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In this paper, an order four block backward differentiation formulas with independent parameter «,

BBDF( ) are developed for the numerical solution of stiff ordinary differential equations (ODEs). The

order and stability analysis are discussed and the BBDF () is shown to be A-stable, which is the

requirement for solving stiff ODEs. Numerical results show the advantage of the BBDF ( « ) as compared

to the existing methods in terms of its accuracy.
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I INTRODUCTION

Differential equations have long been an essential part in
most branches of physical sciences and engineering all over
the world. One of the famous differential equations is
ordinary differential equations (ODEs). The general form of
first order ODEs is defined as

y'=f(xy), y(a)=y,, )

where the interval is X € [a,b] . The systems of (1) are said

to be stiff if the eigenvalues of the matrix 6_ have negative

Yy
real parts at every time x and varies greatly in magnitude
(Lambert, 1991).

The backward differentiation formula (BDF) plays a
special role in the numerical solutions of stiff ODEs. This
method was introduced by Gear (1971) and has been
expanded gradually by Byrne and Hindmarsh (1975) and
Shampine and Reichelt (1997) using several approaches. The
BDF is known as non-block method because it computes
only one approximated solution for each step. In line with
this, many researchers such as Ibrahim et al. (2007), Nasir

et al. (2012), Abasi et al. (2014) and Zawawi et al. (2015)
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have developed various classes of block backward
differentiation formulas (BBDF) to produce multiple
approximated solutions simultaneously.

The aim of this paper is to present the numerical solutions
of stiff ODEs using an order four block backward
differentiation formula with independent parameter «,
namely BBDF( « ). The formulation of the method, order,
stability numerical

analysis, implementation and

experiments will be discussed in the following sections.

II. FORMULATION OF THE
METHOD

The method is formulated using constant step size, h where

earlier block consists of three previous points, Xx,,, X, , and

X, , to compute two solutions, Yy, ., and Yy, ., at two

points, X and X,,, concurrently. The interpolation

n+1

polynomial is determined using Lagrange polynomial,

B (x ) of degree k which is defined as follows:

P (x)= k Ly ; (x)f(x,m,j), @)

Jj=0
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’ o (X . . —X . 10

=0 ( n+1-j n+1-i )
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Ut [(1+6)y,., -5y, |
Jj=0, 1, ..., k. The resulting polynomial is given by S

%)
(xnﬂ "Xy )(sz —X, )(xn—z - Xnﬂ)(xn,z - xn+2) Yn-s
)(X ~ X )(X B xn+2)
)

Yo
X, _xn+1)(xn—1 _xn+2) "

- ¥ )yn+1

n+2

9 3
—g[(1+,u)yn _ﬂyn_1]+5[(1+ﬁ)yn+2 —ﬂyn+1],

;_ihli(1+a)ﬁ1+2 _aﬁl+1:|:(1+ﬂ)yn+2 _ﬂy““
3, _16 _
+ 25 Yoo 25 [(1+5)yn—1 5yn—2:|

36 48
+2—5[(1+ﬂ)yn —ﬂyn,l]—2—5[(1+p)ynﬂ - pY, ]

(7)

X —x ) y n+2?

w2 T w2 T After some algebraic manipulations, equations (7) can be

(3)  obtained as follows:
12 12 12 3 3
. . . 22 o, —Banf, =) 2+ 3
Replace x = sh+ x,, into (3) and differentiate once with 10 10 ) U 10 J8 (10 10 B j Ynia

respect to s . By substituting s = 0 and s =1, the following
equations are produced respectively:

, 1 1 1
p (xn+1)= _Eyn—z +5yn—1 _gyn +%ynﬂ +Zyn+27 4)

P,(xn+2) :lyn—z _ﬂyn—1 +3Y, —4Yn +§yn+2' (5)
3 12
Consider hf, =P'(xn+1) in(4)and hf,,, = P'(xnﬂ)

in (5) to obtain the following equations:

1 12
Yois " 7" Yno +§yn—1 _gyn +iyn+2 = _hf;'Hl’
10 5 5 10 10
16 6 8 12
Ynio +iyn—2 Y +3_yn _4_yn+1 =_hf;~l+2'
25 25 25 25 25

(6
The next formulation is based on the strategy discussed by

Celaya and Anza (2013). Equations (6) are inserted with five

independent parameters «, £, o, ¢ and J which can be
expressed as follows:

where

61

+(l+p—%ﬂjym+(—§—gu—prn

§+§5+2ﬂjyn_l+[—§5— : Jy
5 5 5 5

+ __5_£_£/ujyn1 +(E5+1Jyn2'
25 25 25

10

— EajhﬁHQ_EahﬁzH:(l-i-ﬂ)ynm
25 25 25

8 48
5 48 4 j

6 .36 48
p yn+l+(3—+3—u+4—p)yn
25 25° 25

25 25

8

Equations (8) can be written in the form of linear multistep

4 4
method (LMM), Y Ay, ,=h> Bf,, ., which is

j=o j=0

presented as follows:

AY o tAY,  +AY, T AY, +AY,.,
= B,hf, + B,hf.

9)
n+1 + B4hf;1+2 *
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_§ _i §+§5+2ﬂ
A = 5 10 _ 5 5 5
"85, 3] " |65 16 36
25 25 25 25 25
5 5 10
A= = ,
36,36, 48 77|, 48 48
25 25 25,0 25 25
3,3, [,
A,=l10 10 |,B,=| 10 |,
1+4 0]
12 12
=+= 0
10 10
B, = B, =12 12
12, e T on
o 25 25
III. ORDER OF THE METHOD
The method 1is saild to be order p if
COZCIZ...ZCPZO, Cpﬂ;tO where Cer1 is error

constant (Lambert, 1991). Due to the involvement of several
parameters during the process of the derivation, the order of
the derived method must be determined so that the
coefficients of derived formula will possess only one
independent parameter « . The order of the formula which

corresponds to (9) is proven as follows:
4 0}

c,=>4,-°|,
Jj=0 0

9 3

4 §5+P—Eﬂ+£ﬂ
C=20A-B)=| ¢ 48 36 ’
e ——O0——p+—pu+p
25 25 25

The formula C Z

j=0

1 .
[q' Aj_(q—l)!Jq Bj]where

qg=2, 3, 4, 5 isused to obtain the following constants:

C - 10 2 10 (0]
85 24,547 ﬂ_za
25° 57 25" 25

62

—0+=p——u+=-pfF-3a
10 6 20
C )
|8 5152 42 37, 42
75 25 25 6 25
15,65,.9,,3,19
C 40 24 8 16 5
=
25260 .9 175, 74,
75 5 10 24 25
5+211p_ 93 P 781,8 3 i
C - 200 120 200 400 4 50
=
2 S 422p+ 93 +781 7, 12
375 125 250 120 2 125

The method given will be an order 4 if all parameters,

a, B, p, u and O verify the following conditions:

For the first point, Yy, ., :

3

4 2 1
p=—a, p==a, u=—a, =—a
3 5 3

3

For the second point, Y, ,,:

22 3

ﬂ——(l, pP=—0Qq, ,U——a, 5——
25 4
1
10 (0]
The error constant is C5 = o
_3,.12
25 125

Subsequently, all the conditions are substituted into

equations (8) and leave « as the free parameter. Hence, the

BBDF (« ) can be obtained as follows:
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(_i_laJyn—2+£§+Zajyn—1+[_2_2aJyn
10 5 5 5 5 5
(3o ner(iv5e]
+| —+—a yn+2+ 1+—o yn+1
10 5 5
=(E+Ea)hfm—2ahfn,
10 10 10
(1+_ajyn+2 (i-’-ia]ynz (_£_§(ijn1
2 25 2 25 25
+[£+ﬁ J n+(_4_8_£aJyn+1
25 25 25 25
12 12 12
= Z+Zalh hf. .
20 2alh, - Za,,
(10)
V. STABILITY ANALYSIS

The basic difficulty in the numerical solution of stiff systems
is the satisfaction of the requirement of absolute stability.
Based on Hall and Watt (1976), the LMM is A-stable if its
region of absolute stability contains the whole of the left-
hand half-plane, R(hA) < O . The stability region for BBDF
(a) can be obtained by applying equations (10) to the

standard linear equation, f = Ay which takes the form:

11 3 7
—+t—-a yn—2+ —— - \Y,,
[10 5 J ( 5 5 J

+(2+2a—£ahljyn =(i+3aJyn+2
5 5 10 10 5

1 12

+[1+—a——h/1—£ah/1jyn+l,
5 10

10
e
25 25 25 25
+(—3—6—ﬁajyn :[—ﬁ—ﬁoﬁzahﬂujym
25 25 25 25 25
+[1£a_£m_£am}ym.
25 25 25
(11)

A

Consider h=hA , equations (11) can be written in the

matrix form:
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A[ynﬂ}: B{ym} N c{y”}. )
yn+2 yn yn—2
where
1+ta-2h-200 3424
_ 5 10 10 10 5
48 58 12 00 422, 120 12 0
25 25 25 25 25 25
3. 7, 9.9,-2.n
B- 5 5 5 5 10
16,22 36 54,
25 25 25 25
- 1 1
(0] E+—a
C= 5
0o -3 -4,
25 25

By solving det (Al’2 -Bt-C ) , the stability polynomial,

p(t, };, a) for (10) is produced as follows:

p(t,ﬁ,a) 12 pep s L9 8 e
25 25 25 125
18 e 37240 168 ap
125 125 125
+ﬁt4f;2a - %t"’fla + 7—2t4ﬁ2a2
125 125 125
+4—8t30{2fl + %(ftzfl - Bt?’leaQ
125 25 125
O aqr 438 g A2 342 e
125 125 25 125
(188 epa 54 ey 126 e T2 o
125 25 125 125
252450, O ey 19744 16345
125 125 125 125

(13)
The stability region is the region enclosed by the set of

points for which [t|=1 where the boundary of the stability

region can be mapped out by substituting

t=e", 0<@<2r into the stability polynomial (13). The

graph of stability region is plotted using MAPLE software.
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Figure 1. Stability regions of BBDF ()

Figure 1 presents the graph of stability region for BBDF (

a) with different values of parameter,

a=0.3, 3, 30, 300 .It has to be noted that the stability

regions cover almost the entire negative half plane. Thus, the

BBDF (« ) is A-stable.

V. IMPLEMENTATION OF THE

METHOD

This section deals with the implementation of the BBDF («

Jusing Newton iteration.

The following notation is

introduced to specify the notation:

(i+1) (1)

e(iﬂ) zyn+j _yn+j’ j=17 2.

n+j

(14)

where the notation 1 is introduced to specify the iteration,
(i+1) . th | .

the Y, ;" denotesthe (l + 1) iteration values of Y, ; and

e(i+1)

n+j

. .\ th . th
denotes the differences between (l) and (l + 1)
iteration values of Y, ;. The approximated values of Y, ;

are computed from y,(f:;) = y,(;) it e,gf]l)

Therefore, the

Newton’s iteration takes the form:

i) =yl -5 () F (4 )i =1 2 9

which can be written as
B (ol et =-F, (412,

(i+1) (i+1)

(i+1) _
error - yexact - yapproximate

The absolute error is

while the maximum error is MAXE = max [eI‘I‘OI‘(Hl) ] .

64

VI. NUMERICAL EXPERIMENTS

In this section, the values a=0.3, 3, 30, 300 are
selected for the numerical computation due to their A-stable
properties. Note that the problems and results for existing
methods are taken from Abasiet al. (2014). The graphs of Log
(MAXE) against Log( h ) are illustrated in Figures 2-3. The

following notations are used in the tables and figures:

h : Step size.
a : Independent parameter.
MAXE : Maximum error.
BBDF (5) : 2-point BBDF of order five (Nasir et al.,
2012).
20BBDF (5) : 2 off-step points BBDF of order five (Abasiet
al., 2014).
BBDF ()  :Block backward differentiation formulas ( &
) of order four.
Problem 1:

y'=-20y +20sinx +cosx, y(0)=1, 0<x<2.
The exact solution for this problem is given by
y(x)=sinx+e™".

Eigenvalue: -20.
Problem 2:

y', =32y, + 66y, +Ex+g,
3 3

y'2 :_66y1 _133y2_lx_l, 0<Xx<L
3 3

The exact solutions are

1 2 02 1 o
O)=—, Y, (x)=—x+—€e"——e ,
u.(0) 3 b (x) 3 3 3
1 1 1+ 2 _o0x
L,(0)=—, y,(x)=—=x——€" +—e .
v.(0) 3 b (%) 3 3 3

Eigenvalues: -1, -100.

Table 1. Numerical results of Problem 1
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h Methods a MAXE
102 BBDF(5) - 8.85478E-2
20BBDF(5) - 8.05923E-2
BBDF(«a) 0.3 3.66822E-2
3 3.98408E-2
30  4.34192E-2
300 4.83403E-2
104 | BBDF(5) - 1.46428E-3
20BBDF(5) | - 1.46355E-3
BBDF(« ) 0.3 | 8.91419E-6
3 1.37939E-5
30 | 5.66628E-5
300 | 2.80852E-4
106 BBDF(5) - 1.47126E-5
20BBDF(5) - 1.47126E-5
BBDF(« ) 0.3 9.00713E-10
3 1.43375E-9
30 6.80402E-9
300 5.90049E-8

Table 2. Numerical results of Problem 2

h Methods a MAXE
102 BBDF(5) - 1.21580E-2
20BBDF(5) - 1.20347E-2
BBDF(« ) 0.3 4.42072E-3
3 4.41510E-3
30  4.41245E-3
300 4.41209E-3
104 | BBDF(5) - 4.78743E-3
20BBDF(5) | - 4.77571E-3
BBDF(«a) 0.3 | 1.42482E-4
3 2.38160E-4
30 | 2.35272E-3
300 | 2.25767E-2
106 BBDF(5) - 4.90322E-5
20BBDF(5) - 4.90310E-5
BBDF(« ) 0.3 1.50048E-8
3 2.55771E-8
30 2.58140E-7
300 2.61435E-6

Log(MAXE)

-10 1 T T Log(h)
-6 -5 -4 -3
—— BBDF(5) —&— 20BBDF(5)
----- BBDF(0=0.3) = =»=- BBDF(a=3)

= =¥ =< BBDF(a=30)

-2

BBDF(a=300)

Figure 2. Accuracy curves for Problem 1
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Figure 3. Accuracy curves for Problem 2

VII. DISCUSSIONS

In table 1, it is observed that the similar level of accuracy is

obtained by BBDF (« ), BBDF (5) and 20BBDF (5) at

h=107. However, the BBDF (&) show a significant
improvement in accuracy when compared to the BBDF (5)
and 20BBDF (5) as the step size decreases. Although the
BBDF (o) has one order less than the BBDF (5) and
20BBDF (5), the derived method manages to outperform
both existing methods in terms of maximum error at most of
h . From all tables given, it can be seen clearly that the

accuracy of BBDF (« ) deteriorates when the values of «

increases due to the value of error constants.

VIII. CONCLUSIONS

Overall, the existence of the independent parameter « in
the derived method influences the approximation, hence
gives better accuracy than the existing block methods.
Therefore, the BBDF (« ) can be applied as an alternative
stiff ODEs solver.
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