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In this paper, we present a high-order compact scheme for the solution of the two-dimensional time 

fractional cable equation. The Caputo fractional derivative operator is used for the time derivative and a 

fourth-order compact Crank-Nicolson approximation is used for the space derivative to produce a high-

order compact implicit scheme. The proposed method will be shown to have the order of convergence
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+ . Finally, to show the accuracy of the proposed scheme, some numerical examples are provided. 
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I. INTRODUCTION 
 

In recent years, fractional Calculus has gained attention due to 

its applications in various fields of science and technology [1-

5]. To solve fractional differential equations different 

numerical and analytical methods are proposed for example, 

Finite difference method, Finite element method, Finite 

volume method, Adomian Decomposition method [6-10] etc. 

In the numerical methods, Finite difference method has seen 

more in the literature for solving fractional differential 

equations [11-24]. 

The fractional cable equation is derived from the Nernst-Planck 

equation which gives us a macroscopic approximation of the 

complicated microscopic motions of ions in nerve cells [25]. 

Different numerical methods are proposed for solving 

fractional cable equation for example, Liu et al. [26] solved one 

dimensional fractional cable equation by two implicit 

numerical methods with second-order spatial accuracy, Chen 

et al. [27] solved one dimensional non-linear variable order 

fractional cable equation with fourth order spatial accuracy,  

Zhang et al. [28] solved two- dimensional fractional cable 

equation by discrete-time orthogonal spline collocation 

methods, Balasim and Ali [29] used implicit schemes for the 

solution of two-dimensional fractional cable equation with 

second-order of spatial accuracy, and Bhrawy and Zaky [30] 

solved one and two dimensional fractional cable equation by 

spectral collocation method. However, computationally 

effective high order implicit numerical methods for solving 

two-dimensional fractional cable equations are still in their 

infancy. 

The purpose of this paper is to propose a compact high 

order numerical scheme for the solution of two-

dimensional fractional cable equation, which is fourth-

order accurate in space. The paper is organized as follows; 

formulations of the compact Crank Nicolson method is 

discussed in section 2, numerical examples and results are 

presented in section 3 and finally, the conclusion in section 

4. 

 

II. SCHEME FORMULATION 
 

The two dimensional time fractional cable equation is  

2 2
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Where 1 2 3 4( , ) (L ,L ) (L ,L ),x y    and 0 .t T    

Caputo fractional derivative is represented by 
0

C

t
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where (.)  represents gamma function and 

( , , )
'( , , )

u x y
u x y





=



. 

Since finite difference method is used for (1), so let 0k   

denoted time step and 0h   denoted space step, and

x yh h h= =  where xh  represents step size in x-direction and 

yh  represents step size in y-direction. Define ,x ih= ,y jh=

kt k= and
1

h
n

= , where { , 0,1,2,..., },i j n=  0,1,2,...,k l= and

n + . 

Consider a Taylor series expansion at point ( , , )i j kx y t  for 

( , , )i j ku x y t is  
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(3) 

If x = central difference operator is introduced such as 

2
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, , 1 , , 12k k k k
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by using the Taylor series expansion at point 
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k
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, 1

k
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as defined above in (2) and (3) 
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After simplifying (4) and (5), we get 
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Caputo approximation formula is used for the time fraction 

derivative [32] 
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And average of function ( , , )i j ku x y t  at point 
1

( , , )
2

i j k +  is   
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Since Crank Nicolson is the average of implicit and explicit 

schemes, so replacing k  by 
1

2
k +  in (6) and (7) and then 

substituting (6), (7), (8) and (9) in (1), we get  
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and simplifying above  
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After rearranging and simplify for 1

,uk
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+ , we get  
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Figure 1 represents the computational molecule of the 

high-order compact Crank Nicolson approximation 

equation (10). Figure 2 shows the nine point’s high-order 

compact high order scheme for (1). 

 

 

 

 

Figure 1. Computational molecule of high-order compact C-N scheme
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Figure  2. The Nine Grid Points involved in the Scheme 

 

III. NUMERICAL EXAMPLES 
 

To show the effectiveness of the proposed methods, we solved 

the two-dimensional time fractional cable equations with the 

help of PC with Core i7 Duo 3.40 GHz, 4GB of RAM with 

Window 7 operating system using Mathematica. The 

numerical examples were solved using a Successive over- 

relaxation (SOR) iterative method whilst using different time 

steps ( =  0.25, 0.125, 0.083, 0.062, 0.05, 0.034, 0.016) for 

different mesh sizes ( n = 4, 8, 12, 16, 20, 30, 60) with 

0    1t  . Also for convergence criteria, tolerance 5

10
−

=  

was used for the Maximum error ( L ). We calculated the 

computational orders of convergence for the proposed 

method with the help of 2C -order of convergence [33] 

𝐶2 − 𝑜𝑟𝑑𝑒𝑟 = 𝑙𝑜𝑔2 (
∥ 𝐿∞(16𝜏, 2ℎ) ∥

∥ 𝐿∞(𝜏, ℎ) ∥
) 

where  represents time step, h  represents space step and 

L represents maximum error, also

1 , 1 , ,max ,k k

i j N i j i jl
e U u


  −= − where 

,

k

i jU represents the exact 

solution while 
,

k

i ju represents the approximate solution. 

 

Example 1. Take the model problem [34] 
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Table 1. The number of iterations, Maximum error and 

Average error for example 1 when α = 0.5 

  n   Iteration Maximum 

error 

Average 

error 

0.25 4 48 6.2758 x 10-3 40705 x 10-3 

0.125 8 43 3.3344 x 10-3 17192 x 10-3 

0.083 12 38 1.7771 x 10-3 8.4579  x 10-

4 

0.062 16 42 1.0532 x 10-3 4.8274  x 10-

4 

0.05 20 45 6.9037 x 10-4 3.0799 x 10-4 

0.034 30 40 3.1521 x 10-4 1.3582 x 10-4 
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Table 2. The number of iterations, Maximum error and 

Average error for example 2 when α = 0.5 

  n   Iteration Maximum 

error 

Average error 

0.25 4 51 9.7939 x 10-3 5.0046 x10-3 

0.125 8 50 2.6916 x 10-3 1.1738 x10-3 

0.083 12 54 1.0956 x 10-3 5.2719 x10-4 

0.062 16 49 6.1573 x 10-4 3.3637 x10-4 

0.05 20 55 4.6884 x 10-4 2.4169 x10-4 

0.034 30 65 2.6788 x 10-4 1.3297 x10-4 

 

Table 3. The number of iterations, Maximum error and 

Average error for example 3 when α = 0.5 

  n   Iteration Maximum 

error 

Average error 

0.25 4 51 9.9002 x 10-4 6.2496 x 10-4 

0.125 8 51 5.0444 x 10-4 2.1042 x 10-4 

0.083 12 55 4.3689 x 10-4 2.0115 x 10-4  

0.062 16 50 3.2304 x 10-4 1.5009 x 10-4 

0.05 20 55 2.3948 x 10-4 1.1336 x 10-4 

0.034 30 67 1.3417 x 10-4 6.5307 x 10-5 

 

 

 

Figure 3. Absolute error exact-apprroximate=  for example 1  

where 
1

25
h = = and =0.5       

 

 

Figure 4. Absolute error exact-apprroximate=  for example 2 

where 
1

25
h = = and =0.5 

Figure 5. Absolute error exact-apprroximate=  for example 3 

where 
1

25
h = = and =0.5 

 

 

 

 

 

 

 

 

 

 

 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

39 

 

Table 4. 2C -order of convergence for example 2 

 

Table 5. 2C -order of convergence for example 3 

 

From table 1-3 compact nine point’s scheme shows that with 

increasing mesh size maximum and average error are 

reduced, which shows that reliability and accuracy of the 

proposed scheme. Figure 3-5 shows the 3-D graphs of 

Absolute error for example 1 and example 2 for the different 

values of , ,  and ,h    which shows the accuracy of the 

proposed scheme. In Table 4 and Table 5 2C − order of 

convergence is checked for the different values of 's  for 

example 2 and example 3 respectively; it is observed that the 

experimental spatial convergence order of the proposed 

scheme is approximately four. 

 

IV. CONCLUSION 

 

We have presented a new high-order compact Crank Nicolson 

scheme for the solution of two- dimensional time fractional 

cable equations. It is observed that the proposed scheme is 

accurate and reliable. The proposed scheme has the 

theoretical order of convergence 2 4( )O h − + . 2C − order of 

convergence for the different values of 's  shows that the 

spatial accuracy of the scheme agrees with the theoretical 

spatial order of convergence.  
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