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Outliers are observations that are different from other observations in a data set. Their presence in 

Multivariate parametric statistical data analyses is rarely checked and this may lead to invalid inferences 

and misinterpretation of results.  Multivariate tests of normality include Skewness (S), Kurtosis (K), Mardia 

Skewness (MS), Mardia Skewness for small sample (MSS), Mardia Kurtosis (MK), Shapiro-Wilk (SW), 

Shapiro-Francia (SF), Royston (R), Henze-Zirkler (HZ), Doornik-Harsen (DH), Energy (E), Gel-Gastwirth 

(GG), Bontemps-Meddahi (BM) and Desgagne-Micheaux (DM) tests. This research aims at identifying the 

multivariate normality tests that are more sensitive to outliers so as to avoid the menace it could cause in 

inferences. Monte Carlo experiments using R-programming code were conducted one thousands (1000) 

times by generating Multivariate normal data, at four (4) levels of dimension (p=2,3,4 and 5). Seven (7) 

sample sizes of (n = 10,20,30,50,100,120 and 150), and two (2) levels of percentage of generated data, k (10% 

and 20%) polluted with outliers t, at ten (10) various magnitudes. The sample sizes were classified into small 

(n=10 and 20), medium (n=30 and 50), and large (n=100,120 and 150). The power rate of the multivariate 

tests were examined and compared at three (3) levels of significance namely; 1%, 5% and 10%. At a particular 

classified sample size, a test is considered most sensitive if it has power rate closet to unity. The study 

revealed that the GG and DH multivariate tests were generally very sensitive to outliers. Furthermore, for 

large sample sizes, all the test statistics considered were very sensitive to the departure from normality as a 

result of outliers. In conclusion, the study recommends the use GG and DH for use in statistical inferences 

to avoid misleading interpretation of results. 
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I. INTRODUCTION 

 
Outliers are observations that are different from other 

observations. They are observations that lie outside the overall 

pattern of a distribution. They are generally data points that are 

far outside the norm for a variable or population (Jarrell,1994; 

Rasmussen,1988;Stevens,1984). Hawkins (1980,1981) 

described an outlier as an observation that “deviates so much 

from other observations as to arouse suspicions that it was 

generated by a different mechanism”.  Outliers have also been 

defined as values that are “dubious in the eyes of the researcher” 

(Dixon,1950) and contaminants (Wainer,1976). Outliers can 

have deleterious effects on statistical analyses because they 

generally serve to increase error variance and reduce the power 

of statistical tests. If non-randomly distributed they can 

decrease normality (and in multivariate analyses, violate 

assumptions of sphericity and multivariate normality), 

altering the odds of making both Type I and Type II errors 

and they can seriously bias or influence estimates that may 

be of substantive interest.Consequently, their presence 

indicates some sort of problems which can lead to inflated 

error rates and substantial distortions of statistics estimates 

when using parametric or non-parametric tests 

(Zimmerman, 1994). The aim of this paper is to identify the 

multivariate tests that are more sensitive to outliers and to 

compare the sensitivity rates of the multivariate tests of 

normality to outliers at different grouped of sample sizes for 

different levels of significance.  



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

66 

II. LITERATURE   REVIEW 

 

A careful review of the literature revealed that some work has 

been done to compare multivariate tests of normality. Mecklin 

and Mundford (2003) investigated the following eight tests of 

multivariate normality that used asymptotic critical values: 

Mardia’s test for multivariate skewness, Mardia’s test of 

multivariate kurtosis, the Mardia-Foster C2w  omnibus 

statistic, the Mardia-Kent omnibus statistic, the Royston’s 

multivariate Shapiro-Wilk test, the Romeu-Ozturk test, the 

Mudholkar-Srivasta-Lin extension of the Shapiro-Wilk test and 

the Henze-Zirkler empirical characteristic function test 

(Szekely & Rizzo, 2005).  The authors evaluated the power of 

the eight tests in a Monte Carlo study against both the 

multivariate normal distribution and some alternatives to 

normality.  A wide range of sample size and dimensions were 

used.  They discovered that the tests of Mardia-Foster, Mardia-

Kent, Romeu-Ozturk and Mudholkar-Srivasta-Lin had Type 1 

error rates in some of the situations exceed 0.10 (twice the 

normal rate of a=0.05) against data generated to be 

multivariate normal.  They therefore concluded that no single 

test out of the compared statistics was found to be the most 

powerful. Ward (1988) compared the power of Merdia’s 

skewness and kurtosis tests, the Malkovich-Afifi extension of 

the Shapiro-Wilk test, Hawkins extension of the Anderson- 

Darling test, the Mardia-Foster omnibus test and two of his 

own proposals that extended the Kolmogorov-Smirnov and 

Anderson-Darling tests.  He concluded that Mardia’s Skewness 

test, Hawkins tests and his own Anderson-Darling type test 

were the strongest. None of these tests, however, was good 

enough when tested against the multivariate distribution, 

which is a mild deviation from normality.  He further noticed 

that the power of the Malkovich-Afifi test statistics, contrary to 

previous findings, decreased as the number of variables 

increased (Mardia ,1980a).  Ward (1988) formulated a 

hypothesis that the power of these procedures seemed to be 

related to the correlation structure of the variance-covariance 

matrix probably through their determinant. Although Mardia’s 

tests seemed to be more effective, none of these was considered 

the best.  Horsewell and Looney (1992) suggested that neither 

affine-invariant nor coordinate- dependent tests can be 

regarded as superior to others.   They questioned the 

‘diagnostic’ capabilities of this category of tests particularly 

effective against the skewed or kurtotic alternatives.  However, 

they stated that the performance of the skewness tests depend 

not only on the skewness of the distribution but also on the 

kurtosis.  The power of skewness tests tend to be inflated when 

compared to alternatives with greater than normal kurtosis 

and decreased when compared to alternatives with less than 

normal kurtosis. Richardson and Smith (1993) considered 

testing multivariate normality, focusing on the case of when 

the data are cross-sectionally correlated and also discussed 

how serial correlation can be accommodated.  Their test is 

based on the over identifying restrictions from matching 

the first four moments of the data with those implied by the 

normal distribution. Czeslaw (2009) emphasized that a few 

comprehensive power studies for multivariate normality 

exist but none of them is fully comprehensive.  He further 

added that majority of the most comprehensive studies 

have deliberately limited the scope of their work to a 

particular category of tests or to considering the most 

popular or promising tests. Solomon (2016) compare the 

Type I error rate and power of some multivariate normality 

tests at various levels of significance under different sample 

sizes and dimensions of multivariate data. He concluded 

that Type 1 error rate of HZ, MS, MSS, R and E are 

reasonably good while R, DH, GG, BM, and DM are affected 

by correlation. 

 

III. MATERIALS AND 

METHOD 

 

In this study, Monte Carlo simulation studies were used to 

evaluate the sensitivity of the following multivariate 

normality tests of normality to outliers. The program for 

their evaluation was written using R package 3.1.1. 

Let X1, X2, . . ., Xp be independent N-dimensional random 

vector of an identical distribution defined by a distribution 

function Fp (X) as: 
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( )~ , ,PX N   where 𝜇  and ∑ are p-dimensional vectors 

of an expected value and (p x p) dimensional covariance 

matrix (dispersion matrix) respectively. A vector of data is 

distributed as a p-dimensional if and only if all the linear 

combinations of this vector of data are univariate normally 

distributed (Bilodeau & Brenner,1999). The parameters 

used to conduct Monte Carlo experiments for the empirical 

investigation of the sensitivity of the multivariate tests of 



ASM Science Journal, Volume 12,  Special Issue 5, 2019 for ICoAIMS2019  

 

67 

normality are: Replication(R) = 1000, Dimension (p) of 

multivariate data = 54,3,2 and , Percentage of Outlier (k) = 

%20%10 and , Magnitude of Outlier (t) = 

}10,,3,2,1{ t , Sample size (Small, n=10,20; Medium, n= 

30, 50; and Large, n= 100, 120 and 150); and level of 

significance ( %10%5%,1 and= ). 

The Monte Carlo experiments were conducted following 

these procedures. First, select the value of dimension (p) and 

sample size (n) for the experiment, then generate multivariate 

normally distributed sample using the equation of Ayinde and 

Adegboye[1] with the chosen dimensions and sample sizes. 

Then, randomly select k% of the generated multivariate 

normally distributed sample data generated using equal 

probability selection method (EPSM). 
ij

y replace the selected 

observations with outlier contaminated data using the formula 

below: 

 

pjniyYty
ijij

,,2,1;,,2,1;)max(*  ==+=                   (2) 

 

Where 
*

ij
y is the new observation as a result of outlier, ijy is 

the observation selected to be polluted with the outlier, 

)max(Y is the maximum of the observations in the vector of 

data Y ,and t  is the Magnitude of outlier.Subject the 

multivariate tests of normality to the outlier polluted 

multivariate data and document the probability value 

( valuep − ) associated with each test. Repeat the process all 

over for the number of replications (R). 

Let       
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Estimate the power rate (the number of times the null 

hypothesis of normality is rejected) by        

 

           
R

R

i

i
== 1



                         (4) 

Then, repeat the process for different sample sizes and choose 

another dimension ( p ) and repeat the process until all other 

sample sizes, magnitudes of outlier and percentage of outlier 

are exhausted. The most sensitivity test statistics was identified 

as follows: At a particular level of significance, the following 

steps are followed, count the number of times power rates 

are at least 0.9 over the level of Magnitude of outliers. 

Further count the number of times power rates are at least 

0.9 over the percentage of outliers. Then, count the number 

of times power rates are at least 0.9 over the level of 

dimensions. The higher the number of counts the more 

sensitive the test is. Also, count again the number of times 

power rate are at least 0.9 over the classified sample sizes. 

 

Therefore,  

Sensitivity Rate at a particular sample size =𝑎
𝐴⁄   (5) 

 

Where a = Total number of times in which power rates are 

at least 0.9 when counted over levels of dimensions, % of 

outliers, magnitude of outliers and classified sample sizes. 

A = product of the number of dimensions, levels of 

percentage (%) of outliers, levels of magnitudes and 

classified sample sizes.Thus,  

 

Asmall=     p * k* t* n (4 * 2*10* 2 =160);  

Amedium=  p*k* t* n ( 4 *2*10*2 =160);  

ALarge = p* k* t* n( 4* 2* 10* 3 = 240) .  

 

The closer the sensitivity rate is to 1, the more sensitive the 

test is to outliers.  

 

IV. RESULT AND 

DISCUSSION 

 
The results of the sensitivity rates of the multivariate tests 

of normality at various levels of dimension, sample size, 

magnitude of outliers, and percentage of outliers are 

presented and discussed in this section at three levels of 

significance are presented in Table 1-3.  

1. Results of Sensitivity Rate of Multivariate 

Tests of Normality to Outliers at 0.01 level 

of significance 

 

From Table 1, for small sample size categories, when n=10, 

it can be observed that the order of sensitivity of the test is 

MS=MK=MSS=S=K < HZ < E < DM < BM < SW < R < SF 

<DH<GG and for n=20, the order of sensitivity is 

K<MK<DM<S<MS<HZ=MSS=SW=SF=E<BM<R=DH=G 
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G. Furthermore from Table 1, it can be observed that GG, DH 

and R display higher sensitivity rate as compared to others 

while MS, S, MK and K display low sensitivity rate for grouped 

small sample. While for the medium sample sizes categories, it 

can be observed that the order of sensitivity of the test is MK = 

K < S= DM < SW <HZ=MS=MSS=R=DH=E=BM=SF=GG, 

when the sample size is 30, and when the sample size is 50, the 

order of sensitivity is MK=K < DM < HZ = MS =MSS = S = 

SW=SF= E= R= DH=BM=GG. In Table1, K, MK and DM 

display low sensitivity rate in that order as compared to others 

while the rest display high sensitivity rate for grouped medium 

sample.  

For a large sample size categories, it can be observed that the 

order of sensitivity of the test is 

K<MK<HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG 

when n=100, when the sample size is 120 and 150 the order of 

sensitivity are the same and in this order K= MK= 

HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG. Table 1  

 

 

also shows that all test statistics display high sensitivity rate 

for grouped large sample. 

From Table 2, when the sample size is small, it can be 

observed that the order of sensitivity of the test is 

MS=MK=S=K< MSS <HZ<DM<E<R<SW=SF=BM< 

DH=GG for n=10 and for n=20, it is 

K<MK<DM<MS<S<SW<MSS<HZ=BM=SF=E=R=DH=G

G.  

From Table 2, GG, DH, BM, SF,SW and R display higher 

sensitivity rate as compared to others while S, MS, MK and 

K display low sensitivity rate for grouped small sample. For 

the medium sample sizes, it can be observed that the order 

of sensitivity of the test for n = 30 is  

K<MK<DM<HZ=SW=S=MS=MSS=R=E=BM=SF=GH=G

G while when the sample size is 50, the order of sensitivity 

is 

K=K<DM<HZ=MS=MSS=S=SW=SF=E=R=DH=BM=GG. 

From Figure 5, all the test statistics display very high 

 
Table 1. Summary of Counts and  Sensitivity Rates at 0.01 level of significance 

 
Sample Size 

Classification/ 
Sensitivity Rate 

Multivariate Normality Tests 

HZ MS MK MSS R DH S K SW SF E GG BM DM 

Small 

10 4 0 0 0 70 77 0 0 68 71 40 78 66 62 

20 78 75 28 78 80 80 71 20 78 78 78 80 79 66 

Total 82 75 28 78 150 157 71 20 146 149 118 158 145 128 
Exp. 

count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 0.51 0.47 .0.18 0.49 0.94 0.98 0.44 0.13 0.91 0.93 0.74 0.99 0.91 0.8 

Medium 

30 80 80 66 80 80 80 78 66 79 80 80 80 80 78 

50 80 80 70 80 80 80 80 70 80 80 80 80 80 74 

Total 160 160 136 160 160 160 158 136 159 160 160 160 160 152 
Exp. 

count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 1 1 0.85 1 1 1 0.99 0.85 0.99 1 1 1 1 0.95 

Large 

100 80 80 79 80 80 80 80 76 80 80 80 80 80 80 

120 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

150 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

Total 240 240 239 240 240 240 240 236 240 240 240 240 240 240 
Exp. 

count 240 240 240 240 240 240 240 240 240 240 240 240 240 240 

Sensitivity 1 1 1 1 1 1 1 0.98 1 1 1 1 1 1 
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sensitivity rate for grouped medium sample, although MK and 

K are not as strong the rest. 

 

 

2. Results of Sensitivity Rate of Multivariate 

Tests of Normality to Outliers at 0.05 level of 

significance 

 

When the sample size is large, it can be observed that the order 

of sensitivity of the test is K = MK= 

HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG for n=100, 

when n=120, it is  

K=MK=HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG, 

and when n=150, it is  

K=MK=HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG. 

Also, Table 2 reveals that all the test statistics display high 

sensitivity rate for grouped large sample. 

From Table 3, when the sample size is 10, the order of 

sensitivity of the test is  

MS=MK=S=K< MSS <DM<HZ<E<SW=SF=R=BM=GG< DH 

and when the sample size is 20, it is  

K<MK<DM<S<MS<HZ=MSS=SW=BM=SF=E=R=DH=GG. 

From Figure 3, GG, DH, BM, SF,SW and R display very high 

sensitivity rate as compared to others while S, MS, MK and K 

display low sensitivity rate in that order for grouped small 

sample.  

 

 

 

3. Results of Sensitivity Rate of Multivariate 

Tests of Normality to Outliers at 0.1 level of 

 significance 

 

When the sample size is 30, the order of sensitivity of the 

test is K<MK< DM 

<HZ=SW=S=MS=MSS=R=E=BM=SF=GH=GG  

and for sample size n= 50, the order of sensitivity is  

K<MK < DM= HZ = MS =MSS = S = SW=SF= E= R= 

DH=BM=GG. 

In Table 3, all the test statistics display near perfect 

sensitivity rate except MK and K for grouped medium 

sample. 

When the sample size is large, it can be observed that the 

order of sensitivity of the test is  

K=MK=HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=G

G for n=100, the order of sensitivity for n=120 is K= MK= 

HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG and 

the order of sensitivity when n=150 is  

Table 2. Summary of Count and Sensitivity Rate at 0.05 level of significance 

Sample Size 
Classification/ 

Sensitivity Rate 

Multivariate Normality Tests 

HZ MS MK MSS R DH S K SW SF E GG BM DM 

Small 

10 57 0 0 11 75 78 0 0 77 77 65 78 77 63 

20 80 78 48 79 80 80 78 23 79 80 80 80 80 68 

Total 137 78 48 90 155 158 78 23 156 157 145 158 157 131 
Exp. 

count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 0.86 0.49 0.3 0.56 0.97 0.99 0.49 0.14 0.98 0.98 0.91 0.99 0.98 0.82 

Medium 

30 80 80 68 80 80 80 80 66 80 80 80 80 80 79 

50 80 80 70 80 80 80 80 70 80 80 80 80 80 79 

Total 160 160 138 160 160 160 160 136 160 160 160 160 160 158 
Exp. 

count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 1 1 0.86 1 1 1 1 0.85 1 1 1 1 1 0.99 

Large 

100 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

120 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

150 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

Total 240 240 240 240 240 240 240 240 240 240 240 240 240 240 
Exp. 

count 240 240 240 240 240 240 240 240 240 240 240 240 240 240 

Sensitivity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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K=MK=HZ=MS=MSS=S=SF=SW=DM=E=R=BM=DH=GG. 

Also, in Table 3, all the test statistics display perfect sensitivity 

rate for grouped large sample. 

 

 

 

 

V. CONCLUSION 

 
In conclusions, it was generally observed that as sample size, 

percentage of outliers in the data set and magnitude of outliers 

increases, the sensitivity rate of the multivariate tests of 

normality depart from multivariate normality as a result of 

outlier in the data set. The multivariate tests in this order – GG, 

DH,R, BM, SF, HZ, E, SW, DM, MSS, MS, S, MK, K, are highly 

sensitive to departure from multivariate normality caused by 

outlier in the data set. Therefore, GG and DH tests can be 

considered to be the most sensitive to outliers in multivariate 

data set. 
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Table 3. Summary of Count and Sensitivity Rate at 0.1 level of significance 

Sample Size 
Classification/ 

Sensitivity Rate 

Multivariate Normality Tests 

HZ MS MK MSS R DH S K SW SF E GG BM DM 

Small 

10 68 0 0 55 78 79 0 0 78 78 74 78 78 63 

20 80 79 59 80 80 80 78 24 80 80 80 80 80 72 

Total 148 79 59 135 158 159 78 24 158 158 154 158 158 135 
Exp. 
count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 0.93 0.49 0.37 0.84 0.99 0.99 0.49 0.15 0.99 0.99 0.96 0.99 0.99 0.84 

Medium 

30 80 80 78 80 80 80 80 67 80 80 80 80 80 79 

50 80 80 71 80 80 80 80 70 80 80 80 80 80 80 

Total 160 160 149 160 160 160 160 137 160 160 160 160 160 159 
Exp. 
count 160 160 160 160 160 160 160 160 160 160 160 160 160 160 

Sensitivity 1 1 0.93 1 1 1 1 0.86 1 1 1 1 1 0.99 

Large 

100 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

120 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

150 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

Total 240 240 240 240 240 240 240 240 240 240 240 240 240 240 
Exp. 
count 240 240 240 240 240 240 240 240 240 240 240 240 240 240 

Sensitivity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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