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Korteweg-de Vries (KdV) equation usually describes internal solitary waves in shallow water and in 

the coastal ocean. However, KdV equation only assuming a uniform background state and it is not 

sufficient to describe the waves propagation as the topography can vary horizontally. In this paper, 

we are mainly focused on the behaviour of solitary wave as they propagate over variable topography. 

By incorporating a variable medium in the model, the propagation of solitary water wave in the 

framework of a variable-coefficient Korteweg-de Vries (vKdV) is studied and numerical solutions of 

the problem is obtained. Besides to study the effects of this factor on the formation of the waves, this 

general approach enables us to improve known results on periodic wave trains and the adiabatic 

evolution of solitary waves in the presence of variable topography. Simulations studied included the 

solution of vKdV equation for the migration as well as the time evaluation of a single solitary wave 

in various depth. In this research, we carried out the methodology based on a vKdV equation, using 

Pseudospectral (PS) method with different types of variable depth selections. The proposed PS 

method shows good agreement with the previous studies as the wave remained constant when 

traveled over constant depth and formed a negative and positive polarity of trailing shelf behind the 

solitary wave when the depth slowly varies. Besides, the wave is fission into few solitons as the depth 

rapidly decreases while no soliton fission observed when the depth increases rapidly . 

Keywords:  solitary waves; pseudospectral method; variable topography; variable-coefficient 

korteweg-de vries equation 

 
 

I. INTRODUCTION 
 

The Korteweg-de Vries (KdV) equation which is well 

established as a model for weakly nonlinear long waves is first 

derived by Korteweg and de Vries (1895) governing long one 

dimensional propagating in a shallow water channel of 

constant depth and had found solitary wave solutions (Miles, 

1982a; Miles, 1982b;  Miles, 1980). However, the effect of 

varying topography has to be taken into account when deriving 

the mathematical model as waves propagate over variable 

depths in many physical problems. Hence, the theory behind 

the solitary waves with the effects of variable topography on 

the free-surface and also internal solitary waves evolution are 

well-developed. The detailed analysis and the appropriate 

model of the behaviour of solitary wave over variable 

topography was carried out by Grimshaw (1970; 1971) and 

Johnson (1973a; 1973b) in the context of the variable-

coefficient Korteweg-de Vries (vKdV) equation.  The 

systematic formulation derivation have been done by 

Grimshaw (2007; 2005) and Grimshaw and et al. (2004) 

and the outcome is given as 

 

𝐴𝑡 + 𝑐(𝑥)𝐴𝑥 +
𝑐(𝑥)𝑄𝑥(𝑥)

2𝑄(𝑥)
𝐴 + 𝜇𝐴𝐴𝑥 + 𝜆𝐴𝑥𝑥𝑥 = 0     (1) 

 

Equation (1) is known Partial Differential Equation 

(PDE) correspond to 𝑥 and 𝑡 variables. Here 𝐴(𝑥, 𝑡)  is 

denote as the amplitude of the wave, while 𝑥 and 𝑡  are 

space and time variables, respectively. Both of 𝑐 and 𝑄are 

in term of 𝑥 where 𝑐(𝑥)  is linear long wave speed and 

𝑄(𝑥) is the linear magnification factor. While 𝜇 and 𝜆 are 

the coefficients of the nonlinear and dispersive terms, 
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respectively, which are determined by the characteristics of the 

specific physical system. 

The vKdV equation has been studied by El et al. (2012) for a 

weakly nonlinear unidirectional shallow-water wave 

propagation over uneven bottom configuration where the 

water depth changes rapidly and slowly, following derivation 

of the vKdV equation by Grimshaw (2007) using method of 

lines (MOL). They carried out the research using an undular 

bore as an initial condition by considering six different 

configurations for the varying depth regions. Hilmi (2010) 

obtained a progressive wave type of solution for vKdV 

equation by using reductive perturbation method. Latest, the 

vKdV equation has been solved by Yuan et al. (2018) using 

both analysis and numerical simulations, and simulations 

using the MIT general circulation model (MITgcm) which is a 

numerical computer code in solving the equation of motions 

governing the ocean or Earth's atmosphere using the finite 

volume method.  

In this research, we will continue the study of KdV equation 

when variable topography is taken into account using 

Pseudospectral Method (PS) and solitary wave solution as an 

initial condition. 

 

II. MATHEMATICAL 
FORMULATION 

 

Variable-coefficient Korteweg-de Vries (VKdV) equation is an 

extension of KdV equation. The KdV equation is attained by a 

weakly nonlinear long wave expansion from the fully nonlinear 

equations (Grimshaw, 2001; Grimshaw et al., 2007) by 

considering only a two-dimensional configuration, but initially 

assume that the topography is uniform or the depth of the 

fluid, h  is constant. The outcome of the KdV equation is 

 

𝐴𝑡 + 𝑐(𝑥)𝐴𝑥 + 𝜇𝐴𝐴𝑥 + 𝜆𝐴𝑥𝑥𝑥 = 0  (2) 

 

Eq. (1) is equivalent to (2) for the case when all coefficients 

are constant and 𝑄𝑥 = 0. However, in the case of water waves 

in the coastal oceans, there is a need to consider the variation 

of the background topography in the wave propagation 

direction where the depth, ℎ is no longer a constant (see the 

reviews by Grimshaw et al. (2007; 2010) and Grimshaw 

(2006). Thus, when the depth ℎ, a background current 𝑢0 and 

density 𝜌0 vary slowly in the horizontal direction with 𝑥, 

equation (2) may be replaced by vKdV equation (1) which first 

derive in general case by Grimshaw (1970; 1981). Johnson 

(1973b) and Kakutani (1971) were among the first who 

derived vKdV equation to represent the propagation of 

weakly nonlinear waves over an uneven bottom and there 

are many versions of the derivation of the equation, 

depending on the physical problem under consideration. 

The vKdV equation was derived by Johnson (1973b) for 

water waves, where 𝑄 = 𝑐, and by Grimshaw (1981) for 

internal waves and followed by Grimshaw et al. (2007); 

Holloway et al. (2001) for details formulation. By 

considering the case of surface waves, we obtain 

 

𝑐 = √𝑔ℎ, 𝜇 =
3𝑐

2ℎ
, 𝜆 =

𝑐ℎ2

6
, 𝑄 = 𝑐.  (3) 

 

Subtitute equation (3) into (1), the wave propagation over 

uneven bottom is written as 

 

𝐴𝑡 + 𝑐𝐴𝑥 +
𝑐𝑥

2
𝐴 +

3𝑐

2ℎ
𝐴𝐴𝑥 +

𝑐ℎ2

6
𝐴𝑥𝑥𝑥 = 0 (4) 

 

It has the same form as (2) with an extra term. Following 

the vKdV equation obtained from El et al. (2012) the vKdV 

equation (4) is replaced by 

 

𝐵𝜏 + 𝜈(𝜏)𝐵𝐵𝑋 + 𝛿(𝜏)𝐵𝑋𝑋𝑋 = 0      (5) 

 

trough some transformation 

 

𝜏 = ∫
𝑑𝑥

𝑐
, 𝑋 = 𝜏 − 𝑡  (6) 

where 

𝐵 = ℎ
1

4𝐴, 𝜈(𝜏) =
3

2ℎ
5
4

, 𝛿(𝜏) =
ℎ

6
  (7) 

 

Here the coefficient 𝜈 and 𝛿are function of 𝜏 alone and 

ℎ = ℎ(𝜏) depends on the variable 𝜏 which describes 

evolution along the path of the wave. Generally we denote 

𝐴(𝑥, 𝑡) = 𝐴(𝑋, 𝜏) and ℎ(𝑥) = ℎ(𝜏)  where the depth 

varies slowly in the propagation direction 𝑥. Although 𝜏 is 

describes as a variable along the spatial path of the wave, 

we can also refer to it as the “time”. Likewise, although 𝑋 

is a temporal variable, in a reference frame moving with 

speed 𝑐, we also can refer to it as a “space” variable. Like 

the KdV (2), vKdv (5) is integrable and has solitary wave 

solutions. Hence, a solitary wave solution arises and is 

given by 
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𝐵(𝑋, 𝜏) = 𝑎 𝑠𝑒𝑐 ℎ2 (𝑘(𝑥 − 𝑐𝑡)), = =


 24
3

a
c k      (8) 

 

The speed 𝑐 is proportional to the wave amplitude 𝑎, or to 

the square of the wavenumber 𝑘2,  which means that the 

solitary waves propagate with a speed that increases with the 

amplitude of the waves. This means that, the smaller 

amplitude waves are wider and travel slower than the larger 

ones. 

 

III. THE PSEUDOSPECTRAL 
METHOD 

 

The numerical approach used in this paper is based on the 

Pseudospectral (PS) method, which allows us to solve vKdV 

equations in a periodic domain by means of the Discrete 

Fourier Transform (DFT). PS method can considerably speed 

up the calculation when using Fast Fourier Transform (FFT) 

which is known to be a very effective algorithm for computing 

the DFT. PS method transforms the spatial derivatives of the 

PDEs by Fourier transform and subtitutes the temporal 

derivative by finite-difference approximation which yields to 

3-level scheme that need to be solved numerically. This 

method has been selected in solving many nonlinear evolution 

equations and systems of the KdV type such as KdV equation 

by Chan and Kerhoven (1985), Burgers equation by Ong et al. 

(2007), KdV-Burgers equation by Rashid (2006) and also 

Forced Perturbed KdV equation by Tay et al. (2017). 

The vKdV equation (5) is integrated in space 𝜏 by the 

leapfrog finite-difference scheme in the spectral time, 𝑋. The 

infinite interval is substituted with −𝐿 < 𝑋 < 𝐿  with 𝐿 

sufficiently large such that the periodicity assumptions 

𝑈(−𝐿, 𝜏) = 𝑈(𝐿, 𝜏)  hold for the localised solutions hold.  

Initially, we transform the solution interval  − ,L L  to the 

periodicity interval [0,2𝜋]  by introducing 𝜉 = 𝑠𝑋 + 𝜋, 

where 𝑠 =
𝜋

𝐿,
 so 𝐵(𝑋, 𝜏) will be transformed into 𝑈(𝜉, 𝜏) as 

 

𝑈𝜏 + 𝜈(𝜏)𝑠𝑈𝑈𝜉 + 𝛿(𝜏)𝑠3𝑈𝜉𝜉𝜉 = 0  (9) 

 

It is now convenient to use 𝑊(𝜉, 𝜏) =
1

2
𝑠𝑈2 notation for 

the nonlinear terms. The nonlinear term in equation (9) 

reduces to 

𝑈𝜏 + 𝜈(𝜏)𝑊𝜉 + 𝛿(𝜏)𝑠3𝑈𝜉𝜉𝜉 = 0  (10) 

In order to get the numerical solution of (5), the interval 

[0,2𝜋]  is discretised by 𝑁 + 1  equidistant points. Let 

𝜉0 = 0, 𝜉1, 𝜉2, . . . , 𝜉𝑁 = 2𝜋,  so that 𝛥𝜉 =
2𝜋

𝑁
.   Here, 

𝑁is chosen to be power of two. By letting 𝑚 =
𝑁

2
, the DFT 

of 𝑈(𝜉𝑗 , 𝜏) for 𝑗 = 0,1,2, . . . , 𝑁 − 1, written as 𝑈̂(𝑝, 𝜏) 

give 

 

𝑈̂(𝑝, 𝜏) = 𝐹(𝑈̂) =
1

√𝑁
∑ 𝑈(𝜉𝑗, 𝜏)

𝑁−1

𝑗=0

𝑒
−(

2𝜋𝑗𝑝
𝑁

)𝑖
 

 

where 𝑝 = −𝑚, −𝑚 + 1, −𝑚 + 2, . . . , 𝑚 − 1 and 𝑖 =

√−1,  the usual imaginary number and 𝑝  is an integer 

which represented a discretised and scaled version of a 

wavenumber. We prefer to use in pseudospectral methods 

the interpolation technique because of the DFT, which 

allows to transform quickly from the set of function values 

in grid points to the set of its interpolation coefficients. The 

inverse Fourier transform of 𝑈̂(𝑝, 𝜏)  denoted by 

𝑈(𝜉𝑗 , 𝜏)can be written as 

 

𝑈̂(𝜉𝑗 , 𝜏) = 𝐹−1(𝑈̂) =
1

√𝑁
∑ 𝑈̂(𝑝, 𝜏)

𝑚−1

𝑝=−𝑚

𝑒
(

2𝜋𝑗𝑝
𝑁

)𝑖
 

 

where 𝐹(𝑈̂) and 𝐹−1(𝑈̂) are discrete Fourier transform 

and inverse Fourier transform respectively. The 

derivatives of 𝑈with respect to 𝑋 can be calculated by 

 

𝜕𝑛𝑈

𝜕𝑋𝑛 = 𝐹−1{(𝑖𝑝)𝑛𝐹{𝑈}}, = 1,2,...n        (11) 

 

Then, DFT of (10) with respect to 𝜉 gives 

 

𝑈̂𝜏 + 𝑖𝜈(𝜏)𝑝𝑊̂ − 𝑖𝛿(𝜏)(𝑠𝑝)3𝑈̂ = 0          (12) 

 

where the hat stands for the Fourier transform. By using 

the time discretizations as follow: 

 

𝑈̂𝜏 ≈
𝑈̂(𝑝, 𝜏 + 𝛥𝜏) − 𝑈̂(𝑝, 𝜏 − 𝛥𝜏)

2𝛥𝜏
=

𝑈̂𝑘+1 − 𝑈̂𝑘−1

2𝛥𝜏
 

𝑈̂ ≈
𝑈̂(𝑝,𝜏+𝛥𝜏)+𝑈̂(𝑝,𝜏−𝛥𝜏)

2
=

𝑈̂𝑘+1+𝑈̂𝑘−1

2
      (13) 
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Subtitute equation (13) into equation (12), yield to 

 

[
𝑈̂𝑘+1−𝑈̂𝑘−1

2𝛥𝜏
] + 𝑖𝜈(𝜏)𝑝𝑊̂ − 𝑖𝛿(𝜏)(𝑠𝑝)3 [

𝑈̂𝑘+1−𝑈̂𝑘−1

2
] = 0 (14) 

Simplify 

[𝑈̂𝑘+1 − 𝑈̂𝑘−1] + 2𝑖𝜈(𝜏)𝑝𝛥𝜏𝑊̂ − 𝑖𝛿(𝜏)(𝑠𝑝)3𝛥𝜏[𝑈̂𝑘+1 − 𝑈̂𝑘−1]

= 0 

𝑈̂𝑘+1[1 − 𝑖𝛿(𝜏)(𝑠𝑝)3𝛥𝜏] − 𝑈̂𝑘−1[1 + 𝑖𝛿(𝜏)(𝑠𝑝)3𝛥𝜏]

+ 2𝑖𝜈(𝜏)𝑝𝛥𝜏𝑊̂ = 0 

(15) 

 

Finally, from equation (15), we obtain the forward scheme for 

the vKdV equations in the form 

 

𝑈̂𝑘+1 =
𝑈̂𝑘−1[1+𝑖𝛥𝜏𝛿(𝜏)(𝑠𝑝)3]−2𝑖𝛥𝜏𝜈(𝜏)𝑝𝑊̂

1−𝑖𝛥𝜏𝛿(𝜏)(𝑠𝑝)3
     (16) 

 

Equation (16) is a three-level scheme, in which to get the 

third level, 𝑈̂𝑘+1, one needs to know the first level, initial 

condition that shall subsequently refer it as 𝑈̂𝑘−1 and 

subsequent second level, 𝑈̂𝑘 .  The process is redo till the 

desired 𝑈̂𝑘+1 is obtained. In obtaining the second level, 𝑈̂𝑘 , 

the interval between 𝑈̂𝑘−1 and 𝑈̂𝑘 is divided by ten sub 

intervals. Hence, 𝛥𝜏 in (16) is substituted by 
𝛥𝜏

10
 in order to get 

the equation for 𝑈̂𝑘 as 

 

𝑈̂𝑘 =
𝑈̂𝑘−1[1+𝑖

𝛥𝜏

10
𝛿(𝜏)(𝑠𝑝)3]−2𝑖

𝛥𝜏

10
𝜈(𝜏)𝑝𝑊̂

1−𝑖
𝛥𝜏

10
𝛿(𝜏)(𝑠𝑝)3

     (17) 

 

Since the interval between 𝑈̂𝑘−1and 𝑈̂𝑘  is divided by ten sub 

intervals, equation (17) is evaluated for ten times to get 𝑈̂𝑘. 

The scheme was successfully tested by checking the vKdV 

equation with constant depth (Chan and Kerhoven 1985) and 

then followed by solving the equation using KdV solitary wave 

solution as initial condition with different types of depth.  

 

IV. RESULT AND DISCUSSION 
 

This study focuses in describing the case that the effect of 

background topography on a vKdV equation (5). We consider 

the formation and the propagation of solitary wave travelled for 

three different cases of depth. For the first case, we consider the 

depth is at a constant, where the vKdV is reduced to KdV. Next, 

we study the case for the solitary wave when the depth increase 

and decrease rapidly and slowly. We used the depth 

conditions from El et al. (2012) but this time using solitary 

wave solution as initial condition.  

 

1. Case 1: Constant Variable 
 

Firstly, we only consider the case when the solitary wave 

propagate over a flat bottom where there is no variable 

topography or when the depth is constant, = 1,h , the vKdV 

equation is reduced into KdV equation. The initial 

condition from (8) with initial amplitude =0 1a  is taken as 

 

𝑈(𝜉, 0) = 𝑠𝑒𝑐 ℎ2 (𝛤𝜉), 𝛤 = (
3

4
)

1

2
  (18) 

 

A solitary wave is a wave which propagates without any 

temporal evolution in shape or size. The wave propagation 

over a constant depth is shown below. 

Figure  1. Propagation of a solitary wave over a 

constant depth topography 

 

Figure 1 shows the wave propagation over a constant 

depth for every 𝜏 = 10. As we can see, the wave propagate 

steadily at a constant speed and maintain its shape 

following the definition of the soliton that must maintain 

its shape when it propagates at a constant speed. It is  

based on observations and experiments by Russell (1845). 

From equation (8), the constant speed for solitary wave is 

0.5.  The numerically determined velocities of the wave for 

each 𝜏 = 10is shown in Table 1. For the next cases, we will 

examine the formation of the solitary wave as it travels 

through the varying topography. 
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Table  1. Numerically determined velocities, 𝑐 

𝝉 𝝃 
𝒄 =

𝝃

𝝉
 

𝜟𝒄 

10 5.053710938 0.505371094 0.005371094 

20 10.03417969 0.501708984 0.001708984 

30 15.01464844 0.500488281 0.000488281 

40 20.14160156 0.503540039 0.003540039 

50 25.12207031 0.502441406 0.002441406 

60 30.10253906 0.501708984 0.001708984 

 

2. Case 2: Rapidly Varying Slope 
 

When the variable topography is taken into account, the wave 

propagation in various topography are shown. The detailed 

amplitude variations are seen determined by the rapidly 

changing bottom profile.  Figure 2 and 3 shows the wave 

propagation when the depth ℎ(𝜏)decreases rapidly. The depth 

profile is taken as  

 

ℎ(𝜏) = {
ℎ0 = 1.0 : 𝜏 < 50

ℎ1 = 0.64 : 𝜏 > 50
      (19) 

Figure  2. A solitary wave when the depth rapidly 

decreases for every 𝜏 = 10 

Figure  3. A soliton followed by an oscillatory tail fissions into 

two solitons at =100 when the depth rapidly decreases 

From Figure 2 and 3, we can see that the solitary wave 

followed by an oscillatory tail fission into two solitons. 

Figure 2 shows the wave begin to fission and the amplitude 

of the waves begin to increase from 1  to 1.3  after  𝜏 = 50 

following the depth condition while Figure 3 shows the 

wave propagate when 𝜏 = 100.  Here, a solitary wave 

disintegrate into several different sizes of solitary waves 

when it travels rapidly from a constant depth to another 

shallower constant depth, followed by small radiation tail 

depending on the depth variation. The process is called 

soliton fission and has been proven numerically and 

experimentally by Madsen and Mei (1969) while the 

analytical explanation was done by Tappert and Zabusky 

(1971) and Johnson (1973b). 

On the other hand, Figure 4 and 5 shows the formation of 

a solitary wave when it is propagated over a rapidly 

increasing depth region for every 𝜏 = 10and no fission of 

solitary wave is observed here. Instead, the solitary wave 

rapidly disintegrated and formed a radiation tail. The 

rapidly increasing depth profile is given as 

 

ℎ(𝜏) = {
ℎ0 = 1.0 : 𝜏 < 50
ℎ1 = 1.3 : 𝜏 > 50

        (20) 

 

Figure  4. A solitary wave when the depth increases 

rapidly for every 𝜏 = 10 
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Figure  5. The numerical solution at =100.  No soliton 

fission observed when a solitary wave propagates into rapidly 

deeper area when the depth rapidly decreases 

 

From the Figure 4, the amplitude of the solitary wave is begin 

to decrease from 1 to 0.8 after 𝜏 = 50 following the depth 

condition. Meanwhile the wave propagation when 𝜏 = 100 is 

shown in Figure 5. As we can see the amplitude of the wave is 

decrease when the depth is increase and vice versa. Both Figure 

3 and 5 are in a good agreement with previous research that at 

least one or more solitary waves are generated when propagates 

into a shallower water ℎ1 < ℎ0.  On the other hand, if the 

solitary wave propagates into a deeper region, ℎ1 > ℎ0, then no 

other solitons are formed and the solitary wave decays into 

radiation (Johnson, 1973b; Grimshaw, 2007).  

 

3. Case 3: Slowly Varying Slope 
 

Next, we will take the opposite situation, in which the 

coefficients 𝜈(𝜏) and 𝛿(𝜏) in (5) vary slowly in which the 

solitary wave is propagating over a slowly changing topography. 

The solitary wave generally deforms adiabatically and there is 

a non-adiabatic response in the form of an extended small-

amplitude secondary structure or a shelf, which can have a 

positive or negative polarity that travel behind the solitary wave 

(Grimshaw, 2007). From the depth profile, ℎ(𝜏)  

 

ℎ(𝜏) =

{

1 : 𝜏 < 100

(1 −
𝛼(𝜏−100)

2
)

2

: 100 < 𝜏 < 544.44, 𝛼 = 0.0009

0.64 : 𝜏 > 544.44

  (21) 

 

 

 

 

Figure  6. The amplitude of solitary wave increase 

adiabatically when propagating over a slowly shallower 

region for every =100  

Figure  7. A trailing shelf of positive polarity is formed 

behind the solitary wave as it propagates over a gradually 

shallower region 

 

Figure 6 shows the numerical simulation of the 

propagation of solitary wave over shallower region for every 

𝜏 = 100while Figure 7 shows the formation of a small-

amplitude trailing shelf behind the solitary wave as it 

propagates over the shallower area when 𝜏 = 600. On the 

other hand, Figure 8 and 9 shows the numerical simulation 

of the formation of solitary wave into a deeper region for 

every 𝜏 = 100  and for 𝜏 = 500. respectively. Here, the 

depth profile, ( )h  is taken as 

 

ℎ(𝜏) =

{

1 : 𝜏 < 100

(1 +
𝛼(𝜏−100)

2
)

2

: 100 < 𝜏 < 411.5, 𝛼 = 0.0009

1.3 : 𝜏 > 411.5

  (22) 
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Figure  8. The amplitude of a solitary wave propagating over 

a gradually decreasing slope for every 𝜏 = 100 decreases 

adiabatically

 

Figure  9. A trailing shelf of negative polarity is formed 

behind the solitary wave as it propagates over a gradually 

decreasing slope 

 

The propagation of a small-amplitude trailing shelf behind 

the solitary wave as it propagates over the deeper region can 

be observed in Figure 9 which is similarly happen when it 

propagate over the shallower region in Figure 7. Again, there 

is an excellent agreement with Grimshaw (2007). 

 

V. CONCLUSION 
 

The solitary wave propagation over a various background 

topography is tested. The configuration for the both rapidly 

and slowly changes of depth is studied. From the results, the 

solitary wave followed by an oscillatory tail has fission into 

few solitons as it travelled through rapidly decreasing depth. 

On the contrary, no soliton fission is observed when the wave 

propagates trough rapidly increasing depth. However, if the 

depth varies gradually, the solitary wave will disintegrate 

adiabatically and formed a trailing shelf. Similarly, for a 

slowly increasing slope, the trailing shelf will also disintegrate 

into secondary solitons, which is parallel to the process of 

soliton fission. 

From the numerical results, we can see that the proposed 

numerical method using the PS method has been successfully 

used to solve both single KdV equation and also vKdV 

equation. It can be concluded that PS method is one of a good 

method to solve KdV type of equations as the result is in a 

good agreement with the previous studies. 
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