High-order Compact Iterative Scheme for the Twodimensional Time Fractional Cable Equation

Muhammad Asim Khan^{1*}, Norhashidah Hj. Mohd Ali¹ and Alla Tareq Balasim²

¹School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

In this paper, we present a high-order compact scheme for the solution of the two-dimensional time fractional cable equation. The Caputo fractional derivative operator is used for the time derivative and a fourth-order compact Crank-Nicolson approximation is used for the space derivative to produce a high-order compact implicit scheme. The proposed method will be shown to have the order of convergence $O(\tau^{2-\alpha} + h^4)$. Finally, to show the accuracy of the proposed scheme, some numerical examples are provided.

Keywords: Two-dimensional fractional cable equation; Crank Nicolson; High-order compact scheme; Finite difference method.

I. INTRODUCTION

In recent years, fractional Calculus has gained attention due to its applications in various fields of science and technology [1-5]. To solve fractional differential equations different numerical and analytical methods are proposed for example, Finite difference method, Finite element method, Finite volume method, Adomian Decomposition method [6-10] etc. In the numerical methods, Finite difference method has seen more in the literature for solving fractional differential equations [11-24].

The fractional cable equation is derived from the Nernst-Planck equation which gives us a macroscopic approximation of the complicated microscopic motions of ions in nerve cells [25]. Different numerical methods are proposed for solving fractional cable equation for example, Liu et al. [26] solved one dimensional fractional cable equation by two implicit numerical methods with second-order spatial accuracy, Chen et al. [27] solved one dimensional non-linear variable order fractional cable equation with fourth order spatial accuracy, Zhang et al. [28] solved two- dimensional fractional cable equation by discrete-time orthogonal spline collocation methods, Balasim and Ali [29] used implicit schemes for the solution of two-dimensional fractional cable equation with second-order of spatial accuracy, and Bhrawy and Zaky [30] solved one and two dimensional fractional cable equation by spectral collocation method. However, computationally

effective high order implicit numerical methods for solving two-dimensional fractional cable equations are still in their infancy.

The purpose of this paper is to propose a compact high order numerical scheme for the solution of two-dimensional fractional cable equation, which is fourth-order accurate in space. The paper is organized as follows; formulations of the compact Crank Nicolson method is discussed in section 2, numerical examples and results are presented in section 3 and finally, the conclusion in section

II. SCHEME FORMULATION

The two dimensional time fractional cable equation is

$${}_{0}^{C}D_{t}^{\alpha}u(x,y,t) = \frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} - \mu_{0}u(x,y,t) + f(x,y,t), \tag{1}$$

Where $(x, y) \in (L_1, L_2) \times (L_3, L_4)$, and 0 < t < T.

Caputo fractional derivative is represented by ${}^{c}_{o}D^{*}_{i}u$ $(0 < \alpha < 1)$, which is defined by [31],

$${}_{0}^{C}D_{t}^{\alpha}u = \frac{1}{\Gamma(1-\alpha)}\int_{0}^{t}\frac{u'(x,y,\tau)}{(t-\tau)^{\alpha}}\partial\tau, \quad 0 < \alpha < 1,$$

² Department of Mathematics, College of Basic Educaion, University of Al-mustansiriyah, Iraq

^{*}Corresponding author

where $\Gamma(.)$ represents gamma function and

$$u'(x, y, \tau) = \frac{\partial u(x, y, \tau)}{\partial \tau}$$
.

Since finite difference method is used for (1), so let k > 0 denoted time step and h > 0 denoted space step, and $h = h_x = h_y$ where h_x represents step size in x-direction and h_y represents step size in y-direction. Define x = ih, y = jh, $t_k = \tau k$ and $h = \frac{1}{n}$, where $\{i, j = 0, 1, 2, ..., n\}$, k = 0, 1, 2, ..., l and $n \in \square^+$.

Consider a Taylor series expansion at point (x_i, y_j, t_k) for $u(x_i, y_j, t_k)$ is

$$u(x_{i} + h, y_{j}, t_{k}) = u_{i+1, j}^{k} = u_{i, j}^{k} + h \frac{\partial u}{\partial x} \Big|_{i, j}^{k} + \frac{h^{2}}{2} \frac{\partial u}{\partial x} \Big|_{i, j}^{k} + \frac{h^{3}}{6} \frac{\partial u}{\partial x} \Big|_{i, j}^{k} + \dots$$
 (2)

$$u(x_i, y_j + h, t_k) = u_{i,j+1}^k = u_{i,j}^k + h \frac{\partial u}{\partial y} \bigg|_{i,j}^k + \frac{h^2}{2} \frac{\partial u}{\partial y} \bigg|_{i,j}^k + \frac{h^3}{6} \frac{\partial u}{\partial y} \bigg|_{i,j}^k$$
+...

(3)

If δ_x = central difference operator is introduced such as $\delta_x^2 u_{i,j}^k = u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k$ and $\delta_y^2 u_{i,j}^k = u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k$, then by using the Taylor series expansion at point $u_{i+1,j}^k$ and $u_{i,j+1}^k$ as defined above in (2) and (3)

$$\delta_{x}^{2} u_{i,j}^{k} = \frac{\partial^{2} u}{\partial x^{2}} \Big|_{i,j}^{k} + \frac{h^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}} \Big|_{i,j}^{k} + \frac{h^{4}}{360} \frac{\partial^{6} u}{\partial x^{6}} \Big|_{i,j}^{k} + O(h^{6})$$
(4)

$$\delta_{y}^{2} u_{i,j}^{k} = \frac{\partial^{2} u}{\partial y^{2}} \Big|_{i,j}^{k} + \frac{h^{2}}{12} \frac{\partial^{4} u}{\partial y^{4}} \Big|_{i,j}^{k} + \frac{h^{4}}{360} \frac{\partial^{6} u}{\partial y^{6}} \Big|_{i,j}^{k} + O(h^{6})$$
(5)

After simplifying (4) and (5), we get

$$\frac{\partial^2 u}{\partial x^2}\Big|_{i,j}^k = \left(1 + \frac{1}{12}\delta_x^2\right)^{-1} \frac{\delta_x^2}{h^2} u_{i,j}^k + o(h^4)$$
 (6)

$$\left. \frac{\partial^2 u}{\partial y^2} \right|_{i,j}^k = \left(1 + \frac{1}{12} \delta_y^2 \right)^{-1} \frac{\delta_y^2}{h^2} u_{i,j}^k + o(h^4)$$
 (7)

Caputo approximation formula is used for the time fraction derivative [32]

$$\frac{\partial^{\alpha}}{\partial t^{\alpha}} u(\mathbf{x}_{i}, \mathbf{y}_{j}, \mathbf{t}_{k+\frac{1}{2}}) = a_{1} u_{i,j}^{k} + \sum_{s=1}^{k-1} (\mathbf{a}_{k-s+1} - \mathbf{a}_{k-s}) u_{i,j}^{s} - a_{s} u_{i,j}^{0}$$

$$+ \sigma \frac{(u_{i,j}^{k+1} + u_{i,j}^{k})}{2^{1-\alpha}} + o(\tau^{2-\alpha})$$

$$\sigma = \frac{1}{\tau^{\alpha} \Gamma(2 - \alpha)}, a_s = \sigma((s + \frac{1}{2})^{1 - \alpha} - (s - \frac{1}{2})^{1 - \alpha}), \ s = 0, 1, 2, ..., n.$$
(8)

And average of function $u(x_i, y_j, t_k)$ at point $(i, j, k + \frac{1}{2})$ is

$$u_{i,j}^{k+\frac{1}{2}} = \frac{u_{i,j}^{k+1} + u_{i,j}^{k}}{2}$$
 (9)

Since Crank Nicolson is the average of implicit and explicit schemes, so replacing k by $k + \frac{1}{2}$ in (6) and (7) and then substituting (6), (7), (8) and (9) in (1), we get

$$a_{1}u_{i,j}^{k} + \sum_{s=1}^{k-1} (a_{k-s+1} - a_{k-s})u_{i,j}^{s} - a_{s}u_{i,j}^{0} + \sigma \frac{(u_{i,j}^{k+1} + u_{i,j}^{k})}{2^{1-\alpha}} =$$

$$\left(1 + \frac{1}{12}\delta_{x}^{2}\right)^{-1} \frac{\delta_{x}^{2}}{h^{2}} u_{i,j}^{k+\frac{1}{2}} + \left(1 + \frac{1}{12}\delta_{y}^{2}\right)^{-1} \frac{\delta_{y}^{2}}{h^{2}} u_{i,j}^{k+\frac{1}{2}}$$

$$-\mu_{0}(\frac{u_{i,j}^{k+1} + u_{i,j}^{k}}{2}) + f_{i,j}^{k+\frac{1}{2}} + o(\tau^{3-\alpha} + h^{4})$$

$$\begin{split} a_{1}u_{i,j}^{k} + \sum_{s=1}^{k-1} (a_{k-s+1} - a_{k-s})u_{i,j}^{s} - a_{s}u_{i,j}^{0} + \sigma \frac{u_{i,j}^{k+1}}{2^{1-\alpha}} + \sigma \frac{u_{i,j}^{k}}{2^{1-\alpha}} = \\ \frac{1}{h^{2}} \left(\left(1 + \frac{1}{12} \delta_{x}^{2} \right)^{-1} \delta_{x}^{2} + \left(1 + \frac{1}{12} \delta_{y}^{2} \right)^{-1} \delta_{y}^{2} \right) u_{i,j}^{k+\frac{1}{2}} \\ -\mu_{0} \frac{u_{i,j}^{k+1}}{2} - \mu_{0} \frac{u_{i,j}^{k}}{2} + f_{i,j}^{k+\frac{1}{2}} \end{split}$$

and simplifying above

$$\begin{split} \sum_{s=1}^{k-1} (a_{k-s+1} - a_{k-s}) u_{i,j}^s &= \frac{1}{h^2} \Biggl(\Biggl(1 + \frac{1}{12} \delta_x^2 \Biggr)^{-1} \delta_x^2 + \Biggl(1 + \frac{1}{12} \delta_y^2 \Biggr)^{-1} \delta_y^2 \Biggr) u_{i,j}^{k+\frac{1}{2}} \\ &- (\frac{1}{2} + \frac{\sigma}{2^{1-\alpha}}) u_{i,j}^{k+1} - (\frac{1}{2} + (a_1 - \frac{\sigma}{2^{1-\alpha}})) u_{i,j}^{k+1} + f_{i,j}^{k+\frac{1}{2}} \end{split}$$

After rearranging and simplify for $\mathbf{u}_{i,j}^{k+1}$, we get

$$(2Gh^{2}+4A-4B)u_{i,j}^{k+1}=(A-2B)(u_{i+1,j}^{k+1}+u_{i-1,j}^{k+1}+u_{i,j+1}^{k+1}+u_{i,j-1}^{k+1})\\ +B(u_{i+1,j+1}^{k+1}+u_{i-1,j+1}^{k+1}+u_{i+1,j-1}^{k+1}+u_{i-1,j-1}^{k+1})+(4D-2Hh^{2}-4C)u_{i,j}^{k}\\ +(C-2D)(u_{i+1,j}^{k}+u_{i-1,j}^{k}+u_{i,j+1}^{k}+u_{i,j+1}^{k})+D(u_{i+1,j+1}^{k}+u_{i-1,j+1}^{k}+\\ u_{i+1,j-1}^{k}+u_{i-1,j-1}^{k})+\frac{25}{18}h^{2}f_{i,j}^{k+\frac{1}{2}}+\frac{5}{36}h^{2}(f_{i+1,j}^{k+\frac{1}{2}}+f_{i-1,j}^{k+\frac{1}{2}}+f_{i,j+1}^{k+\frac{1}{2}}+\\ f_{i,j-1}^{k+\frac{1}{2}})+\frac{h^{2}}{72}(f_{i+1,j+1}^{k+\frac{1}{2}}+f_{i-1,j+1}^{k+\frac{1}{2}}+f_{i-1,j-1}^{k+\frac{1}{2}}+f_{i-1,j-1}^{k+\frac{1}{2}})\\ +\sum_{s=1}^{k-1}(a_{k-s+1}-a_{k-s})(\frac{25}{18}h^{2}u_{i,j}^{s}+\frac{5}{36}h^{2}(u_{i+1,j}^{s}+u_{i-1,j}^{s}+u_{i,j+1}^{s}+u_{i,j+1}^{s}+\\ +u_{i,j-1}^{s})+\frac{h^{2}}{72}(u_{i+1,j+1}^{s}+u_{i-1,j+1}^{s}+u_{i+1,j-1}^{s}+u_{i-1,j-1}^{s}))$$

where
$$G = \frac{1}{2} + \frac{\sigma}{2^{1-\alpha}}$$
, $H = \frac{1}{2} + (a_1 - \frac{\sigma}{2^{1-\alpha}})$, $A = 1 - \frac{Gh^2}{6}$, $B = \frac{1}{6} - \frac{Gh^2}{72}$, $C = 1 - \frac{Hh^2}{6}$, $D = \frac{1}{6} - \frac{Hh^2}{72}$, $\sigma = \frac{1}{\tau^{\alpha}\Gamma(2-\alpha)}$ a $a_s = \sigma((s + \frac{1}{2})^{1-\alpha} - (s - \frac{1}{2})^{1-\alpha})$.

Figure 1 represents the computational molecule of the high-order compact Crank Nicolson approximation equation (10). Figure 2 shows the nine point's high-order compact high order scheme for (1).

Figure 1. Computational molecule of high-order compact C-N scheme

Figure 2. The Nine Grid Points involved in the Scheme

III. NUMERICAL EXAMPLES

To show the effectiveness of the proposed methods, we solved the two-dimensional time fractional cable equations with the help of PC with Core i7 Duo 3.40 GHz, 4GB of RAM with Window 7 operating system using Mathematica. The numerical examples were solved using a Successive overrelaxation (SOR) iterative method whilst using different time steps (τ = 0.25, 0.125, 0.083, 0.062, 0.05, 0.034, 0.016) for different mesh sizes (n = 4, 8, 12, 16, 20, 30, 60) with 0 < t < 1. Also for convergence criteria, tolerance ε = 10⁻³ was used for the Maximum error (L_{∞}). We calculated the computational orders of convergence for the proposed method with the help of C_2 -order of convergence [33]

$$C_2 - order = log_2 \left(\frac{\parallel L_{\infty}(16\tau, 2h) \parallel}{\parallel L_{\infty}(\tau, h) \parallel} \right)$$

where τ represents time step, h represents space step and L_{∞} represents maximum error, also $\|e\|_{l_{\infty}} = \max_{1 \le i, j \le N-1} \left| U_{i,j}^k - u_{i,j}^k \right|$, where $U_{i,j}^k$ represents the exact solution while $u_{i,j}^k$ represents the approximate solution.

Example 1. Take the model problem [34]

$$_{0}^{C}D_{t}^{\alpha}u=\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}-u+f(x,y,t),$$

where
$$f(x, y, t) = Sin(\pi x)Sin(\pi y)\left(t^2(1 + 2\pi^2) + \frac{2t^{2-\alpha}}{\Gamma(3-\alpha)}\right)$$
 and

having initial and boundary conditions

$$u(x, y, 0) = 0,$$

 $u(0, y, t) = 0,$ $u(x, 0, t) = 0,$
 $u(1, y, t) = 0,$ $u(x, 1, t) = 0,$

with the exact solution $u(x, y, t) = t^2 Sin(\pi x) Sin(\pi y)$

Example 2. [35]

$${}_{0}^{C}D_{t}^{\alpha}u=\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}-u+f(x,y,t),$$

where
$$f(x, y, t) = Sin(\pi(x+y))\left(t^{1+\alpha}(2\pi^2+1) + \frac{\pi t \csc(\pi\alpha)}{\Gamma(-1-\alpha)}\right)$$
 and

having initial and boundary conditions

$$u(x, y, 0) = 0,$$

$$u(0, y, t) = e^{y} t^{1+3\alpha} + t^{1+\alpha} \sin(\pi y), \quad u(x, 0, t) = e^{x} t^{1+3\alpha} + t^{1+\alpha} \sin(\pi x),$$

$$u(1, y, t) = e^{1+y} t^{1+3\alpha} + t^{1+\alpha} \sin(\pi (1+y)),$$

$$u(x, 1, t) = e^{1+x} t^{1+3\alpha} + t^{1+\alpha} \sin(\pi (x+1)),$$

with the exact solution $u(x, y, t) = t^{1+3\alpha}e^{x+y} + t^{1+\alpha}\sin(\pi(x+y))$

Example 3. [36]

$${}_{0}^{C}D_{t}^{\alpha}u = \frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} - u + e^{x+y} \left(\frac{2t^{2-\alpha}}{\Gamma(3-\alpha)} - t^{2}\right),$$

with initial and boundary conditions

$$u(x, y, 0) = 0,$$

 $u(0, y, t) = t^{2}e^{y}, \quad u(x, 0, t) = t^{2}e^{x},$
 $u(1, y, t) = t^{2}e^{1+y}, \quad u(x, 1, t) = t^{2}e^{x+1}.$

with exact solution $u(x, y, t) = t^2 e^{x+y}$.

Table 1. The number of iterations, Maximum error and $Average \ error \ for \ example \ 1 \ when \ \alpha = 0.5$

τ	n	Iteration	Maximum	Average	
			error	error	
0.25	4	48	6.2758 x 10 ⁻³	40705 x 10 ⁻³	
0.125	8	43	3.3344 x 10 ⁻³	17192 x 10 ⁻³	
0.083	12	38	1.7771 x 10 ⁻³	8.4579 x 10 ⁻	
				4	
0.062	16	42	1.0532 x 10 ⁻³	4.8274 x 10	
				4	
0.05	20	45	6.9037 x 10 ⁻⁴	3.0799 x 10 ⁻⁴	
0.034	30	40	3.1521 x 10 ⁻⁴	1.3582 x 10 ⁻⁴	

Table 2. The number of iterations, Maximum error and $Average \ error \ for \ example \ 2 \ when \ \alpha = 0.5$

τ	n	Iteration	Maximum	Average error
			error	
0.25	4	51	9.7939 x 10 ⁻³	5.0046 x10 ⁻³
0.125	8	50	2.6916 x 10 ⁻³	1.1738 x10 ⁻³
0.083	12	54	1.0956 x 10 ⁻³	5.2719 x10 ⁻⁴
0.062	16	49	6.1573 x 10 ⁻⁴	3.3637 x10 ⁻⁴
0.05	20	55	4.6884 x 10 ⁻⁴	2.4169 x10 ⁻⁴
0.034	30	65	2.6788 x 10 ⁻⁴	1.3297 x10 ⁻⁴

Figure 4. Absolute error = exact-apprroximate for example 2

Table 3. The number of iterations, Maximum error and $Average \ error \ for \ example \ 3 \ when \ \alpha = 0.5$

τ	n	Iteration	Maximum	Average error				
			error					
0.25	4	51	9.9002 x 10 ⁻⁴	6.2496 x 10 ⁻⁴				
0.125	8	51	5.0444 x 10 ⁻⁴	2.1042 x 10 ⁻⁴				
0.083	12	55	4.3689 x 10 ⁻⁴	2.0115 x 10 ⁻⁴				
0.062	16	50	3.2304 x 10 ⁻⁴	1.5009 x 10 ⁻⁴				
0.05	20	55	2.3948 x 10 ⁻⁴	1.1336 x 10 ⁻⁴				
0.034	30	67	1.3417 x 10 ⁻⁴	6.5307 x 10 ⁻⁵				

where
$$h = \tau = \frac{1}{25}$$
 and $\alpha = 0.5$

0.0004 0.0003 0.0002 0.0001 0.0000 5 10 15 20

Figure 5. Absolute error = |exact-apprroximate for example 3

where
$$h = \tau = \frac{1}{25}$$
 and $\alpha = 0.5$

Figure 3. Absolute error = exact-apprroximate for example 1

where
$$h = \tau = \frac{1}{25}$$
 and $\alpha = 0.5$

Table 4. C_2 -order of convergence for example 2

	$\alpha = 0.4$		$\alpha = 0.5$			
h/τ	Max error	C ₂ - order	h/τ	Max error	C ₂ - order	
$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	7.1737 x 10 ⁻²		$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	8.8157 x 10 ⁻²		
$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	5.6927 x 10 ⁻³	3.65	$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	6.3467 x 10 ⁻³	3.79	
	$\alpha = 0.6$			$\alpha = 0.7$	3	
h/τ	Max error	C ₂ - order	h / τ	Max error	C ₂ - order	
$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	1.0530 x 10 ⁻¹	220	$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	1.2451 x10 ⁻¹		
$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	7.2051 x 10 ⁻³	3.86	$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	8.3075 x 10 ⁻³	3.91	
$\alpha = 0.8$			$\alpha = 0.9$			
h/τ	Max error	C ₂ - order	h / τ	Max error	C ₂ - order	
$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	1.4784 x 10 ⁻¹		$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	1.7843 x 10 ⁻¹		
$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	9.7198 x 10 ⁻³	3.92	$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	1.1875 x 10 ⁻²	3.90	

Table 5. C_2 -order of convergence for example 3

	$\alpha = 0.1$			$\alpha = 0.4$	
h / τ	Max error	C ₂ - order	h/τ	Max error	C ₂ - order
$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	5.0916 x 10 ⁻⁴		$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	1.1470 x 10 ⁻³	
$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	2.1087 x 10 ⁻⁵	4.59	$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	4.8156 x 10 ⁻⁵	4.57
$h = \frac{1}{8}$ $\tau = \frac{1}{8}$	1.6115 x 10 ⁻⁴	: Lives	$h = \frac{1}{8}$ $\tau = \frac{1}{8}$	1.4206 x 10 ⁻⁴	- 111
$h = \frac{1}{16}$ $\tau = \frac{1}{128}$	1.7018 x 10 ⁻⁵	3.24	$h = \frac{1}{16}$ $\tau = \frac{1}{128}$	1.0974 x 10 ⁻⁵	3.69
-	$\alpha = 0.5$			$\alpha = 0.6$	100
h / τ	Max error	C ₂ - order	h/τ	Max error	C ₂ - order
$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	9.9002 x 10 ⁻⁴		$h = \frac{1}{4}$ $\tau = \frac{1}{4}$	9.9013 x10 ⁻⁴	
$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	5.7605 x 10 ⁻⁵	4.10	$h = \frac{1}{8}$ $\tau = \frac{1}{64}$	4.7605 x 10 ⁻⁵	4.37
$h = \frac{1}{8}$ $\tau = \frac{1}{8}$	5.0444 x 10 ⁻⁴		$h = \frac{1}{8}$ $\tau = \frac{1}{8}$	8.6195 x 10 ⁻⁴	
$h = \frac{1}{16}$ $\tau = \frac{1}{128}$	2.8096 x 10 ⁻⁵	4.16	$h = \frac{1}{16}$ $\tau = \frac{1}{128}$	3.8712 x 10 ⁻⁵	4.47

From table 1-3 compact nine point's scheme shows that with increasing mesh size maximum and average error are

reduced, which shows that reliability and accuracy of the proposed scheme. Figure 3-5 shows the 3-D graphs of Absolute error for example 1 and example 2 for the different values of h, τ , and α , which shows the accuracy of the proposed scheme. In Table 4 and Table 5 C_2 – order of convergence is checked for the different values of α 's for example 2 and example 3 respectively; it is observed that the experimental spatial convergence order of the proposed scheme is approximately four.

IV. CONCLUSION

We have presented a new high-order compact Crank Nicolson scheme for the solution of two-dimensional time fractional cable equations. It is observed that the proposed scheme is accurate and reliable. The proposed scheme has the theoretical order of convergence $O(\tau^{2-\alpha}+h^4)$. C_2 – order of convergence for the different values of α 's shows that the spatial accuracy of the scheme agrees with the theoretical spatial order of convergence.

V. ACKNOWLEDGEMENT

The authors acknowledge the Universiti Sains Malaysia Research University Individual (RUI) Grant Scheme (1001/PMATHS/8011016) for the support of this work.

VI. REFEREENCES

- [1] Dumitru B, Kai D and Enrico S 2012 Fractional calculus: models and numerical methods Vol. 3 World Scientific.
- [2] Rudolf H ed 2000 Applications of fractional calculus in physics World Scientific.
- [3] Jiang X and Qi H 2012, 'Mathematical and Theoretical Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative', Journal of Physics A:, 45, (48), pp.485101.
- [4] Jiang X, Xu M and Qi H 2010, 'The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes', *Nonlinear Analysis: Real World Applications*, 11 (1), pp.262-269.
- [5] Podlubny I 1999, Fractional differential equations of Mathematics in Science and Engineering, vol. 198.
- [6] Lin Y and Xu C 2007, 'Finite difference/spectral approximations for the time-fractional diffusion equation', *Journal of Computational Physics*, 225 (2), pp.1533-1552.
- [7] Jiang Y and Ma J 2011, 'High-order finite element methods for time-fractional partial differential equations', *Journal of Computational and Applied Mathematics*, 235 (11), pp.3285-3290.
- [8] Liu F, Zhuang P, Turner I, Burrage K and Anh V 2014, 'A new fractional finite volume method for solving the fractional diffusion equation', *Applied Mathematical Modelling*, 38, (15-16), pp.3871-3878.
- [9] Gresho P M, Chan S T, Lee R L and Upson C D 1984, 'A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations', Part 1: Theory. *International Journal* for Numerical Methods in Fluids, 4 (6), pp.557-598.
- [10] Momani S and obilba Z 2006, 'Analytical solution of time-fractional Navier-Stokes equation by Adomian decompostion method', Applied Mathematics and Computation, 177(2), pp.488-494.
- [11] Chen CM, Liu F and Burrage K 2008, 'Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation', *Applied*

- Mathematics and Computation, 198 (2), pp.754-769.
- [12] Chen C M, Liu F and Burrage K 2011, 'Numerical analysis for a variable-order nonlinear cable equation', *Journal of Computational and Applied Mathematics*, 236 (2), pp.209-224.
- [13] Cui M 2009, 'Compact finite difference method for the fractional diffusion equation', *Journal of Computational Physics*, 228 (20), pp.7792-7804.
- [14] Deng W 2007, 'Numerical algorithm for the time fractional Fokker–Planck equation', *Journal of Computational Physics* 227 (2), pp.1510-1522.
- [15] Deng W H and Hesthaven J S 2013, 'Analysis Local Discontinuous Galerkin methods for fractional diffusion equations', ESAIM: Mathematical Modelling and Numerical, 47 (6), pp.1845-1864.
- [16] Diethelm K, Ford N J, Freed A D and Luchko Y 2005, 'Algorithms for the fractional calculus: a selection of numerical methods', *Computer Methods in Applied Mechanics and Engineering*, 194, (6-8) pp.743-773.
- [17] Li C, Zhao Z and Chen Y 2011, 'Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion', Computers & Mathematics with Applications, 62 (3), pp.855-875.
- [18] Lin Y, Li X and Xu C 2011, 'Finite difference/spectral approximations for the fractional cable equation', *Mathematics of Computation*, 80 (275)' pp.1369-1396.
- [19] Liu F, Yang Q and Turner I 2011, 'Two new implicit numerical methods for the fractional cable equation',

 Journal of Computational and Nonlinear

 Dynamics, 6 (1), p.011009.
- [20] Meerschaert M M and Tadjeran C 2004, 'Finite difference approximations for fractional advection—dispersion flow equations', *Journal of Computational and Applied Mathematics*, 172 (1), pp.65-77.
- [21] Meerschaert M M, Scheffler H P and Tadjeran C 2006, 'Finite difference methods for twodimensional fractional dispersion equation', Journal of Computational Physics, 211 (1), pp.249-261.

- [22] Sun H, Chen W, Li C and Chen Y 2012, 'Finite difference schemes for variable-order time fractional diffusion equation', *International Journal of Bifurcation and Chaos*, 22 (04), p.1250085.
- [23] Sun, Z Z and Wu, X, 2006, 'A fully discrete difference scheme for a diffusion-wave system', *Applied Numerical Mathematics*, 56 (2), pp.193-209.
- [24] Yu B, Jiang X and Xu H, 2015, 'A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation', Numerical *Algorithms*, 68 (4), pp.923-950.
- [25] Langlands T A M, Henry B I and Wearne S L 2009, 'Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions', *Journal of Mathematical Biology*, 59 (6), p.761.
- [26] Liu F, Yang Q and Turner I 2011, 'Two new implicit numerical methods for the fractional cable equation',

 Journal of Computational and Nonlinear

 Dynamics, 6 (1), p.011009.
- [27] Chen C M, Liu F and Burrage K, 2011, 'Numerical analysis for a variable-order nonlinear cable equation', *Journal of Computational and Applied Mathematics*, 236 (2), pp.209-224.
- [28] Zhang H, Yang X and Han X 2014, 'Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation', *Computers & Mathematics with Applications*, 68 (12), pp.1710-1722.
- [29] Balasim A T and Ali N H M 2017, 'A comparative study of the point implicit schemes on solving the 2D time fractional cable equation', August AIP Conference Proceedings, Vol. 1870 No. 1, p. 040050.
- [30] Bhrawy A H and Zaky M A 2015, 'Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation', *Nonlinear Dynamics*, 80 (1-2), pp.101-116.
- [31] Zhuang P and Liu F 2007, 'Finite difference approximation for two-dimensional time fractional

- diffusion equation', Journal of Algorithms & Computational Technolog, 1(1), pp.1-16.
- [32] Balasim A T and Ali N H M 2015, 'A rotated cranknicolson iterative method for the solution of two-dimensional time-fractional diffusion equation', *Indian Journal of Science and Technology*, 8 (32).
- [33] Abbaszadeh, M and Mohebbi A 2013, 'A fourthorder compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term', *Computers* & *Mathematics with Applications*, 66 (8), pp.1345-1359.
- [34] Liu S, Wang J and Wei W 2017, 'Analysis of iterative learning control for a class of fractional differential equations', *Journal of Applied Mathematics and Computing*, 53 (1-2), pp.17-31.
- [35] Yu B and Jiang X 2016, 'Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation', *Journal of Scientific Computing*, 68 (1), pp.252-272.
- [36] Bhrawy A H and Zaky M A 2015, 'Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation', *Nonlinear Dynamics*, 80 (1-2), pp.101-116.