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Conjugate gradient method (CG) is an important method for solving nonlinear unconstrained 

optimization problems. They are well-known for their global convergence properties and low memory 

requirement. This paper presents a modified CG method that is globally convergent under strong 

Wolfe-Powell (SWP) line search. The numerical results show that the new modification is more efficient 

than other CG methods tested. 
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I. INTRODUCTION 
 
 
The general unconstrained optimization problem is defined by 

the following,  

( ),min
nx R

f x



(1) 

where : nf R R→  is a continuously differentiable function. 

The CG method is a type of iterative algorithm that generates 

a sequence kx  by 

1 ,k k k kx x d+ = + 0,1,2,3....k = (2)                                                                                                                                                                                                                                                                                                                                              

where kx  is the current iteration point and 1kx +  is the next 

iteration point. The parameter  0k   is the step length 

obtained by SWP line search conditions as follows: 

( ) ( )          
            T

k k k k k k kf x d f x g d  + −  , (3)                                                                

        |  ( )   | |  |T T

k k k k k kgg x d d g +  , (4)                               

where  0 1    , ( )  )  (k kg x xg f= =   is the 

gradient of the function and 𝑑𝑘 is the search direction. The 

formula of 𝑑𝑘 for CG method is defined by 
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The parameter k R    is known as the CG coefficient 

that characterizes different CG methods. Examples of 

formulas for k  include the Polak-Ribiere-Polyak (PRP) 

method (Polyak, 1969; Polak, 1969), the Fletcher-Reeves 

(FR) method(Fletcher et al., 1964), the Hestenes-Steifel 

(HS) method (Hestenes & Stiefel, 1952), the ‘Aini Rivaie-

Mustafa (ARM) method (Aini, et al., 2016), the Liu Storey 

(LS) method (Liu & Storey, 1991), the Conjugate Descent 

(CD) method  

(Fletcher, 2013) and the Wei-Yao-Liu (WYL) method 

(Wei et al., 2006). They are formulated as follows: 
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K
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where .  represents the Euclidean norm of vectors. 

There are numerous studies centered on the convergence 

properties of CG methods, beginning with Zoutendijk 

(Zoutendijk, 1970) who proved the global convergence of FR 

method under exact line search. Then, Al-Baali (1985), Touti-

Ahmed and Storey (1990) furthered the proof for Wolfe line 

search. Gilbert and Nocedal (1992) showed the global 

convergence of algorithm related to the FR method using the 

inexact line search with strong Wolfe conditions. Later, Al-

Baali (1985) 

extended the proof for  σ 1 / 2 , while Guanghui et al., (1995) 

proved the global convergence of FR for  σ 1 / 2 . 

Up to now, many researchers have come up with new 

formulas for CG coefficient with good numerical performance 

and globally convergent. Some current studies on nonlinear 

CG method can be seen in Hager and Zhang (2005), Andrei 

(2009), Wei et al. (2013), Abashar et al. (2017), Jusoh et al. 

(2014), and Rivaie et al. (2012; 2016). 

This study is prepared as follows: 

The first part consists of the new CG formula, followed by 

the CG algorithm and the convergence analysis. After that, the 

numerical results of the proposed method are presented and 

compared with other CG methods. Finally, this paper is 

concluded in the last section. 

 

II. NEW FORMULA FOR CG METHOD 
 
 

In this section, we propose a new formula for k known as

MMR

k , where MMR denote Mouiyad, Mustafa and 

Rivaie. The new CG coefficient
MMR

k  is constructed by 

applying an alternative denominator in
AMR

k . The 

formula is as follows: 
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Therefore 

0 MMR FR

k k    . (15) 

Hence, according to the argument presented in (Gilbert 

& Nocedal, 1992),
MMR

k should obtain all of the 

advantages and properties of
FR

k . 

 

The algorithm is given as follows: 

 

Algorithm 1 

 

Step 1: Given
0

nx R , Select 0   and, 0  0gd = − , 

0k = . If 0g   then stop. 

Step2: Compute k by (SWP) line search. (5) and (6) 

Step 3: Let 1 ,k k k kx x d+ = + 1 1( )k kg g x+ +=  if  

1kg +   then stop. 
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Step 4: Compute k by (6) and generate 1 kd +  by (4). 

Step 5: Set 1k k= +  and go to Step 2. 

 

III. CONVERGENCE ANALYSIS OF MMR 

METHOD 

 

The following basic assumption are always necessary in the 

analysis to present the global convergence properties of CG 

methods with (SWP) line search. 

 

Assumption 1.  

 

(i) ( )f x is bounded from below on the level set 

 ( ) ( )0         nx R f x f x =   . 

(ii)In some neighborhood 𝑁 of , f  is continuously 

differentiable and its   gradient ( )g x  is Lipschitz continuous, 

hence there exists a constant   0L   such that 

( ) ( )           g x g y L x y−  − ,x y N .(16) 

 

In 1992, Gilbert and Nocedal introduced the property (*) 

which plays an important role in the studies of CG methods. 

This property means that the next research direction 

approaches to the steepest direction automatically when a 

small step-size generated, and the step-sizes are not produced 

successively (Zhang et al., 2012). 

 

Property (*). Consider a CG method of the form (2) and (5). 

Suppose that, for all 0k  . 

0 ( )g x    (17) 

Where    and   are two positive constants. We say that the 

method has the property (*) if 

there exist constants 1b  , 1   such that for  

 

all k  , k b  , kS   implies 
1

2
kg

b
   where 

k k kS  =  . 

 

The following lemma shows that the new method 
MMR

k  

has the property (*). 

Lemma 1. Consider the method of form (2) and (5), 

suppose that Assumptions1 hold, then, the method 
MMR

k  

has the property (*). 

Proof. Set 
( )

2

1
3

b
  



+
=  , 

2

4L b






=   by (13) and (17) 

we have 
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2 1 2
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11
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d g
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2

3

( )
b

  



+
= =  

 

From the Assumption ii, (16) holds. If kS   then, 

( ) ( )2
1 1

2

2 1

22 2

1 1

T T
k k K k k kg g g g g g L

b

MMR

k
g gk

k

 




− −− −

 = 

− −

 

The proof is finished. 

 
IV. SUFFICIENT DESCENT 

 

The sufficient descent condition should be satisfied as 

follows: 

2

 g gT

k k kd c − for   0k   and 0c  .(18) 

Note that the CG coefficient, 
MMR

k satisfies 
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2
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1

0 MMR FRk
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g
 +

−

  = (19) 

 
The following theorem shows that the formula MMR with 

SWP line search possess the sufficient descent condition 

 
Theorem 1 

Suppose that the sequences { }kg  and { }kd  are generated by 

the method of form (2), (5) and (13), and the step length k is 

determined by the (SWP) line search (3) and (4), then the 

sequence { }kd  possesses the sufficient descent condition 

(18). 

 

Proof. By the formulae (13), we have 

( )
2 21 1

1

1 1

2 21 1
1 1

1 1

d g d gTk k k k
g g g gk k k k

d dMMR k k
k

d g d gk k k k
g gk k

d dk k



+ +− −
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− −


+ +− −
− −
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2

2

1

k

k

g

g −

  

Hence, we obtain 

2

2

1

0 MMR k

k

k

g

g


−

   

 

Using (4) and (19), we get 

2

1 1 2

1

MMR k

k k k k k

k

g
g d g d

g
 + +

−

 (20) 

By (5), we have  1 1 1=-g kkk kd d++ ++  

1
1 1 1

2 2

1 1

=-1+
T T

k k k k

k

k

k

g d g d

g g
+ + +

+ +

+
(21)  

We prove the descent property of { }kd  by induction. Since 

2

0 0 0g g 0T d = − if 0 0g  ,  

Now suppose id 1,2,.....,i k=  are all descent directions, 

that is 0T

i ig d   

By (20), we get 

2

1

1 1 2
( )MMR k

k k k k k

k

g
g d g d

g
 +

+ +  − (22) 

That is, 

2 2

1 1

1 12 2

T PRP Tk k

k k k k k k k

k k

g g
g d g d g d

g g
  + +

+ +  − (23) 

(21) and (23) deduce, 

1 1

2 2 2

1

1 1
T T T

k k k k k k

k k k

g d g d g d

g g g

 + +

+

− +   − −  

 

By repeating this process and the fact  

2

0 0 0g gT d = − we have, 

1 1
2( ) ( )20 0

1

T
k kg dj jk k

j j
g

k

 
+ +

 −   − +
= =

+

(24) 

Since 

1

( ) ( )
0 0 1

k j j

j j
 




  =
= = −

 

 

(24) Can be written as 

1 11 1
2

2
1 1

1

T
g d

k k

g
k

 

+ +
−   − +

− −
+

(25) 

By making the restriction  
1

(0, )
4

   we have

1 1  0T

k kg d+ +  . 

So, by induction, 0
 

T
g dk k   holds for all   0k  . 

Denote 
1

2
1

c


= −
−

  then, 0 1c  , and (25) turns out 

to be  

2 2

 ( 2) g g gkk kkc d c−  − (26) 

this implies that (18) holds. The proof is complete. 
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V. GLOBAL CONVERGENCE 

 

The following condition known as Zoutendijk condition is 

used to prove the global convergence of nonlinear CG methods 

(Zoutendijk, 1970; Wolfe, 1969). 

 

Lemma 2. Suppose that Assumptions 1 hold. Consider a CG 

method of the form (2) and (5), where 𝑑𝑘satisfies 0
 

T
g dk k  , 

for all k, and k  is obtained by (SWP) line search (3) and (4), 

 Then, 

2

0  

2( )
       

T

k k

K k

g d

d



=

  (27)   

 

The proof had been given by Wei et al. 2006 and Yuan et al. 

2010. Gilbert and Nocedal (1992) introduced the following 

important theorem. 

 

Theorem2 

Consider any CG method of form (2) and (5), that satisfies the  

following conditions: 

(1) 0k   

(2) The search directions satisfy the sufficient descent 

condition. 

 (3) The Zoutendijk condition holds. 

 (4) Property (*) holds. If the Lipschitz and boundedness 

Assumptions hold, then the iterates are globally convergent.    

From (16), (18), (27) and Lemma 1, we found that the MMR 

method with the parameter  

0 1 / 4    satisfies all four conditions in theorem 2 

under the strong Wolfe-Powell line search, so the method is 

globally convergent. 

 

VI. NUMERICAL RESULTS 

 

In this section, we compare the computational performance of 

MMR method with PRP, FR, WYL and ARM under SWP line 

search. These comparisons are based on number of iteration 

and CPU time. To perform the test, a set of twenty-five test 

functions with varying number of variables 

(2 10000)n  have been selected from Andrei (2008). 

For each test problems, we take four different initial 

points in order to study the global convergence properties 

of the new CG formula. All functions and initial points 

used are listed in Table 1. 

 

Table 1. A list of problem functions 

No Functions Initial points 

1   Six Hummp 2 (-3, -3) (21,21) 

(-43, -43) (77,77) 

2 Three Hump 2 (21,21) (25,25) 

(71,71) (67,67) 

 

3 Zettl 2 (7,7) (18,18) 

(-116, -116) 

4 FELETCHCR   2(-2, -27) (-112, -112) 

(101,101) (17,17) 

 5   Colivlle4(28,..,28) (199,..,199) 

6 Dixon and Price  2,4(12,..,12) (19,..,19)  

  (-108,..,-108) 

7 Hager 2,4 (6,…,6) (16,…,16)  

(-78,…,-78)   

8Raydan1 2,4 (7,..,7) (18,..,18) 

(-89,.., -89) 

9Raydan 2                2,4 (-7,.., -7) (-75,.., -75) 

10ARWAHEAD 2,4,10 (4,…,4) (21,…,21) 

(80,…,80) 

11   Freuidenstein2,4,10 (-19,..., -19) 

and Roth (18,..,18) (4.5,..,4.5) 

12    Extended2,4,10 (-4,…, - 4) (5,….,5) 

Maratos (18,..,18) (-84,.., -84) 

13   Generalized 2,4,10 (3,…,3) 

Tridiagonal 1                 (14,…,14) (70,…,70) 

14   Generalized2,4,10,100,500,1000(11,,…,11) 

       Quartic 1     (29,…,29) (87,...,87) (-80,…,-80) 

15   Extended 2,4,10,100,500,1000(107,…,107) 

       Beale (-1. 3,…, -1.3) (72,…,72) 

16   Extended 2,4,10,100,500,1000(5,..,5) 
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       DENSCHNB (25,…,25) (200,..,200) 

17   Extended2,4,10,100,500,1000 (40,…,40) 

Himmelblau (17.8,…,17.8) (115,…,115) 

18   Extended     2,4,10,100,500,100 (10,…,10) 

Rosenbrock (18,…,18) (-111,…, -111) 

19   Extended    2,4,10,100,500,1000      (11,…,11) 

Shallow (41,...,41) (120,…,120) 

20 Extended2,4,10,100,500,1000   (4,…,4) 

 Strait (236,…,236) (136,…,136) 

21 Extende     2,4,10,100,500,1000       (13,..,13,)   Tridiagonal 

(24.7,..,24.7)(120,..,120) 

22 Sum Sqaures 2,4,10,100,500,1000    (5,…,5) 

(-3.8,…,-3.8) (22,…,22) 

23   QUARTC      2,4,10,100,500,1000(5,…,5) 

(17,…,17) (97,…,97) 

24   Both         2,4,10,100,500,1000(9,…,9) 

(-9,…, -9) (11,…,11) (-11,…, -11) 

25 Extended           2,4,10,100,500, 10006,…,6) 

      White and Holst     (9,…,9) (3,…,3) (-3,…,-3) 

 

The algorithm is set to stop when
610kg − . All codes are 

written in MATLAB version R2015a subroutine programming 

and run on a PC computer with Intel(R) Core™ i3-4005U 

CPU @ 1.70GHz processor, 4GB RAM and Windows 10 

Professional operating system. For result analysis, we use 

Sigma Plot 10 program to graph the data based on the 

performance profile proposed by Dolan and More (2002).  

 

Figure 1. Number of iterations Performance profile graph 

 

Figure 2. CPU time Performance profile graph 

 

Figures 1 and 2 show that MMR has the best efficiency in 

terms of number of iteration and CPU time and plots the 

performance of our new method with respect to other four 

other CG methods, PRP, FR, WYL, and AMR. The curve at 

the top left signifies the fastest solver, while the curve at 

the top left is the most robust. The best method should be 

the one at the top left and right of the performance profile. 

In Figure 1, the curve for MMR method is at the top of 

other curves, while in Figure 2, it is mostly at the top. In 

addition, MMR manages to solve 100% of the test 

problems. Compared to that, the PRP, FR, WYL, and ARM 

methods only solve 92%, 94%, 97%, and 94% of the test 

problems, respectively. Hence, our new formula is the 

most robust amongst all the methods tested. 
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VII. CONCLUSION 

 

In this paper, we have considered a new CG method called 

the MMR method. We proved that it satisfies the sufficient 

descent condition and possesses global convergence 

properties when used with SWP line search. The 

numerical results demonstrate promising results for the 

MMR method, in which it has shown higher efficiency and 

robustness than other tested CG parameters. 
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