parameters that are to be determined throughout the 

derivation process. The order and the parameters can be 

determined by referring to the definition: 

Definition 1. The difference operator in equation (3) and 

the associated rational method (2) are said to be of order 

 𝑝 = 𝐾 + 1 if, in expression (4), 𝐶0 = 𝐶1 = ⋯ = 𝐶𝐾 = 𝐶𝐾+1 =

0, 𝐶𝐾+2 ≠ 0. 

Meanwhile, The local truncation errors of MRM are 

determined based on the definition below; 

Definition 2. The local truncation error at 𝑥𝑛+2  of 

equation (2) is defined to be the expression 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀 

given by equation (3), when 𝑦(𝑥𝑛+1)  is the theoretical 

solution of the initial value problem at a point 𝑥𝑛+1. The 

local truncation error of equation (2) is then 

 

 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀 = 𝐶𝐾+2ℎ𝐾+2 + 𝑂(ℎ𝐾+3) . (5) 

 

A. Second Order Modified Rational Method 
(MRM(2)) 

 

In order to have the second order of MRM, we consider 𝐾 =

1 in (2) so we will have the rational function in the form of; 

 

 
𝑦𝑛+2 = 𝐵 +

𝐴ℎ

1 + 𝑐1ℎ
, where   1 + 𝑐1ℎ ≠ 0 (6) 

   

and its associated linear difference operator as; 

 

 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀(2) = [𝑦(𝑥𝑛+1 + ℎ) − 𝐵]

× (1 + 𝑐1ℎ) − 𝐴ℎ 
(7) 

   

Next, expanding 𝑦(𝑥𝑛+1 + ℎ) as Taylor series around 𝑥𝑛+1 

will give the expression; 

 

 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀(2) = −𝐵 + 𝑦(𝑥𝑛+1)

+ ℎ[−𝐴 − 𝐵𝑐1 + 𝑐1𝑦(𝑥𝑛+1) + 𝑦′(𝑥𝑛+1)]

+ ℎ2 [𝑐1𝑦′(𝑥𝑛+1) +
1

2
𝑦′′(𝑥𝑛+1)]

+ ℎ3 [
1

2
𝑐1𝑦′′(𝑥𝑛+1) +

1

6
𝑦′′′(𝑥𝑛+1)] + 𝑂(ℎ4) 

(8) 

From (8), we obtain; 

 𝐶0 = −𝐵 + 𝑦(𝑥𝑛+1) 

𝐶1 = −𝐴 − 𝐵𝑐1 + 𝑐1𝑦(𝑥𝑛+1) + 𝑦′(𝑥𝑛+1) 

𝐶2 = 𝑐1𝑦′(𝑥𝑛+1) +
1

2
𝑦′′(𝑥𝑛+1) 

𝐶3 =
1

2
𝑐1𝑦′′(𝑥𝑛+1) +

1

6
𝑦′′′(𝑥𝑛+1) 

(9) 
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Since 𝐾 = 1 and according to Definition 1, 𝐶0 = 𝐶1 = 𝐶2 = 0 

and 𝐶3 ≠ 0 ; and we take 𝑦𝑛+1  as the approximation of the 

theoretical solution 𝑦(𝑥𝑛+1) , thus the parameters in (6) are 

determined and can be written as; 

 

 𝐴 = 𝑦𝑛+1 
′ , 

𝐵 = 𝑦𝑛+1 , 

𝑐1 = −
𝑦𝑛+1

′′

2𝑦𝑛+1
′  , 

(10) 

   

where by the localizing assumption, 𝑦𝑛+1 = 𝑦(𝑥𝑛+1)  and 

𝑦𝑛+1
𝑚 = 𝑦𝑚(𝑥𝑛+1), 𝑚 = 1,2.  

By substituting the obtained parameters in (10) in 𝐶3, we have; 

 

 
𝐶3 = −

(𝑦𝑛+1
′′ )2

4𝑦𝑛+1
′ +

𝑦𝑛+1
′′′

6
 . (11) 

   

Based on equation (6) and (10), we formulate MRM(2) and it 

can be written as; 

 

 
𝑦𝑛+2 = 𝑦𝑛+1 +

2ℎ(𝑦𝑛+1
′ )2

2𝑦𝑛+1
′ − ℎ𝑦𝑛+1

′′  . (12) 

   

As we refer to Definition 2 and (11), we obtain the local 

truncation error for MRM(2): 

 

 
𝐿𝑇𝐸𝑀𝑅𝑀(2) = ℎ3 [−

(𝑦𝑛+1
′′ )2

4𝑦𝑛+1
′ +

𝑦𝑛+1
′′′

6
]

+ 𝑂(ℎ4), 

(13) 

   

where by the localizing assumption, 𝑦𝑛+1
𝑚 = 𝑦𝑚(𝑥𝑛+1), 𝑚 =

1,2,3. 

 

B. Third Order Modified Rational Method 
(MRM(3)) 

 

To derive a third order MRM, we need to consider 𝐾 = 2 in (2) 

so the rational approximation associated to this method is 

 

 
𝑦𝑛+2 = 𝐵 +

𝐴ℎ

1 + 𝑐1ℎ + 𝑐2ℎ2 ,  

where   1 + 𝑐1ℎ + 𝑐2ℎ2 ≠ 0 

(14) 

   

and the associated linear difference operator is given as 

 𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀(2) = [𝑦(𝑥𝑛+1 + ℎ) − 𝐵]

× (1 + 𝑐1ℎ + 𝑐2ℎ2) − 𝐴ℎ 
(15) 

   

Next, we expand 𝑦(𝑥𝑛+1 + ℎ) as Taylor series to have the 

expression; 

 

𝐿[𝑦(𝑥); ℎ]𝑀𝑅𝑀(2) = −𝐵 + 𝑦(𝑥𝑛+1)

+ ℎ[−𝐴 − 𝐵𝑐1 + 𝑐1𝑦(𝑥𝑛+1) + 𝑦′(𝑥𝑛+1)]

+ ℎ2 [−𝐵𝑐2 + 𝑐2𝑦(𝑥𝑛+1) + 𝑐1𝑦′(𝑥𝑛+1)

+
1

2
𝑦′′(𝑥𝑛+1)]

+ ℎ3 [𝑐2𝑦′(𝑥𝑛+1) +
1

2
𝑐1𝑦′′(𝑥𝑛+1) +

1

6
𝑦′′′(𝑥𝑛+1)]

+ ℎ4 [
1

2
𝑐2𝑦′′(𝑥𝑛+1) +

1

6
𝑐1𝑦′′′(𝑥𝑛+1) +

1

24
𝑦𝑛+1

(4)
]

+ 𝑂(ℎ5) 

 

(16) 

From (16); we obtain; 

𝐶0 = −𝐵 + 𝑦(𝑥𝑛+1) 

𝐶1 = −𝐴 − 𝐵𝑐1 + 𝑐1𝑦(𝑥𝑛+1) + 𝑦′(𝑥𝑛+1) 

𝐶2 = −𝐵𝑐2 + 𝑐2𝑦(𝑥𝑛+1) + 𝑐1𝑦′(𝑥𝑛+1) +
1

2
(𝑥𝑛+1) 

𝐶3 = 𝑐2𝑦′(𝑥𝑛+1) +
1

2
𝑐1𝑦′′(𝑥𝑛+1) +

1

6
𝑦′′′(𝑥𝑛+1) 

𝐶4 =
1

2
𝑐2𝑦′′(𝑥𝑛+1) +

1

6
𝑐1𝑦′′′(𝑥𝑛+1) +

1

24
𝑦𝑛+1

(4)
 

(17) 

 

Since 𝐾 = 2 and by following Definition 1, we have 𝐶0 =

𝐶1 = 𝐶2 = 𝐶3 = 0  and 𝐶4 ≠ 0 , taking 𝑦𝑛+1  as the 

approximation of the theoretical solution 𝑦(𝑥𝑛+1), thus the 

parameters in (14) are determined as; 

 

 𝐴 = 𝑦𝑛+1 
′ , 

𝐵 = 𝑦𝑛+1 , 

𝑐1 = −
𝑦𝑛+1

′′

2𝑦𝑛+1
′  , 

𝑐2 =
3(𝑦𝑛+1

′′ )2 − 2𝑦𝑛+1
′ 𝑦𝑛+1

′′′

12(𝑦𝑛+1
′ )2  , 

(18) 

   

where by the localizing assumption, 𝑦𝑛+1 = 𝑦(𝑥𝑛+1)  and 

𝑦𝑛+1
𝑚 = 𝑦𝑚(𝑥𝑛+1), 𝑚 = 1,2,3.  

By substituting the obtained parameters in (18)  in 𝐶4, we 

have; 
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𝐶4 =

(𝑦𝑛+1
′′ )3

8(𝑦𝑛+1
′ )2 −

𝑦𝑛+1
′′ 𝑦𝑛+1

′′′

6𝑦𝑛+1
′ +

1

24
𝑦𝑛+1

(4)
 . (19) 

   

Based on equation (14) and (18) we formulate MRM(3) and it 

can be written as; 

 

𝑦𝑛+2 = 𝑦𝑛+1 +
12ℎ(𝑦𝑛+1

′ )3

[
12(𝑦𝑛+1

′ )2 − 6ℎ𝑦𝑛+1
′ 𝑦𝑛+1

′′

+3ℎ2(𝑦𝑛+1
′′ )2 − 2ℎ2𝑦𝑛+1

′ 𝑦𝑛+1
′′′ ]

 . 
(20) 

 

Referring to Definition 2 and (20), we obtain the local 

truncation error for MRM(3). 

 

𝐿𝑇𝐸𝑀𝑅𝑀(3) = ℎ4 [
(𝑦𝑛+1

′′ )3

8(𝑦𝑛+1
′ )2 −

𝑦𝑛+1
′′ 𝑦𝑛+1

′′′

6𝑦𝑛+1
′

+
1

24
𝑦𝑛+1

(4)
] + 𝑂(ℎ4), 

(21) 

  

where by the localizing assumption, 

 𝑦𝑛+1
𝑚 = 𝑦𝑚(𝑥𝑛+1), 𝑚 = 1,2,3,4. 

 

III. STABILITY REGIONS OF 
MRM 

 

The stability of the proposed rational methods can be analysed 

by applying it the Dahlquist's test equation, 𝑦′ = 𝜆𝑦,   𝑅𝑒(𝜆) <

0. 

The A-stability of the methods can be identified according to 

the definition below; 

Definition 3. A numerical method is said to be A-stable if its 

region of absolute stability contains the whole left-hand half-

plane Re ℎ𝜆 < 0. 

 

A. Stability of MRM(2) 
 

To find the stability region for MRM(2) in (12), the formula of 

the method is applied to the test equation, and it yields the 

difference equation; 

 

 
𝑦𝑛+2 = 𝑦𝑛+1 + [

2 + 𝜆ℎ

2 − 𝜆ℎ
] . (22) 

   

Taking 𝑧 = ℎ𝜆, 𝑦𝑛+2 = 𝜉2,  and 𝑦𝑛+1 = 𝜉1 , simplifying it and 

the stability function and the root, 𝜉 can be obtained as; 

 
𝑅(𝑧)𝑀𝑅𝑀(2) = 𝜉 = [

2 + 𝑧

2 − 𝑧
] . (23) 

   

Taking 𝑧 = 𝑥 + 𝑖𝑦 into (23), we have plotted the absolute 

stability region of MRM(2) as in Figure 1, with the condition 

|𝑅(𝑧)𝑀𝑅𝑀(2)| ≤ 1 is satisfied. 

Since the plotted stability region of MRM(2) (refer to 

Figure 1) is unbounded and contains the whole left-hand 

half-plane, thus it can be concluded that the second-order 

method is A-stable. 

 

Figure 1. Absolute stability region of MRM(2) 

 

B. Stability of MRM(3) 
 

As MRM(3) in (20) is applied to the test equation, it gives 

the difference equation;  

 

 
𝑦𝑛+2 = 𝑦𝑛+1 + [

12 + 6𝜆ℎ + 𝜆2ℎ2

12 − 6𝜆ℎ + 𝜆2ℎ2] . (24) 

   

Taking 𝑧 = ℎ𝜆, 𝑦𝑛+2 = 𝜉2,  and 𝑦𝑛+1 = 𝜉1 , simplifying it 

and the stability function and the root, 𝜉 can be obtained as; 

 

 
𝑅(𝑧)𝑀𝑅𝑀(3) = 𝜉 = [

12 + 6𝑧 + 𝑧2

12 − 6𝑧 + 𝑧2] . (25) 

   

Taking 𝑧 = 𝑥 + 𝑖𝑦  into (25), we have plotted the absolute 

stability region of MRM(3) with the condition 

|𝑅(𝑧)𝑀𝑅𝑀(3)| ≤ 1 is satisfied and the region is found to be 
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similar to the stability region of MRM(2), thus this method can 

also be concluded as A-stable. 

 

IV. IMPLEMENTATION 
 

The first step to implement the rational scheme developed in 

this study is to choose a suitable method to calculate the 

starting values as both methods are not self-starting. In this 

article, we apply the rational method of order four that is 

proposed by (Lambert, 1973) to compute the starting values. 

The formula of the method is given by; 

 

 
𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛

′ +
ℎ2

2
𝑦𝑛

′′ +
ℎ3

6
𝑦𝑛

′′′

+
ℎ4

6
[

𝑦𝑛
′′′𝑦𝑛

(4)

4𝑦𝑛
′′′ − ℎ𝑦𝑛

(4)
]  

(26) 

   

Based on the formulation of the proposed rational methods; 

it is necessary to determine higher derivatives of the problem 

in order to compute the numerical solution. To obtain the 

higher derivatives of the IVP, differentiation of the equation of 

the problem is required; 

 

𝑦(𝑘+1)(𝑥)|
𝑥=𝑥𝑛+1

=
𝑑𝑓𝑘(𝑥, 𝑦(𝑥))

𝑑𝑥𝑘 |
𝑥=𝑥𝑛+1

≈ 𝑦𝑛+1
(𝑘+1)

 . (27) 

  

In this article, we compare the numerical results by MRM 

with several existing methods that have been introduced to 

solve singular and stiff problems. For comparison purposes we 

calculate the absolute error of each iteration given by; 

 

 (𝑒𝑟𝑟𝑜𝑟𝑖)𝑛 = |(𝑦𝑖)𝑛 − (𝑦(𝑥𝑖))
𝑛

| . (28) 

   

The value of maximum and average of the absolute errors are 

considered for the comparison of accuracy of the methods in 

the study. In terms of efficiency, time of execution and total 

function evaluation are analysed. 

 

V. NUMERICAL RESULTS AND 
DISCUSSION 

 

In this section, several initial-value problems of different 

nature (singular and stiff) are tested using the proposed 

methods and compared with some of the existing methods. 

(i) Problem 1 (Singular problem): 

𝑦′(𝑥) = 1 + 𝑦2(𝑥), 𝑦(0) = 1,    0 ≤ 𝑥 ≤ 0.8 

Exact solution: 𝑦(𝑥) = tan (𝑥 +
𝜋

4
) 

Singular point: 𝑥 =
𝜋

4
 

Source: (Teh and Yaacob, 2013) 

(ii) Problem 2 (Stiff problem): 

𝑦′(𝑥) = −100𝑦(𝑥) + 99𝑒2𝑥, 𝑦(0) = 1,     

0 ≤ 𝑥 ≤ 0.5 

Exact solution: 𝑦(𝑥) =
33

34
(𝑒2𝑥 − 𝑒−100𝑥) 

Source: (Teh and Yaacob, 2013) 

(iii) Problem 3 (Stiff problem): 

𝑦′(𝑥) = −10𝑥𝑦(𝑥), 𝑦(0) = 1, 0 ≤ 𝑥 ≤ 10 

Exact solution: 𝑦(𝑥) = 𝑒5𝑥2
 

Source: (Musa et al., 2012) 

 

The RMM3 of second and third order introduced by (Teh 

and Yaacob, 2013) is re-executed on the stated problems for 

comparison purposes in this article. 

The tables below shows the numerical results for all the 

tested problems that have been solved using the proposed 

rational methods and are compared to several existing 

rational and BDF methods. 
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The notations used in the following tables are: 

h : Step size 

N : Number of subinterval 

TF : Total function evaluation 

AVE : Average error 

MAX : Maximum error 

Time : Time of execution in second 

NS : Second Order Non-standard Method in 

(Ramos, 2007) 

3BEBDF : 3-Point Block Extended BDF in (Musa et 

al., 2012) 

2IBBDF : 3-Point Improved Block BDF in (Musa et 

al., 2013) 

MRM(2) : Second Order Modified Rational Method 

proposed in this paper 

MRM(3) : Third Order Modified Rational Method 

proposed in this paper 

RMM(2,2) : 2-step Second Order Rational Multistep 

Method in (Teh and Yaacob, 2013) 

RMM(2,3) : 2-step Third Order Rational Multistep 

Method in (Teh and Yaacob, 2013) 

- : No data has been reported for this 

reference 

 

Table 1 and 2 display the comparisons between MRM and 

existing rational methods of different order respectively. In 

Table 1, we can see that the performance of the MRM(2) are 

comparable to NS in terms of maximum and average error. 

Meanwhile, as MRM is compared to RMM3 of the same order 

in both tables, the proposed methods exhibit better accuracy 

and efficiency of approximation as its time of execution and 

total function function evaluation are smaller in value. 

Table 3 and 4 portray the reliability of MRM in solving a 

stiff problems as compared to teh existing methods. It can 

be observed from the tables that MRM generates more 

accurate approximation compared NS and RMM3 of the 

same order based on displayed errors. Besides that, the 

execution time and total function evaluation of MRM is less 

than RMM3 indicating its efficiency in solving this problem. 

In Table 5, MRM is compared to  RMM3 as well as some 

BDF methods. From the table, we can see that the 

maximum errors and average errors given by MRM are 

Table 1. Comparison Between MRM(2) and Second Order Rational Methods for Solving Problem 1 

N Methods applied MAX AVE TF Time 

64 

NS 9.47e+00 - - - 

RMM3(2,2) 3.96e+01 6.62e-01 132 7.90e-02 

MRM(2) 9.32e+00 1.57e-01 130 1.80e-02 

128 

NS 2.33e+00 - - - 

RMM3(2,2) 9.47e+00 1.04e-01 260 5.80e-02 

MRM(2) 2.31e+00 2.57e-02 258 5.20e-02 

256 

NS 2.43e+00 - - - 

RMM3(2,2) 9.62e+00 5.37e-02 516 4.98e-01 

MRM(2) 2.42e+00 1.35e-02 514 2.54e-01 

 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

205 

smaller than the existing methods, which show that the 

proposed methods are capable in solving this problem. In terms 

of time of execution, MRM took shorter time to finish an 

execution compared to RMM3 of the same order.  

 

VI. CONCLUSION 
 

In this article, rational methods of second and third order are 

introduced where the closest points of approximation is taken 

into account in the derivation process. The proposed methods 

are found to be A-stable, which indicates that they are suitable 

in dealing with stiff equations. The numerical results 

presented in this research portray the capability of the 

proposed methods in solving IVPs with singularity and 

stiffness properties. 

Table 2. Comparison Between MRM(3) and RMM3(2,3) for Solving Problem 1 

N Methods applied MAX AVE TF Time 

64 
RMM3(2,3) 1.55e-03 2.61e-05 195 2.20e-02 

MRM(3) 1.22e-04 2.06e-06 193 1.90e-02 

128 
RMM3(2,3) 1.20e-04 1.33e-06 387 4.00e-02 

MRM(3) 2.93e-05 3.28e-07 385 1.69e-01 

256 
RMM3(2,3) 1.23e-04 6.84e-07 771 1.24e-01 

MRM(3) 9.96e-05 5.53e-07 769 1.22e-01 

 

Table 3. Comparison Between MRM(2) and Second Order Rational Methods for Solving Problem 2 

N Methods applied MAX AVE TF Time 

32 

NS 1.78e-02 - - - 

RMM3(2,2) 7.82e-02 2.42e-03 68 3.00e-03 

MRM(2) 7.66e-03 3.21e-04 66 2.00e-03 

64 

NS 4.14e-03 - - - 

RMM3(2,2) 1.78e-02 6.51e-04 132 1.70e-02 

MRM(2) 2.70e-03 1.22e-04 130 1.60e-02 

128 

NS 1.03e-03 - - - 

RMM3(2,2) 4.15e-03 1.75e-04 260 4.90e-02 

MRM(2) 8.30e-04 3.79e-05 258 3.90e-02 

 

Table 4. Comparison Between MRM(3) and RMM3(2,3) for Solving Problem 2 

N Methods applied MAX AVE TF Time 

32 
RMM3(2,3) 5.85e-03 3.52e-04 99 4.00e-03 

MRM(3) 4.20-04 3.26e-05 97 3.00e-03 

64 
RMM3(2,3) 6.14e-04 4.21e-05 195 2.70e-02 

MRM(3) 6.52e-05 4.44e-06 193 2.00e-02 

128 
RMM3(2,3) 7.41e-05 5.20e-06 387 9.40e-02 

MRM(3) 8.73e-06 6.01e-07 385 6.40e-02 
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