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A signature scheme consists of three algorithms, which are, the key generation, signing and verification 

algorithms used for verifying the authenticity of digital messages or documents. Most existing signature 

schemes are constructed based on number theory based hard problems such as integer factorization 

problem, discrete logarithm problem, quadratic residue problem and etc. Furthermore, conventional 

signature schemes are mostly defined over abelian group deal to engineer preference. Our main objective 

is to construct a new signature scheme 𝜋 by generalized the scheme to non abelian group. More precisely, 

we will use the dihedral group 𝐷2𝑝𝑞 of order 2𝑝𝑞, where 𝑝 and 𝑞 are two distinct large primes. A new hard 

problem known as the exhaustion number search problem is introduced which relies on the difficulty of 

computing the exhaustion set in 𝐷2𝑝𝑞 . We show that the exhaustion number set problem is 

computationally equivalent to the well-known subset sum problem originated from the Knapsack set 

problem. Furthermore, we construct a new family of hash function ℎ which is relied on the Cayley graph 

of the maximal cyclic subgroup ⟨ 𝑟 ⟩ of 𝐷2𝑝𝑞. Together with ℎ, we will show that the proposed scheme 𝜋 is 

secure against existential forgery under an adaptive chosen message attack.  
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I. INTRODUCTION 

 

Many public key encryption schemes are remained secure 

based on the hardness of some mathematical problems in a 

large and finite abelian group (more precisely, finite cyclic 

groups) (Fiat et al. 1986; Merkle et al. 1978). Some well studied 

hard problems that have been used are the integer factorization 

and discrete logarithm problems (Rivest et al. 1978; Zhang et 

al. 2004). However, deal to Shor's algorithm (Shor 1997), many 

conventional number theories based hard problems become 

feasible to solve. Hence, alternative hard problems must be 

proposed which avoid the attack by Shor's algorithm. In recent 

year, there are plenty of code-based, lattice-based and hash-

based cryptographic primitives being constructed which might 

resist the Shor's attack. There are plenty of claims stated that 

the advent of quantum computers may cause many well-known 

hard problems used in various signature schemes to become 

vulnerable to various attacks. In this paper, we investigate an 

alternative direction, which is known as the group-based 

cryptography. In short, this direction of studies arise deal to the 

attempt to generalize current cryptographic primitives defined 

over abelian group to non abelian group (Ansel et al. 1999; 

Mahalanbis 2006; Paeng et al. 2001).  

One of the most frequently used group-based hard 

problem is the conjugacy search problem (Ansel et al. 2001; 

Dehornoy 2004; Ko et al. 2000; Lee 2004). It is well known 

that this problem has a solution because one can recursively 

enumerate all conjugates of a given element, but the 

enumeration process can be very time consuming. Specific 

groups may or may not admit more efficient solutions, so 

the choice of the platform group is importance to ensure the 

constructed scheme is secure (Eick et al. 2008; Grigoriev et 

al. 2005}. For our construction, we choose the dihedral 

group as our platform group, and hence the security of the 

scheme is based on finding conjugator of certain elements 

in dihedral group. Although, conjugacy classes are well 

studies for dihedral group, we choose dihedral group for 

two main reasons: 

1. the underlying algebraic properties of dihedral 

group is well studies; and 

2. the constructed scheme using the dihedral group 

can be generalized easily to other groups such as 
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quasi-dihedral group, extra special 𝑝 − group, 

nilpotent group and etc. 

 

Cryptographic primitives constructed by using non abelian 

group is not a new idea. Over the last decade, there has been an 

active line of research to develop and analyse new 

cryptosystems and key exchange protocols based on non 

commutative cryptographic platforms (Shpilrain 2006). More 

precisely, cryptographic primitives are constructed by using 

Braid group, linear group, modular group, polycyclic group and 

etc (Steinwandt 2004; Stickel 2004). Please refer to (Myasnilov 

et al. 2007) for a comprehensive introduction and survey.  

In this paper, we propose a new hard problem, namely the 

exhaustion number search problem (ESP) which is originated 

from the combinatorics object called exhaustion set (ES) and is 

defined as follows: 

"A subset 𝑆  of 𝐷2𝑝𝑞  is called an exhaustion set 

provided 𝑆𝑛  =  𝐷2𝑝𝑞  +  𝑋, where 𝑋 ∈ ℤ[𝐷2𝑝𝑞]." 

 

For some existence results of exhaustion 2 −subsets in 𝐷2𝑝 

which can be extended to 𝐷2𝑝𝑞, refer to (Wong et al. 2017). We 

shown that ESP over dihedral group is computationally 

equivalent to the well-known Knapsack set problem. 

Despite in most of the conventional signature schemes, their 

message and key spaces are chosen from the cyclic group ℤ𝑝𝑞, 

but we propose to employ a dihedral group 𝐷2𝑝𝑞 of order 2𝑝𝑞 as 

the platform group for our proposed scheme. Unlike ℤ𝑝𝑞, we 

see that 𝐷2𝑝𝑞 containing two cyclic subgroups, which are  ⟨ 𝑟 ⟩  

of order 𝑝𝑞  and ⟨ 𝑠 ⟩  of order 2 . Clearly, there exists some 

elements in  ⟨ 𝑟 ⟩ 𝑠  which do not commute and so the 

computation involves in both signing and verification phases 

are more complicated. The usage of non abelian group such as 

dihedral group as a platform group is two folds.  On one hand, 

the property of non commutativeness does improve the 

security of the scheme in some sense. On the other hand, the 

computational time of the proposed scheme will be definitely 

increased due to the property of non commutativeness. 

 

Main Contribution. The main contributions of this paper are 

summarized as follows: 

 (1) Propose a new hard problem which is known as the ESP, 

and hence show that the ESP is equivalent to the subset sum 

problem (SSP),  

(2) Use a systematically way to construct a collision resistant 

hash function from the directed Cayley graph based on dihedral 

group of order 2𝑝𝑞. 

(3) Construct a signature scheme by using the dihedral 

group of order 2𝑝𝑞  as the platform group based on the 

hardness of ESP. 

Paper Organization. The rest of this paper is organized 

as follows. In Section 2, we discussed some preliminary 

concepts and the exhaustion set problem in dihedral 

groups, and then we setup a linkage for showing that the 

exhaustion number search problem is computationally 

equivalent to subset sum problem. In Section 3, we 

proposed a construction of hash function based on directed 

Cayley graph and proposed a new signature scheme based 

on ESP together with its security analysis. We conclude in 

Section 4. 

 

II. PRELIMINARIES 

 

A. Syntax and Definition of Signature Scheme 

 

The formal definition of a signature scheme (see 

(Steinwandt 2004; Myasnikov et al. 2007)) is given as 

follows: 

A Signature Scheme 𝜋  is a tuple of three probabilistic 

polynomial-time algorithms (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟) satisfying the 

following: 

 The Key-Generation Algorithm: 𝐺𝑒𝑛 takes as input a 

security parameter 1𝑛  and outputs a pair of keys (𝑝𝑘, 𝑠𝑘), 

which are the public key and the private key, respectively.  

The Signing Algorithm} 𝑆𝑖𝑔𝑛  takes as input a private 

key 𝑠𝑘 and a message 𝑚 ∈  {0,1}∗. It outputs a signature 𝜎, 

denoted as 𝜎 ←  𝑆𝑖𝑔𝑛𝑠𝑘  (𝑚). 

The Verification Algorithm: 𝑉𝑒𝑟 takes as input a public 

key 𝑝𝑘, a message 𝑚, and a signature 𝜎. It outputs a bit 𝑏, 

with 𝑏 = 1 meaning valid and 𝑏 = 0 meaning invalid. We 

write this as 𝑏: =  𝑉𝑒𝑟𝑝𝑘(𝑚, 𝜎). 

             It is required that for every 𝑛, every (𝑝𝑘, 𝑠𝑘), output 

by 𝐺𝑒𝑛(1𝑛) , and every 𝑚 ∈  {0,1}∗ , it holds that 

𝑉𝑒𝑟𝑝𝑘(𝑚, 𝑆𝑖𝑔𝑛𝑠𝑘(𝑚) = 𝜎) = 1.  

 

Let 𝜋 =  (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟) be a signature scheme. We follow 

the standard security model as given in (Rivest et al. 1978; 

Mahalanbis 2008; Paeng et al. 2001; Dehornoy 2004; Lee 

2004). Consider the following experiment for an adversary 

𝔸  and parameter 𝑛.  The signature experiment 𝑆𝑖𝑔𝑛 −

𝑓𝑜𝑟𝑔𝑒𝔸,𝜋(𝑛) : 

•  𝐺𝑒𝑛(1𝑛) is run to obtain keys (𝑝𝑘, 𝑠𝑘). 
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• Adversary 𝔸 is given 𝑝𝑘 and oracle access to 𝑆𝑖𝑔𝑛𝑠𝑘 . 

This oracle returns a signature 𝜎 for any message 𝑚 of 

the adversary's choice. The adversary then output 

(𝑚, 𝜎) . Let 𝑄  denote the set of messages whose 

signatures were requested by 𝔸 during its execution. 

• The output of the experiment is defined to be 1 if and 

only if (1) 𝑉𝑒𝑟𝑝𝑘(𝑚, 𝜎)  =  1 and (2) 𝑚 ∉  𝑄. 

𝜋  is existentially unforgeable under an adaptive chosen-

message attack if for all probabilistic polynomial-time 

adversaries 𝔸, there exists a negligible function 𝑛𝑒𝑔𝑙 such that 

𝑃𝑟[𝑆𝑖𝑔𝑛 − 𝑓𝑜𝑟𝑔𝑒𝔸,𝜋(𝑛) = 1] ≤  𝑛𝑒𝑔𝑙(𝑛). 

 

B. Exhaustion Set Problem in Dihedral groups 

 

In a non-abelian group 𝐺, two elements 𝑥, 𝑦 ∈  𝐺 are conjugate 

to each other, written 𝑥 ∼  𝑦  if 𝑦 =  𝑎−1𝑥𝑎  for some 𝑎 ∈  𝐺 . 

Here, 𝑎 or 𝑎−1 is called a conjugator and the pair (𝑥, 𝑦) is said 

to be conjugate. We note that ∼ is an equivalence relation and 

the corresponding equivalence classes are called the conjugacy 

classes. The conjugacy problem was identified by Max Dehn in 

1911 as one of the fundamental problems in group theory 

together with another two problems; the word problem and the 

isomorphism problem. It is known that the conjugacy problem 

is infeasible for many classes of groups. We next introduce two 

version of the conjugacy problems. 

 

Conjugacy Decision Problem: Determine whether 𝑥 ∼  𝑦 

for a given instance 𝑥, 𝑦 ∈  𝐺. 

 

Conjugacy Search Problem: Find 𝑎 ∈  𝐺  such that 𝑦 =

 𝑎−1 𝑥𝑎 for a given instance 𝑥, 𝑦 ∈  𝐺 such that 𝑥 ∼  𝑦. 

 

Clearly, conjugacy problem is a generalized version of the 

well-known number theory based discrete logarithm problem 

which is usually defined over multiplicative cyclic groups. 

In the following discussion, we introduce a new hard problem 

analogous to the conjugacy problem in non abelian group. To 

use a group efficiently for cryptography purposes, we need to 

carefully choose the underlying group and the most important 

criteria is the group must be able to describe by a presentation. 

In short, a presentation of a group is a set of generators and 

defining relations. 

From now onward, we let 𝑝  and 𝑞 be distinct large prime 

numbers. A dihedral group 𝐷2𝑝𝑞 of order 2𝑝𝑞 is a non abelian 

group describes by the following presentation 

𝐷2𝑝𝑞  = ⟨ 𝑟, 𝑠 |𝑟𝑝𝑞  =  𝑠2  =  1, 𝑠𝑟 = 𝑟−1𝑠 ⟩. 

One of the most distinguishable differences between ℤ𝑝𝑞 

and 𝐷2𝑝𝑞  is 𝐷2𝑝𝑞  is non-abelian group. The computation 

involves elements from 𝐷2𝑝𝑞  is undoubtedly more 

complicated as not all elements are commuted, hence it can 

be treated as a new security layer against outside attack by 

opponents. However, the multiplication of elements in 𝐷2𝑝𝑞 

does increase the cost of computations.  

We would like to emphasize that groups containing a 

subgroup isomorphic to the generalized linear group are 

not useful in cryptography due to plenty of well-developed 

tools in linear algebra. On the other hand, since there is only 

the "multiplicative" operation in our chosen platform 

group, the dihedral group, then, for instance, to construct a 

El-Gamal like scheme we need the "addition" operation as 

well. To do this, we introduce the concepts of group ring. 

Let 𝑅 be a commutative ring with unity 1  and 𝐺  be a 

multiplicative group with identity 1. The group ring 𝑅[𝐺] of 

𝐺 with coefficients in 𝑅 is the set 

𝑅[𝐺]  =  {∑ 𝑎𝑔 𝑔

𝑔∈𝐺

∶  𝑎𝑔 ∈  𝑅 }. 

Addition and multiplication in 𝑅[𝐺]  are defined as 

follows: ∑ 𝑎𝑔 𝑔𝑔∈𝐺 + ∑ 𝑏𝑔 𝑔𝑔∈𝐺 = ∑ (𝑎𝑔 + 𝑏𝑔) 𝑔𝑔∈𝐺   and 

∑ 𝑎𝑔 𝑔𝑔∈𝐺  ∑ 𝑏ℎ ℎℎ∈𝐺 = ∑ ∑ 𝑎𝑔𝑏ℎ 𝑔ℎℎ∈𝐺𝑔∈𝐺 . 

 

We next introduce a new hard problem in dihedral group, 

called the exhaustion number search problem (ESP), 

(Wong et al. 2017). This problem is formulated based on the 

existence of exhaustion set (ES), which is formally defined 

as follows:  

 

Definition 1. Let 𝑆 be a nonempty subset of 𝐷2𝑝𝑞 with 1 <

 |𝑆| < 2𝑝𝑞 . The exhaustion number of 𝑆  is defined by 

𝑒(𝑆)  =  𝑚𝑖𝑛{ 𝑡 ∶  𝑆𝑡  =  𝐷2𝑝𝑞  +  𝑌 }. If 𝑒(𝑆) exists, then 𝑆 is 

called the |𝑆| −exhaustion set in 𝐷2𝑝𝑞 and 𝑌 is called the 

dummy set of 𝑇. 

 

To ensure exhaustion set can be applied in our proposed 

scheme, we further insists that if 𝑒(𝑆)  =  𝑡 , then the 

following equation holds: 𝑆𝑡  = 𝛼 𝐷2𝑝𝑞  +  𝑋,  where 𝛼 ≥

 1, 𝑋 ∈ ℤ[𝐷2𝑝𝑞] is nontrivial with 𝐷2𝑝𝑞 is not a subset 𝑜𝑓 𝑋. 

Under this assumption, 𝑋 is unique for a given 𝑆 and the 

corresponding exhaustion number 𝑡  is also unique as 

shown in the following proposition. 
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Proposition 2. The dummy set 𝑋  corresponding to an 

exhaustion set 𝑆 in 𝐷2𝑝𝑞 is unique. 

Proof. Suppose we can write 𝑆𝑡  = 𝛼 𝐷2𝑝𝑞  + 𝑋  and 𝑆𝑡  =

𝛽 𝐷2𝑝𝑞  + 𝑋′  with 𝐷2𝑝𝑞 is not a subset of  𝑋  and 𝐷2𝑝𝑞 is nota 

subset of  𝑋′ . Then, we see that 𝛼 𝐷2𝑝𝑞  +  𝑋 = 𝛽 𝐷2𝑝𝑞  +  𝑋′ 

which implies (𝛼 − 𝛽)𝐷2𝑝𝑞  =  𝑋′ −  𝑋. If 𝛼 > 𝛽, then we can 

write 𝛼 = 𝛽 + 𝜃  for some 𝜃 >  0 . Thus, 𝜃 𝐷2𝑝𝑞  =  𝑋′ −  𝑋 

which contradicts that 𝐷2𝑝𝑞 is not a subset of 𝑋 and 𝐷2𝑝𝑞 is not 

a subset of  𝑋′ . Similarly, we see that the case 𝛽 > 𝛼  is also 

impossible. Therefore, we conclude that 𝛼 = 𝛽 and so 𝑋 = 𝑋′. 

We are interested to find the exhaustion number 𝑡 and the 

dummy set 𝑋. The computational and decision versions of the 

problem is given as follows: 

 

Exhaustion Number Search Problem (ESP): 

Given 𝑆 ⊂  𝐷2𝑝𝑞 . Find 𝑡  such that 𝑆𝑡  = 𝛼 𝐷2𝑝𝑞  +  𝑋 , where 

𝛼 and 𝑋 with properties in Proposition 2. 

 

Exhaustive Decision Problem (EDP): 

Given 𝑆 ⊂  𝐷2𝑝𝑞 . Determine whether 𝑡 satisfies 𝑆𝑡  = 𝛼 𝐷2𝑝𝑞  +

 𝑋, where 𝛼 and 𝑋 with properties in Proposition 2. 

 

        The following corollary follows directly from Proposition 

2.2. 

 

Corollary 3. The output for ESP is unique. 

 

Suppose 𝑒(𝑆) =  𝑡. Then 𝑆𝑡  = 𝛼 𝐷2𝑝𝑞  +  𝑋. Let 𝑅 = 𝛼 𝐷2𝑝𝑞  +

𝑋 ∈ ℤ[𝐷2𝑝𝑞].  We rewrite 𝑆𝑡  =  𝑅  as 𝑆 ∼  𝑅.  Similarly, for any 

𝑔1, 𝑔2 ∈  𝐷2𝑝𝑞 , if there exists an integer 𝑡  such that 𝑔1
𝑡  = 𝑔2 , 

then we write 𝑔1 ∼  𝑔2. Note that we use the same notation " ∼

" as in conjugacy class for exhaustion set.  A subsets pair (𝑆, 𝑅) 

is said to be ESP-hard if 𝑆 ∼  𝑅 and ESP is infeasible for the 

instance (𝑆, 𝑅) . The security of our proposed scheme is 

depended on the hardness of solving the ESP. 

The subset sum problem (SSP) is a well-known problem 

(Mathews 1897) and is the basis for the security of the Merkle-

Hellman Knapsack scheme, refer (Merkle et al. 1978). The SSP 

given below is stated as a computational problem and is proven 

to be NP-hard, refer (Caprara et al. 2004; Gens et al. 1994; 

Kellerer et al. 2003; Martello et al. 1984; Martello et al. 1985).  

 

 

 

 

Subset Sum Problem (SSP): 

Given a set of positive integers {𝑎1, 𝑎2, … , 𝑎𝑛} which is called 

a Knapsack set, and a positive integer 𝑠. Find 𝑥𝑖 ∈  {0,1}, 1 ≤

 𝑖 ≤  𝑛, such that ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 = 𝑠 provided that such 𝑥𝑖 exist. 

 

We are interested in the case when the underlying subset 

in SSP is form from elements in 𝐷2𝑝𝑞. We convert the SSP 

to the following problem which is defined over 𝐷2𝑝𝑞.  

 

Subset Sum Problem in 𝑫𝟐𝒑𝒒 (SSPD): 

Given a subset {𝑎1, 𝑎2, … , 𝑎𝑛} ⊂  𝐷2𝑝𝑞  and an element 𝑠 ∈

 𝐷2𝑝𝑞 . Find 𝑥𝑖 ∈  {0,1}, 1 ≤  𝑖 ≤  𝑛  such that ∏ 𝑎𝑖
𝑥𝑖𝑛

𝑖=1 = 𝑠 

provided that such 𝑥𝑖 exist. 

 

The SSPD can be solved by using the following Algorithm 

1 which is modified from the Naive algorithm, see (Cormen 

et al. 2001; Martello et al. 1990). Note that Algorithm 1 

takes 𝑂(2𝑛) steps to produce an answer and, hence, is 

inefficient. 

 

Algorithm 1: Solve SSPD 

Input: {𝑎1, 𝑎2, … , 𝑎𝑛 } ⊂  𝐷2𝑝𝑞 and 𝑠 ∈  𝐷2𝑝𝑞. 

Output: 𝑥𝑖 ∈  {0,1}, 1 ≤  𝑖 ≤  𝑛 such that ∏ 𝑎𝑖
𝑥𝑖𝑛

𝑖=1 = 𝑠 

, provided 𝑥𝑖 exist. 

For each possible vector (𝑥1, 𝑥2, … , 𝑥𝑛) ∈  𝐷2𝑝𝑞 ,  

compute ∏ 𝑎𝑖
𝑥𝑖𝑛

𝑖=1 = 𝑙 . 

If 𝑙 = 𝑠, then return a solution (𝑥1, 𝑥2, … , 𝑥𝑛). 

Return (no solution exists). 

  

III. CONSTRUCTIONS 

 

A. Proposed Hash Functions 

 

In this section, we construct a special types of hash function 

that will be used as a hash oracle in our proposed scheme. 

Suppose 𝐺 = ⟨ 𝑟 ⟩ is the cyclic subgroup of 𝐷2𝑝𝑞 of order 𝑝𝑞. 

Since 𝐺  is isomorphic to the additive group of integers 

modulo 𝑝𝑞, ℤ𝑝𝑞 , so we may identity 𝐺  with  ℤ𝑝𝑞 . We now 

present a method of hashing variable length texts over 

binary field 𝔽2  = {0, 1} by modifying the method described 

in (Zemor 1994).  The same method of hashing variable 

length texts can be defined over arbitrary finite field by 

using the following construction.  
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First, we choose a set 𝑆  of generators of ℤ𝑝𝑞  with |𝑆|  =

 |𝔽2|  =  2, together with a one-to-one mapping 𝑓 from 𝔽2 to 𝑆. 

For ease of implementation, we choose 𝑆 = {1,
1+𝑝𝑞

2
}, whereby 

in general, we may choose arbitrary 𝑆 . Next, we define the 

following function 𝑓: 𝔽2 →  𝑆 as  0 ↦  1  𝑎𝑛𝑑  1 ↦
1+𝑝𝑞

2
 . The 

hash function ℎ  associated to 𝐺, 𝑆  and 𝑓 , is constructed as 

follows: 

For any text 𝑥 ∈ 𝔽2
𝑘 , associate the corresponding string of 

elements of 𝑆, and compute the sum in 𝐺 to obtain the hashed 

value 

ℎ ∶ 𝔽2
𝑘 → ℤ𝑝𝑞 , 

 𝑥 =  𝑥1𝑥2 … 𝑥𝑘 ↦  ℎ(𝑥)  =  ∑ 𝑓(𝑥𝑖)

𝑘

𝑖=1

. 

Denote by 𝑋(ℤ𝑝𝑞 , 𝑆) the directed Cayley graph associated with 

ℤ𝑝𝑞 and 𝑆. This means that the set of vertices of 𝑋 is ℤ𝑝𝑞, and 

there is a directed edge between vertices 𝑣 and 𝑤 if and only if 

𝑤 =  𝑣 +  𝑠 for all 𝑠 ∈  𝑆. 

Suppose 𝑥 is a text of length 𝑛. We can identity 𝑥 as a directed 

path in the graph 𝑋, with the identity vertex as starting point, 

and its endpoint is precisely the hashed value ℎ(𝑥). Note that 

two texts yielding the same hashed value correspond to two 

paths with the same starting and endpoints. We would like to 

minimize this instance to happen, and this turn out to construct 

𝑋 with large girth, refer (Zemor 1994).  Roughly speaking, the 

girth of a graph is the length of a shortest cycle contained in the 

graph. Therefore, we choose 𝑥 ∈ 𝔽2
𝑘 with 𝑘 strictly less than the 

girth of 𝑋 which is  
1+𝑝𝑞

2
. For instance, if 𝑝 =  11 and 𝑞 = 13 are 

the two distinct largest 4-bit primes, then we may choose 𝑥 ∈

𝔽2
𝑘 for 𝑘 <  72 to avoid collisions.  Note that the hash function 

ℎ  constructed above is easily computed since the value can 

always be read from the directed Cayley graph and is 

computationally difficult to find collisions. 

To use ℎ  in our proposed scheme, once we obtained the 

hashed value ℎ(𝑥) ∈ ℤ𝑝𝑞, we form 

{
𝑟ℎ(𝑥), ℎ(𝑥) ≡ 0(𝑚𝑜𝑑 2)

𝑟ℎ(𝑥)𝑠, 𝑒𝑙𝑠𝑒
 

We emphasize that throughout the rest of this paper, 𝑠  will 

always be multiplied on the right-hand side. For signature 

scheme, sometime we need to consider a hash function 𝐻 in the 

form 𝐻: 𝔽2
𝑘1 × … × 𝔽2

𝑘𝑤 → ℤ𝑝𝑞 . For this case, the hash function 

𝐻 is defined naturally as follows: 𝐻(𝑥1, … , 𝑥𝑤) = ∑ ℎ(𝑥𝑖)𝑤
𝑖=1 =

∑ ∑ ℎ(𝑥𝑖𝑗
)

𝑘𝑖
𝑗=1

𝑤
𝑖=1 ,  where 𝑥𝑖 = (𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑘𝑖

) ∈ 𝔽2
𝑘𝑖  for 𝑖 =

1,2, … , 𝑤. By following the argument as in previous paragraph, 

we then multiply 𝑟𝐻(𝑥1,…,𝑥𝑤) with 𝑠  to form 𝑟𝐻(𝑥1,…,𝑥𝑤)𝑠 ∈  𝐷2𝑝𝑞. 

It follows that ℎ  is computationally infeasible to find 

collisions if and only if 𝐻 is computationally infeasible to 

find collisions. 

 

B. Proposed Signature Scheme 

 

Suppose ESP is infeasible and EDP is feasible. Our 

proposed signature scheme 𝜋  defined over 𝐷2𝑝𝑞  is 

described as follows:  

First, two distinct large odd primes 𝑝 and 𝑞 are randomly 

picked, and form the platform group, i.e., the dihedral 

group 𝐷2𝑝𝑞 . Furthermore, use the hash function 

constructed in previous section. 

 

Key-Generation: Choose 𝐴 ∈ ℤ[𝐷2𝑝𝑞] with 𝑒(𝐴)  = 𝑡  and 

𝐴 ∼  𝐵. Public key is (𝐴, 𝐵) and the private key is 𝑡.  

Sign: Given a message 𝑚 ∈  {0,1}∗,  compute 𝑦 =  ℎ(𝑚) ∈

 𝐷2𝑝𝑞 and the signature is 𝜎 =  𝑦𝑡 . 

Verify: Upon received the signed message (𝑚, 𝜎), we first 

computes 𝑦 = ℎ(𝑚)  and check whether 𝐴𝑦 =  𝑦𝐴 . If yes, 

then we check whether 𝜎 ∼  𝑦 and check whether 𝐵𝜎 ∼  𝐴 𝑦. 

If both yes, then (𝑚, 𝜎) is a valid signed message.  

 

Correctness. The correctness of the proposed scheme is 

shown as follows:  

Given a message 𝑚 , use the hash function ℎ  to 

compute 𝑦 = ℎ(𝑚).  With the public key 𝐴 , the 

signer will check whether 𝐴𝑦 =  𝑦𝐴. Next by using 

the private key to compute 𝑦𝑡  and together with 

the signature 𝜎, check whether 𝜎 ∼  𝑦 and  

𝐵𝜎 =  𝐴𝑡 𝑦𝑡  = (𝐴𝑦)𝑡. 

Hence, 𝐵𝜎 ∼  𝐴𝑦. 

 

C. Security Proof 

 

In the following game, we consider an adversary 𝔸 which 

are given the instances of ESP to find a solution for the ESP 

by preforming an interactive game with a challenger 𝐶. 

With the system parameter and the knowledge of the 

dihedral group  𝐷2𝑝𝑞 , 𝐶 generates the public key (𝐴, 𝐵) and 

the private key 𝑡, where 𝑡 is kept in secret and (𝐴, 𝐵) will be 

given to 𝔸. Next, 𝔸 randomly selected some plaintexts 

𝑚1, 𝑚2, … , 𝑚𝑟 ∈  {0,1}∗  gives to the challenger 𝐶 , then  𝐶 

queries the hash oracle ℎ to obtain ℎ(𝑚1)  =  ℎ1 , ℎ(𝑚2) =

 ℎ2, … , ℎ(𝑚𝑟) =  ℎ𝑟 ∈  𝐷2𝑝𝑞  and also queries the sign oracle 
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to obtain ℎ1
𝑡  = 𝜎1, ℎ2

𝑡  = 𝜎2, … , ℎ𝑟
𝑡  = 𝜎𝑟 , and hence return 

𝜎1, 𝜎2, … , 𝜎𝑟 to 𝔸. 

              The adversary will maintenance the following list of 

valid signed messages: 

(𝑚1, 𝜎1 = ℎ1
𝑡 ) 

(𝑚2, 𝜎2 = ℎ2
𝑡 ) 

…  

(𝑚𝑟 , 𝜎𝑟 = ℎ𝑟
𝑡 ) 

Next, 𝔸 uses the verification algorithm to obtain and check the 

validity of the signed messages. The adversary proceed as 

follows: 

 

𝑦1 = ℎ1  𝐴𝑦1 = 𝑦1𝐴 𝜎1  =  𝑦1
𝑡 𝜎1 ∼  𝑦1 𝐵𝜎1 ∼  𝐴 𝑦1 

𝑦2 = ℎ2  𝐴𝑦2 = 𝑦2𝐴 𝜎2  =  𝑦2
𝑡 𝜎2 ∼  𝑦2 𝐵𝜎2 ∼  𝐴 𝑦2 

…  

 

… … … … 

𝑦𝑟 = ℎ𝑟    𝐴𝑦𝑟 = 𝑦𝑟𝐴 𝜎𝑟  =  𝑦𝑟
𝑡 𝜎𝑟 ∼  𝑦𝑟 𝐵𝜎𝑟 ∼  𝐴 𝑦𝑟 

 

With all these information, 𝔸  compute 𝑦1 𝑦2 … 𝑦𝑟  =

 ℎ1 ℎ2 … ℎ𝑟  and suppose that ℎ1 ℎ2 … ℎ𝑟  is the hashing of a 

message 𝑚𝑟+1 , that is, ℎ(𝑚𝑟+1) =  ℎ1 ℎ2 … ℎ𝑟 . Let 𝑦𝑟+1  =

 𝑦1 𝑦2 … 𝑦𝑟 , then check that 𝐴 𝑦𝑟+1  =  𝑦𝑟+1𝐴 . Next, compute 

𝜎𝑟+1  =  𝑦𝑟+1
𝑡  and so 𝜎𝑟+1 ∼  𝑦𝑟+1.  

Finally, we perform the following verification: 

𝐵𝜎𝑟+1 =  𝐵 𝑦𝑟+1
𝑡  = 𝐴𝑡 𝑦𝑟+1

𝑡  = (𝐴𝑦𝑟+1)𝑡, 

which implies that 𝐵 𝜎𝑟+1 ∼  𝐴 𝑦𝑟+1. 

Therefore, 𝜎𝑟+1  = 𝜎1 𝜎2 … 𝜎𝑟  is a valid signature on 𝑚𝑟+1. 

However, this is equivalent to the fact that we can find a 

(𝐵𝜎𝑟+1, 𝐴𝑦𝑟+1)-pair which is ESP-hard.  

In the following theorem, we establish a condition on solving 

ESP in 𝐷2𝑝𝑞. 

 

Theorem 4. Solving ESP in 𝐷2𝑝𝑞  implies SSP in 𝐷2𝑝𝑞 . 

Conversely, solving SSP in 𝐷2𝑝𝑞  implies solving ESP in 𝐷2𝑝𝑞 

provided the size of ES is more than or equal to 𝑙𝑜𝑔2 (𝑝𝑞). 

 

Proof. Let 𝑇 = {𝑎1, 𝑎2, … , 𝑎𝑛} ⊂  𝐷2𝑝𝑞 .  Note that 𝑇𝑡  =  (𝑎1  +

𝑎2  + ⋯ +  𝑎𝑛)𝑡.  Since 𝐷2𝑝𝑞  is a nonabelian group, we cannot 

apply the multinomial theorem. However, by expanding each 

term manually (for instance, refer (Wong et Al. 2017)), we see 

that each term in the expansion can be written in the form 

𝑎1
𝑥1  𝑎2

𝑥2 … 𝑎𝑛
𝑥𝑛 , where 𝑥1  + 𝑥2 + ⋯ + 𝑥𝑛  =  𝑡.  Assume that we 

have a solution for ESP in 𝐷2𝑝𝑞, then 𝑇 is an ES and so 𝑇𝑡  =

𝛼 𝐷2𝑝𝑞  + 𝑋  which implies that we can find 𝑡  such that 

𝑎1
𝑥1  𝑎2

𝑥2 … 𝑎𝑛
𝑥𝑛  =  𝑠  for all 𝑠 ∈  𝐷2𝑝𝑞 . Hence, we can solve SSP in 

𝐷2𝑝𝑞. On the other hand, suppose we have a solution for SSP in 

𝐷2𝑝𝑞, by modify Algorithm 1, we can produce a solution for 

ESP in 𝐷2𝑝𝑞. The modified algorithm is as follows: 

Algorithm 2: Modified Solve SSP in 𝑫𝟐𝒑𝒒 

Input {𝑎1, 𝑎2, … , 𝑎𝑛 } ⊂  𝐷2𝑝𝑞 and 𝑠 ∈  𝐷2𝑝𝑞 . 

For each possible vector (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝔽2
𝑛  

        do compute ∏ 𝑎𝑖
𝑥𝑖𝑛

𝑖=1 = 𝑠 . 

Return (𝑠). 

This algorithm return 2𝑛 of 𝑠 ∈  𝐷2𝑝𝑞. To produce an ES for 

𝐷2𝑝𝑞 , we must have 2𝑛 ≥  |𝐷2𝑝𝑞 |  =  2𝑝𝑞 , which is 

equivalent to said that 𝑛 ≥  𝑙𝑜𝑔2 (𝑝𝑞). 

Since SSP is NP-hard, then we see that SSP in 𝐷2𝑝𝑞 is NP-

hard and so we conclude that ESP in 𝐷2𝑝𝑞 is also NP-hard. 

This provides an evidence of the intractability of ESP in 

𝐷2𝑝𝑞. Therefore, breaking our proposed scheme is as hard 

as solving ESP in 𝐷2𝑝𝑞  and so finding a ESP-hard pair is 

infeasible.  

 

IV. CONCLUSION 

 

In this work, we propose a new signature schemes based on 

the hardness of ESP which is proven to be NP-hard. We 

show that ESP is computationally equivalent to the well-

known subset sum problem. However, there are some 

questions that remain to be answered. Although ESP can 

increase the security of the proposed scheme, but it may 

also increase the computational complexity for executing 

the dihedral group multiplication and hence might affect 

the performance of the scheme.  
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