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The present study deals with the flow and heat transfer in nanofluids over a moving plate in the present 

of thermal radiation. The governing boundary layer equations in the form of nonlinear partial 

differential equations are transformed into a system of nonlinear ordinary differential equations by 

using the similarity transformations method. Then, the obtained equations are solved numerically using 

the bvp4c function in MATLAB. Numerical results show that dual solutions exist for certain range of the 

controlling parameter. Stability analysis is employed to identify which solution is stable and valid 

physically. Results from the stability analysis shows that the first solution is stable and physically 

realizable while the second solution is unstable and not physically realizable. 
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I. INTRODUCTION 
 
 

Nowadays, an innovative method in improving heat 

transfer has been proposed. This method known as 

nanofluid that was first introduced by (Choi, 1995). 

Nanofluid is a fluid containing nanometer-sized (less than 

100nm) particles namely nanoparticles. Nanofluids also 

show good performance in transferring heat. In view of its 

applications, nanofluid has the biggest potential of being a 

new generation of coolants in automative applications. 

Besides, it is also helpful in cancer imaging and drug 

delivery for cancer therapeutics in biomedical industries 

(Das et al. 2006; Wong et al. 2010). 

It is well known that thermal radiation plays an important 

role in controlling heat transfer process. Due to this reason, 

considerable research in the area of thermal radiation had 

been proposed recently by (Khan et al. 2012; Khan et al. 

2014; Gaffar et al. 2017). The existence of dual or multiple 

solutions on the flow behavior have become a question 

which solution is stable and otherwise. Hence, (Merkin, 

1985) have developed a method to solve this problem. After 

that, many researchers used the implemented method and 

they found that the first solution is always in stable state 

while the other is not (Sharma et al. 2014; Ishak, 2014; 

Junoh et al. 2018). 

The purpose of this present study is to extend the work 

done by (Bachok et al. 2012) by analyze the effect of 

thermal radiation in nanofluids passing moving plate. 

Solving this problem gives dual solutions. Hence, we 

proceed the stability analysis to identify either the first 

solution or second solution is practically acceptable. 

 

 
II. MATHEMATICAL 

FORMULATION 
 
In the present paper, we consider the problem of laminar 

boundary layer flow that passing moving flat surface in a 

water-based nanofluid. We consider three different types of 

nanoparticles which are copper (𝐶𝑢), titania (𝑇𝑖𝑂2) and 

alumina (𝐴𝑙2𝑂3). We assumed the plate moves in the same 

or opposite direction to the free stream and both with 

constant velocities. The boundary layer equations given by: 
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along with the boundary conditions 
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Here, 
wU  and 


U  are constant. 

wU represents plate 

velocity while 


U  corresponds the plate velocity. Next, u  

and v  are the velocity components along the −x  and −y

directions, respectively. T is the nanofluid temperature. 

Further,  ,nf nf  and nf are viscosity, thermal diffusivity 

and density of nanofluid, respectively, as given by (Oztop& 

Abu-Nada, 2008) below: 
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Here, (𝜌𝐶𝑝)𝑛𝑓 refer to the heat capacity of the 

nanofluid.𝑘𝑛𝑓, 𝑘𝑓  and 𝑘𝑠 represents the thermal 

conductivities of nanofluid, fluid and solid fractions, 

respectively. Further,𝜌𝑓is the fluid density and𝜌𝑠 is the solid 

fractions density. 

The similarity solution for Equations (1)-(4) of the 

following form will be examined. 
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where𝑈 = 𝑈𝑤 +𝑈∞is the composite velocity. Then,  is the 

stream function that can be define as below: 

  
= = −
 

,u v
y x

  (7) 

 

Substituting Equation (6) into basic Equations (2) and (3) 

reduces this to the following nonlinear ordinary differential 

equations given by: 
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where primes indicate the differentiation with respect to . 

Pr is the Prandtl number and R  is the radiation 

parameter. All these parameters are defined as below: 
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The boundary conditions in (4) become: 
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( ) ( )

 

    

= = =

→ − → →

0 0, ' 0 , 0 1,

' 1 , 0 as

f f

f
        (11) 

 

where = wU U  represents the velocity ratio parameter. 

The physical quantities of interest are the skin friction 

coefficient fC  and the local Nusselt number 
xNu  which 

are defined as below: 

( )
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wherew
 represents the surface shear stress while 

wq  

represents the surface heat flux and are defined by 
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Here, nf  is the dynamic viscosity of nanofluids and nfk is 
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the thermal conductivity of the nanofluids. By using the 

similarity variables in (6), we obtain: 
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where =Rex fUx v  represents the local Reynolds 

number. 

 

Table 1. Thermophysical properties of fluid and 

nanoparticles 

Physical 

properties 

Fluid 

phase 

(water) 

Cu  
2 3Al O  2TiO  

( )pC J kgK  4179 385 765 686.2 

( ) 3kg m  997.1 8933 3970 4250 

( )k W mK  0.613 400 40 8.9538 

 
 

III. STABILITY ANALYSIS 
 
 
It has been discovered in (Weidman et al. 2006) that the 

second solution for the flow that passing a moving plate are 

unstable and not physically realizable. Meanwhile, the first 

solutions are stable and physically realizable. Then, to test 

these features, we first need to consider the unsteady case 

for Equations (2) and (3) by introducing the new 

dimensionless variable, ( ) = U x t . 

From Equation (6), the new similarity solutions in terms 

of   and   are as below: 
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Substituting Equation (16) into Equations (2) and (3) to 

become: 
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subject to the boundary conditions 
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To determine the stability of the solution ( )= 0f f  and 

( )  = 0 satisfying the boundary value problem (17)-(19), 

we write as below 
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where  is an unknown eigenvalue while ( ) ,F  and 

( ) ,G  are small relative to ( )0f and ( ) 0 . Then, 

substituting Equation (20) into Equations (17)-(19) yields 

the following: 
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alongside the boundary conditions 
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After that, we set ( ) = = 00,F F  and ( )= 0G G  to 

obtain the following: 
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along with the conditions as follows: 
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The stability of the problem can be tested via the smallest 

eigenvalue,  . Therefore, the condition ( ) →'

0 0F  as 

 →  has been put at rest as suggested by (Haris et al. 

2009). 

 

IV. RESULTS AND 
DISCUSSIONS 

 
 
To ensure the accuracy of the numerical method used in 

this paper, we made comparison results with those reported 

by (Bachok et al. 2012) when = 0R  as stated in Table 2 

below and it is worth mentioning that the numerical results 

which have beenobtained using bvp4c function in MATLAB 

software is a great agreement. 

To test the accuracy of our code, we compute the 

numerical results for this problem. To solve these boundary 

value problems, the system of nonlinear equations is 

necessary to reduce to a system of first order ordinary 

differential equations. In this present paper, we consider 

for three different types of nanoparticles which are copper

( )Cu , titania ( )2TiO  and alumina ( )2 3Al O  with water as 

the base working fluid. Then, following (Oztop& Abu-Nada, 

2008), the range of  is between zero and 0.2

( ) 0 0.2  where  = 0  representing the regular 

fluid, and Prandtl number is equal to =6.2,Pr 6.2

(water). 

 

Table 2. Values of ''(0)f  for some values of   and  for 

Cu . ([ ] refer to the second solution) 

    Bachok et al., 

2012 

Present result 

0 -0.5 

 

-0.4 

 

0 

0.3979 

[0.1710] 

0.4357 

[0.0834] 

0.3321 

0.39784 

[0.17095] 

0.43559 

[0.08181] 

0.33205 

0.1 -0.5 

 

-0.2 

 

0 

0.4674 

[0.2009] 

0.4844 

[0.0134] 

0.3901 

0.46737 

[0.20091] 

0.48442 

[0.01343] 

0.39008 

0.2 -0.5 

 

-0.2 

 

0 

0.4846 

[0.2083] 

0.5023 

[0.0139] 

0.4045 

0.48459 

[0.20832] 

0.50228 

[0.01392] 

0.40446 

 

We get the numerical results as stated in Table 3 when 

we set values of  = 0 and = 0.2R . From the table, we 

found that the values of ( )'' 0f  and ( )− ' 0  for first 

and second solution for three types of nanoparticles are 

same even though we used various values of  and . 

Hence, we just consider for Cu  to generate the figures. 

 

Table 3. Values of ( )'' 0f and ( )− ' 0  for some values of   

with different nanoparticle when  = 0 and =0.2R . ([ ] 

refer to the second solution) 

Nanoparticle   ( )'' 0f  ( )− ' 0  

Cu  -0.51 

 

-0.52 

 

0.38911 

[0.18480] 

0.37828 

[0.20073] 

0.07982 

[0.00118] 

0.06632 

[0.00185] 
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-0.53 0.36421 

[0.21993] 

0.05227 

[0.00305] 

2 3Al O  -0.51 

 

-0.52 

 

-0.53 

0.38911 

[0.18480] 

0.37828 

[0.20073] 

0.36421 

[0.21993] 

0.07982 

[0.00118] 

0.06632 

[0.00185] 

0.05227 

[0.00305] 

2TiO  -0.51 

 

-0.52 

 

-0.53 

0.38911 

[0.18480] 

0.37828 

[0.20073] 

0.36421 

[0.21993] 

0.07982 

[0.00118] 

0.06632 

[0.00185] 

0.05227 

[0.00305] 

 

 

Figure 1 and Figure 2 show the variation of ( )'' 0f  and 

( )− ' 0 for Cu . From both Figures, it clearly shown that 

dual solutions exist in certain range value of

( )   −0.5482c  and there is no solution when 

  −0.5482c
. Further, Figures 3-5 are drawn to support 

the existing of dual solutions as shown in Table 3 and 

Figure 1 and 2 as well. These profiles are satisfied the 

boundary conditions (11) asymptotically. Therefore, it is 

also supporting the validity of the numerical results. Figure 

3 shows that when radiation parameter, R  increases, the 

thermal boundary layer thickness increases in first solution. 

Consequently, the heat transfer rate at the surface 

decreases in the present of radiation parameter. It is 

corresponding to the effect of the radiation is to decrease 

the rate of energy transport into the fluid, thus reducing the 

temperature of the fluid. Here, we noted that radiation 

parameter influenced the rate of heat transfer. 

 

Figure 1. Variation of 
( )'' 0f

for Cu  with 
 = 0

and

=0.2R  

 

 

Figure 2. Variation of 
( )− ' 0

for Cu  with 
 = 0

and

=0.2R  

 

Figure 3. Temperature profiles for Cu with different 

values of R  
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Figure 4. Velocity profiles for Cu  with different values 

of   

 

Figure 5. Temperature profiles for Cu with different 

values of   

 

Since the non-unique solution present in this study, it is 

our determination to show that first solution is stable and 

physically realizable while the second solution is not. The 

stability of the flow can be tested by looking at thepolarity 

of the smallest eigenvalue,   itself. The solution is 

unstable if the value of the smallest eigenvalue,   is 

negative while it is stable if the smallest eigenvalue,   is 

positive. 

Table 4 presents the smallest eigenvalue,   at selected 

values of  . From Table 4, we found that first solution 

have positive value while second solution is negative 

value. Hence, we are sure that first solution is stable and 

realizable physically while second solution is vice versa. 

Besides, from Table 4, it clearly shown that as the values 

of   are approaching 
c , the smallest eigenvalue,   

tends to zero either from the positive side or negative side.  

Table 4. Smallest eigenvalues   at selected values of   for 

different nanoparticle 

Nanoparticle   First 

solution 

Second 

solution 

Cu  -0.5482 

-0.53 

-0.52 

-0.51 

0.0067 

0.0621 

0.0788 

0.0931 

-0.0065 

-0.0497 

-0.0597 

-0.0672 

2 3Al O  -0.5482 

-0.53 

-0.52 

-0.51 

0.0067 

0.0621 

0.0788 

0.0931 

-0.0065 

-0.0497 

-0.0597 

-0.0672 

3TiO  -0.5482 

-0.53 

-0.52 

-0.51 

0.0067 

0.0621 

0.0788 

0.0931 

-0.0065 

-0.0497 

-0.0597 

-0.0672 

 
 

V. CONCLUSION 
 
 

The study of a stability analysis on laminar boundary 

layer flow saturated by nanofluids that passing a moving 

plate with the presence of thermal radiation has been 

numerically analyzed and discussed in details. 

Numerical findings from the transformation of partial 

differential boundary layer equations to a structure of 

ordinary differential equations have been obtained and 

well presented in the form of tables and figures. Dual 

solutions are found to be exist for certain ranges values 

of velocity ratio parameter ( )  c . Due to the 

possessing of dual solutions, an analysis of stability is 

conducted to identify which solution is stable between 

these two. It has been observed that the first solution is 

physically realizable and stable, while the second 

solution is not.  
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