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To solve fuzzy partial differential equations (FPDE), we develop an approximate analytical method 

which is based on Optimal Homotopy Asymptotic Method (OHAM). The method with a Single 

convergent control parameter has been applied to Fuzzy Heat Equation (FHE) with fuzzy initial 

condition. An illustrative example has been given to demonstrate the accuracy, efficiency, and 

flexibility of the proposed method. 
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I. INTRODUCTION 
 

Fuzzy differential equations (FDEs) form a major portion of a 

fuzzy analysis theory and are a useful tool to describe a 

dynamic phenomenon if its nature and data is vague (Ali et. 

al., 2018). The recurrent participating in the modeling of 

numerous industrialized applications, such as electromagnetic 

fields, dynamics of structures, biomechanics, heat transfer, 

and many others, brought fuzzy partial differential equations 

(FPDEs) to be under consideration by the scientific, and 

engineering communities. Yielding a demand on finding 

methods to solve these equations since the exact solutions are 

rarely available. The numerical and approximate-analytical 

methods for FPDEs have been attempted by numerous authors 

like (Allahviranloo, 2002; Olver, 2014; Jameel et. al., 2016; 

Nemati & Matinfar, 2008; Corveleyn et. al., 2010; Farajzadeh 

et. al., 2010; Mikaeilvand & Khakrangin, 2012; Behzadi, 2013; 

Pirzada, & Vakaskar, 2015) yet the field still lacking for further 

accurate and capable solutions.  

In this work, we present a method based on OHAM with a 

Single Control Parameter to obtain approximate-analytical 

solution for FHE with fuzzy initial condition. The outline of 

this paper is as follows: Section II will show the development 

of OHAM for solving FPDEs. Further details of the fuzzy heat 

equation will be presented in Section III. In Section IV the 

capabilities of the developed OHAM is illustrated through 

application with a Single Control Parameter for solving fuzzy 

heat equation, and finally in Section V, and VI the results 

and conclusion of the work. 

 

II. OHAM MATHEMATICAL 
FORMULATION 

 

The OHAM has been applied to derive an approximate-

analytical solution of linear and nonlinear time dependent 

PDEs in (Hussian & Suhhiem, 2016; Iqbal et. al. 2010). In 

this section, it will be applied to the subsequent FPDE, 

ℒ(𝑣̃(𝑠, 𝑡; 𝛼)) + 𝒩(𝑣̃(𝑠, 𝑡; 𝛼)) + ℱ̃(𝑠, 𝑡; 𝛼) = 0  𝑠 ∈ Ω  (1) 

ℬ (𝑣̃(𝑠, 𝑡; 𝛼),
𝜕𝑣̃(𝑠,𝑡;𝛼)

𝜕𝑡
) = 0  𝑠 ∈ Γ 

where 𝑣̃(𝑠, 𝑡; 𝛼)  is an unknown fuzzy function with 

independent variables 𝑠  and time variable 𝑡 , ℒ  is a linear 

operator, 𝒩  is a nonlinear operator, ℱ̃(𝑠, 𝑡; 𝛼) is a known 

fuzzy source of nonhomogeneity, the boundary operator is 

ℬ, and Γ is the boundary of the domain Ω. First, construct a 

family of equations, 

(1 − 𝑝) [ℒ (Φ̃(𝑠, 𝑡; 𝛼; 𝑝)) + ℱ̃(𝑠, 𝑡; 𝛼)]     (2) 

= ℋ̃(𝛼; 𝑝) [ℒ (Φ̃(𝑠, 𝑡; 𝛼; 𝑝)) + 𝒩 (Φ̃(𝑠, 𝑡; 𝛼; 𝑝)) + ℱ̃(𝑠, 𝑡; 𝛼)] 

ℬ (𝛷̃(𝑠, 𝑡; 𝛼; 𝑝),
𝜕𝛷̃(𝑠,𝑡;𝛼;𝑝)

𝜕𝑡
) = 0  

where 𝑝 ∈ [0,1]  is an embedding parameter, ℋ̃(𝛼; 𝑝)  is a 

nonzero auxiliary fuzzy function for 𝑝 ≠ 0, and ℋ̃(𝛼; 0) = 0, 

𝛷̃(𝑠, 𝑡; 𝛼; 𝑝) is an unknown fuzzy function. Apparently, once 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

43 

 

𝑝 = 0 and 𝑝 = 1, 

𝛷̃(𝑠, 𝑡; 𝛼; 0) = 𝑣̃0(𝑠, 𝑡; 𝛼) (3) 

𝛷̃(𝑠, 𝑡; 𝛼; 1) = 𝑣̃(𝑠, 𝑡; 𝛼). (4) 

Consequently, as 𝑝 escalates in the interval (0,1), 𝛷̃(𝑠, 𝑡; 𝛼; 𝑝) 

changes from 𝑣0(𝑠, 𝑡) to 𝑣(𝑠, 𝑡). Furthermore, the zeroth order 

problem 𝑣̃0(𝑠, 𝑡; 𝛼)  is acquired from equation (2) for 𝑝 = 0, 

ℒ(𝑣̃0(𝑠, 𝑡; 𝛼) ) + ℱ̃(𝑠, 𝑡; 𝛼) = 0 (5) 

ℬ (𝑣̃0(𝑠, 𝑡; 𝛼),
𝜕𝑣̃0(𝑠,𝑡;𝛼)

𝜕𝑡
) = 0  

Now, the auxiliary fuzzy function ℋ̃(𝛼; 𝑝) is selected from the 

formula, 

ℋ̃(𝛼; 𝑝) = ∑ 𝒞̃𝑖(𝛼)∞
𝑖=1 𝑝𝑖 = [∑ 𝒞𝑖(𝛼)∞

𝑖=1 𝑝𝑖 , ∑ 𝒞𝑖(𝛼)∞
𝑖=1 𝑝𝑖] (6) 

the fuzzy constants 𝒞̃1, 𝐶̃2, … should be identified for each 𝛼-

level. Consider the solution of eq. (2), 

𝛷̃(𝑠, 𝑡, 𝒞̃𝑖; 𝛼; 𝑝) = 𝑣̃0(𝑠, 𝑡; 𝛼) + ∑ 𝑣̃𝑘(𝑠, 𝑡, 𝒞̃𝑖; 𝛼)𝑝𝑘
𝑘≥1  (7)     

where = 1,2, ⋯ .  

Comparing the coefficients of identical powers of 𝑝  after 

substituting equation (7) into equation (2), gives the governing 

equation of 𝑣̃𝑗(𝑠, 𝑡; 𝛼), 

ℒ(𝑣̃1(𝑠, 𝑡; 𝛼) ) = 𝒞̃1(𝛼)𝒩0(𝑣̃0(𝑠, 𝑡; 𝛼)) (8) 

ℬ (𝑣̃1(𝑠, 𝑡; 𝛼),
𝜕𝑣̃1(𝑠,𝑡;𝛼)

𝜕𝑡
) = 0  

ℒ(𝑣̃𝑗(𝑠, 𝑡; 𝛼) − 𝑣̃𝑗−1(𝑠, 𝑡; 𝛼) ) = 𝒞̃𝑗(𝛼)𝒩0(𝑣̃0(𝑠, 𝑡; 𝛼)) (9) 

+ ∑ 𝒞̃𝑖(𝛼) [ℒ (𝑣̃𝑗−𝑖(𝑠, 𝑡; 𝛼)) +
𝑗−1
𝑖=1

𝒩𝑗−𝑖 (𝑣̃0(𝑠, 𝑡; 𝛼), 𝑣̃1(𝑠, 𝑡; 𝛼), ⋯ , 𝑣̃𝑗−1(𝑠, 𝑡; 𝛼))]  

ℬ (𝑣̃𝑗(𝑠, 𝑡; 𝛼),
𝜕𝑣̃𝑗(𝑠,𝑡;𝛼)

𝜕𝑡
) = 0 𝑗 = 2,3, ⋯  

where 𝒩𝑚(𝑣̃0(𝑠, 𝑡; 𝛼), 𝑣̃1(𝑠, 𝑡; 𝛼), ⋯ , 𝑣̃𝑚(𝑠, 𝑡; 𝛼)) is the coefficient 

of 𝑝𝑚, acquired by expanding in series 𝒩[𝜙(𝑠, 𝑡, 𝒞̃𝑖; 𝛼; 𝑝)] with 

respect to 𝑝, 

𝒩[𝜙(𝑠, 𝑡, 𝒞̃𝑖; 𝛼; 𝑝)] = 𝒩0(𝑣̃0(𝑠, 𝑡; 𝛼)) (10) 

+ ∑ 𝒩𝑚(𝑣̃0(𝑠, 𝑡; 𝛼), 𝑣̃1(𝑠, 𝑡; 𝛼), ⋯ , 𝑣̃𝑚(𝑠, 𝑡; 𝛼))𝑝𝑚
𝑚≥1   

where 𝛷̃(𝑠, 𝑡, 𝒞̃𝑖; 𝛼; 𝑝) is specified by equation (7). 

An emphasis has to be given to the fact that 𝑣𝑘(𝑥) for 𝑘 ≥ 0 are 

governed by the linear equations (5), (8) and (9) with the 

original problem’s linear boundary conditions. The 

convergence of the series (7) depends upon the auxiliary 

constants 𝒞̃1, 𝐶̃2, … . If it is convergent at 𝑝 = 1, then 

𝑣̃(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼) = 𝑣̃0(𝑠, 𝑡; 𝛼) + ∑ 𝑣𝑘(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼)𝑘≥1  (11)  

The approximate solution of equation (1) can be specified in the 

form, 

𝑣̃
(𝑚)

(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼) = 𝑣̃0(𝑠, 𝑡; 𝛼) + ∑ 𝑣̃𝑘(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼)𝑚
𝑘=1        (12) 

where 𝑖 = 1,2, ⋯ 𝑚.  

Substituting equation (12) into equation (1), results in the 

following expression of the residual, 

𝜌̃(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼) =      (13) 

ℒ ( 𝑣̃
(𝑚)

(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼)) + 𝒩 ( 𝑣̃
(𝑚)

(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼)) + ℱ̃(𝑠, 𝑡; 𝛼)  

where 𝑖 = 1,2, ⋯ 𝑚.  

If 𝜌̃(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼) = 0  then 𝑣̃
(𝑚)

(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼)  is the exact 

solution, and this does not occur for nonlinear problems. 

According to Idrees et. al., 2012, the least squares method 

can be employed here to minimize the functional, 

δ ( 𝒞̃𝑖(𝛼)) = ∬ 𝜌̃2(𝑠, 𝑡, 𝒞̃𝑖(𝛼); 𝛼) 𝑑𝑠 𝑑𝑡
𝑏

𝑎
     (14) 

where 𝑎 and 𝑏 are values dependent on the boundaries of 

the problem. The unknown constants 𝒞̃𝑖(𝛼) (𝑖 = 1,2, ⋯ 𝑚) 

can be identified optimally for error minimization from the 

conditions, 

𝜕𝛿

𝜕𝒞̃1(𝛼)
=

𝜕𝛿

𝜕𝒞̃2(𝛼)
= ⋯ =

𝜕𝛿

𝜕𝒞̃𝑚(𝛼)
= 0    (15) 

the approximate solution (of order m) (12) is well-

determined with these constants known.  

 

III. FUZZY HEAT 
EQUATION 

 
Consider the model and information available by 

Allahviranloo, 2002 and Altaie et. al., 2017, a general 

model for the fuzzy heat equation will be written and 

analyzed using the properties of the fuzzy set theory. 

Consider 0 < 𝑥 < 𝑙 , 0 < 𝑡 < 𝑇, 

𝜕

𝜕𝑡
𝑣̃(𝑥, 𝑡) = Η̃(𝑥)

𝜕2

𝜕𝑥2 𝑣̃(𝑥, 𝑡) + Λ̃(𝑥, 𝑡)    (16) 

𝑣̃(𝑥, 0) = 𝜑̃(𝑥) 0 ≤ 𝑥 ≤ 𝑙 

In this model, 𝑣̃(𝑥, 𝑡) is a fuzzy function with crisp variables 

𝑥 and 𝑡. Furthermore, 
𝜕

𝜕𝑡
𝑣̃(𝑥, 𝑡), 

𝜕2

𝜕𝑥2 𝑣̃(𝑥, 𝑡) are fuzzy partial 

derivatives in the Hukuhara sense. In addition,  𝛨̃(𝑥) =

𝛾̃1Η(𝑥) is a fuzzy function of crisp variables represent the 

thermal diffusivity, Λ̃(𝑥, 𝑡) = 𝛾̃2Λ(𝑥, 𝑡) is a fuzzy function of 

crisp variables as a nonhomogeneous term. Moreover, 

𝑣̃(𝑥, 0) is the fuzzy initial condition with fuzzy function of 

crisp variables 𝜑̃(𝑥) = 𝛾̃3𝜑(𝑥). Finally,  𝛾̃1, 𝛾̃2, 𝛾̃3 are convex 

fuzzy numbers, and Η(𝑥),  Λ(𝑥, 𝑡), 𝜑(𝑥) are crisp functions. 

The defuzzification of this model for all 𝛼 ∈ [0,1] as follows, 

[𝑣̃(𝑥, 𝑡)]𝛼 = [𝑣(𝑥, 𝑡; 𝛼), 𝑣(𝑥, 𝑡; 𝛼)], 
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[
𝜕

𝜕𝑡
𝑣̃(𝑥, 𝑡)]

𝛼
= [

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼),

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼)], 

[
𝜕2

𝜕𝑥2 𝑣̃(𝑥, 𝑡)]
𝛼

= [
𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼),
𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼)],  

[𝛨(𝑥)]
𝛼

= [𝛨(𝑥; 𝛼), 𝛨(𝑥; 𝛼)], 𝛾̃1 = [𝛾1(𝛼), 𝛾1
(𝛼)], 

 [𝛬̃(𝑥, 𝑡)]
𝛼

= [𝛬(𝑥, 𝑡; 𝛼), 𝛬(𝑥, 𝑡; 𝛼)], 𝛾̃2 = [𝛾2(𝛼), 𝛾2
(𝛼)],  

[𝑢̃(𝑥, 0)]𝛼 = [𝑢(𝑥, 0; 𝛼), 𝑢(𝑥, 0; 𝛼)] , [𝜑̃(𝑥)]𝛼 = [𝜑(𝑥; 𝛼), 𝜑̅(𝑥; 𝛼)] , 

𝛾̃3 = [𝛾3(𝛼), 𝛾3
(𝛼)] 

Now, using the extension principle, the membership function 

defined as follows, 

𝑣(𝑥, 𝑡; 𝛼) = 𝑚𝑖𝑛{𝑣̃(𝑡, 𝜇(𝛼))|𝜇̃(𝛼) ∈ 𝑣̃(𝑥, 𝑡; 𝛼)} 

𝑣(𝑥, 𝑡; 𝛼) = 𝑚𝑎𝑥{𝑣̃(𝑡, 𝜇(𝛼))|𝜇(𝛼) ∈ 𝑣̃(𝑥, 𝑡; 𝛼)} 

Hence, we can rewrite equation (16) for 0 < 𝑥 < 𝑙 , 0 < 𝑡 < 𝑇 

and 𝛼 ∈ [0,1] as, 

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼) − 𝛾1(𝛼)𝛨(𝑥) 

𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼) − 𝛾2(𝛼)𝛬(𝑥, 𝑡) = 0 (17a) 

𝑣(𝑥, 0; 𝛼) = 𝛾3(𝛼)𝜑(𝑥)  

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼) − 𝛾1

(𝛼)𝛨(𝑥)
𝜕2

𝜕𝑥2
𝑣(𝑥, 𝑡; 𝛼) − 𝛾2

(𝛼)𝛬(𝑥, 𝑡) = 0  (17b) 

𝑣(𝑥, 0; 𝛼) = 𝛾
3

(𝛼)𝜑(𝑥) 

  

IV. ILLUSTRATIVE EXAMPLE 

 
Applying OHAM with a single control parameter have been 

used by Jameel et. al., 2016,  for solving Fuzzy Ordinary 

Differential Equations. Here a tenth order solution with single 

control parameter have been applied to solve Fuzzy Heat 

equation with fuzzy initial condition. Consider the following 

fuzzy heat equation with the given initial condition, and 0 <

𝑥 < 1 , 0 < 𝑡 < 1, 

𝜕

𝜕𝑡
𝑣̃(𝑥, 𝑡) =

1

2
𝑥2 𝜕2

𝜕𝑥2 𝑣̃(𝑥, 𝑡) (18) 

𝑢̃(𝑥, 0) = 𝜑̃(𝑥) = 𝛾̃3(𝛼)𝑥2 0 ≤ 𝑥 ≤ 1 

where 𝛾̃3(𝛼) = [𝛾(𝛼), 𝛾(𝛼)] = [𝛼 − 1,1 − 𝛼].  

Now, the defuzzification of this model for all 𝛼 ∈ [0,1], 

[𝑣̃(𝑥, 𝑡)]𝛼 = [𝑣(𝑥, 𝑡; 𝛼), 𝑣(𝑥, 𝑡; 𝛼)],  

[
𝜕

𝜕𝑡
𝑣̃(𝑥, 𝑡)]

𝛼
= [

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼),

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼)], 

[
𝜕2

𝜕𝑥2 𝑣̃(𝑥, 𝑡)]
𝛼

= [
𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼),
𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼)],  

[𝛨(𝑥)]
𝛼

=
1

2
𝑥2, 

[𝑣̃(𝑥, 0)]𝛼 = [𝑣(𝑥, 0; 𝛼), 𝑣(𝑥, 0; 𝛼)]=[(𝛼 − 1)𝑥2, (1 − 𝛼)𝑥2] 

Hence, we can rewrite equation (18) for 0 < 𝑥 < 1, 0 < 𝑡 < 1 

and 𝛼 ∈ [0,1] as, 

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼) −

1

2
𝑥2  

𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼) = 0                                      (19a) 

𝑣(𝑥, 0; 𝛼) = (𝛼 − 1)𝑥2  

𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼) −

1

2
𝑥2 𝜕2

𝜕𝑥2
𝑣(𝑥, 𝑡; 𝛼) = 0                                        (19b) 

𝑣(𝑥, 0; 𝛼) = (1 − 𝛼)𝑥2 

Applying the method developed in section II with OHAM 

solution of the 10th order and single convergent control 

parameters, and using equation (19a) and (19b), leads to the 

following for the lower problem, 

ℒ (𝑣(𝑥, 𝑡; 𝛼)) =
𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼),  (20a) 

𝒩 (𝑣(𝑥, 𝑡; 𝛼)) = −
1

2
𝑥2  

𝜕2

𝜕𝑥2 𝑣(𝑥, 𝑡; 𝛼),   

𝑣(𝑥, 0; 𝛼) = (𝛼 − 1)𝑥2 

also, the following for the upper problem, 

ℒ(𝑣(𝑥, 𝑡; 𝛼)) =
𝜕

𝜕𝑡
𝑣(𝑥, 𝑡; 𝛼),  (20b) 

𝒩(𝑣(𝑥, 𝑡; 𝛼)) = −
1

2
𝑥2 𝜕2

𝜕𝑥2
𝑣(𝑥, 𝑡; 𝛼), 

𝑣(𝑥, 0; 𝛼) = (1 − 𝛼)𝑥2 

The 0th order problem is, 

𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼) = 0   (21a) 

𝑣0(𝑥, 0; 𝛼) = (𝛼 − 1)𝑥2 

𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼) = 0  (21b) 

𝑣0(𝑥, 0; 𝛼) = (1 − 𝛼)𝑥2 

The 1st order problem, 

𝜕

𝜕𝑡
𝑣1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼)  (22a) 

= 𝒞1(𝛼) [
𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼) −

1

2
𝑥2 𝜕2

𝜕𝑥2 𝑣0(𝑥, 𝑡; 𝛼)]  

𝑣1(𝑥, 0; 𝛼) = 0  

𝜕

𝜕𝑡
𝑣1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼)  (22b) 

= 𝒞1(𝛼) [
𝜕

𝜕𝑡
𝑣0(𝑥, 𝑡; 𝛼) −

1

2
𝑥2 𝜕2

𝜕𝑥2 𝑣0(𝑥, 𝑡; 𝛼)]  

𝑣1(𝑥, 0; 𝛼) = 0  

The nth problem is, 

𝜕

𝜕𝑡
𝑣𝑛(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

𝜕

𝜕𝑡
𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) 

= 𝒞1(𝛼) [
𝜕

𝜕𝑡
𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

1

2
𝑥2 𝜕2

𝜕𝑥2 𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)]   (23a) 

𝑣𝑛(𝑥, 0; 𝛼) = 0 

𝜕

𝜕𝑡
𝑣𝑛(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

𝜕

𝜕𝑡
𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) 

= 𝒞1(𝛼) [
𝜕

𝜕𝑡
𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) −

1

2
𝑥2 𝜕2

𝜕𝑥2 𝑣𝑛−1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)]   (23b) 
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𝑣𝑛(𝑥, 0; 𝛼) = 0  

where 𝑛 = 2,3, … ,10. 

 

The solution of equation (19a) and (19b) can be determined 

approximately as, 

𝑣
(10)

(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)  (24a) 

= 𝑣0(𝑥, 𝑡; 𝛼) + 𝑣1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣2(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣3(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣4(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣5(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣6(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣7(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣8(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣9(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣10(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)    

𝑣
(10)

(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)  (24b) 

= 𝑣0(𝑥, 𝑡; 𝛼) + 𝑣1(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣2(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣3(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣4(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣5(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣6(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣7(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣8(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) +

𝑣9(𝑥, 𝑡, 𝒞1(𝛼); 𝛼) + 𝑣10(𝑥, 𝑡, 𝒞1(𝛼); 𝛼)  

Now, we use the Least Squares Method to evaluate the 

constants  𝒞1(𝛼), and 𝒞1(𝛼) for each selected 𝛼 ∈ [0,1].  

 

V. RESULT 
 

The results listed in table 1 & 2, shows a 10th order OHAM 

solution, the single convergence control parameter value, and 

accuracy. 

 

Table 1. lower solution and accuracy of 10th order OHAM with 

single convergence control parameter at t = 0.6, x = 0.4 for all 

α ∈ [0, 1) 

𝜶 𝓒𝟏 𝒗𝑶𝑯𝑨𝑴 𝑬𝑶𝑯𝑨𝑴 

0 -1.033685 -0.29153901 1.1157741×10-14 

0.2 -0.98034974 -0.23323121 1.7693896×10-10 

0.4 -1.4325154 -0.17492163 1.7751545×10-6 

0.6 -0.98034974 -0.1166156 8.8469482×10-11 

0.8 -0.93574959 -0.0583078 1.6842284×10-9 

0.9 -1.4259717 -0.00029154 2.4648947×10-9 

  

 

Table 2. upper solution and accuracy of 10th order OHAM 

with single convergence control parameter at 𝑡 = 0.6, 𝑥 =

0.4 for all 𝛼 ∈ [0, 1) 

𝜶 𝓒𝟏 𝒗𝑶𝑯𝑨𝑴 𝑬𝑶𝑯𝑨𝑴 

0 -1.033685 0.29153901 1.1157741×10-14 

0.2 -0.98034974 0.23323121 1.7693896×10-10 

0.4 -1.4325154 0.17492163 1.7751545×10-6 

0.6 -0.98034974 0.1166156 8.8469482×10-11 

0.8 -0.93574959 0.0583078 1.6842284×10-9 

0.9 -1.4259717 0.00029154 2.4648947×10-9 

 

 

Figure 1. The 10th order OHAM solution with single 

convergence control parameter and exact solution at at 

𝑥 = 0.4,  𝑡 = 0.6, for all 𝛼 ∈ [0, 1) 
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Figure 2. The OHAM lower and upper solution at 

𝛼 = 0.6 

 

 

 

Figure 3. The OHAM lower and upper solution 

error at 𝛼 = 0.6 

 

VI. CONCLUSION 
 

This research has met its key objective by developing 

OHAM to derive an approximate-analytical solution of 

FPDEs, and then applying it with single convergent 

control parameter to obtain the solution to FHE, figure 2.  

The results as shown in table 1 & 2, in addition to figures 1 

& 3, exhibited a high accuracy, less complexity, and 

computational time, which is very helpful for solving 

FPDEs in scientific and engineering applications.  

The solution as shown by figure 1, acquired have the shape 

of triangular fuzzy numbers and hence the developed 

method fulfil the fuzzy numbers properties. 
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