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Convective fluid flow instability is sensitive to disturbance forces and its inherent rheological properties. 

In this study, we examined the effects of viscous elasticity and magnetic field on convective instabilities 

in a deep horizontal viscoelastic nanofluid layer. Linear stability theory was used to determine the onset 

of stationary and oscillatory instabilities. Closed form solution for the critical Rayleigh number was 

obtained using the Galerkin-type weighted residuals method. The effects of the scaled stress relaxation 

parameter scaled strain retardation parameter and Chandrasekhar number on the stability of the 

system were investigated. Magnetic field also delays the stationary and oscillatory convective 

instabilities in viscoelastic nanofluids. 
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I. INTRODUCTION 
 
 

Convective instabilities are caused by the gradients in 

surface tension, density and concentration. Pearson (1958) 

was the first to study theoretically the steady Marangoni 

convection in a horizontal fluid layer. Surface tension 

gradients are dominant in thin fluid layer and in 

microgravity, but in deep fluid layer gravitational forces 

overcome the surface tension forces. Buoyancy creates 

density gradient in fluids and can lead to natural convection 

flows in the presence of gravitational field. Gravitational 

and magnetic fields are ubiquitous in our environment and 

the convective flows is highly sensitive to the direction of 

these two disturbance forces.  

The stability of Marangoni convection has been 

considered by Arifin et al. (2007) and Allias et al. (2017). 

Nield & Kuznetsov (2010), Nield & Kuznetsov (2012) and 

Yadav et al. (2014) considered the onset of convective 

instability in nanofluids. Studies has shown that 

nanoparticles and magnetic fields can enhance or attenuate 

the instability of an originally unstable flow (Dastvareh & 

Azaiez, 2017; Perez et al., 2011). Magnetic field is found to 

stabilize the fluid layer for both stationary and oscillatory 

convection. The convective flow is also influenced by the 

inherent rheological properties of the fluid. Shivakumara et 

al. (2015) and Tahir et al. (2016) investigated the stability 

in the viscoelastic nanofluids. Narayana et al. (2013) 

investigated the stabilizing effect of an external magnetic 

field on double-diffusive convection in a weakly electrically 

conducting viscoelastic fluid. Stronger fluid’s elasticity of 

viscoelastic fluid can overcome the stabilizing effect of 

magnetic field.  

The purpose of this paper is to examine the influence of 

the magnetic field on the convective instability in a deep 

viscoelastic nanofluid layer. The linear stability theory is 

employed by scaling, regular perturbation, linearization and 

method of normal modes. The eigen value problem is solved 

analytically using the Galerkin-type weighted residuals 

method to determine the critical value of the thermal 

Rayleigh number. 

 

II. PROBLEM FORMULATION 
 

Consider an infinite horizontal layer of incompressible 

viscoelastic nanofluid of Oldroyd-B type of depth z H=  

with weak-electrical conductivity subject to vertical 

temperature gradient. The gravity ˆ
zg= −g e  is assumed to 

act vertically downwards. A uniform magnetic field, 

0
ˆ

zH=Η e  is applied parallel to thez-axis. The magnetic 

Reynolds number is assumed small so that the induced 
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magnetic field is negligible. The conservation equations for 

flow in the nanofluid layer are (Perez et al., 2011; Narayana 

et al., 2013; Chandrasekhar, 2013) 
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where ( ), ,u v w=v  is the nanofluid velocity, 1  is the 

relaxation time, 2  is the retardation time, t  is the time, p  

is the pressure,  is the electrical conductivity, m  is the 

magnetic permeability,   is the coefficient viscosity,  is 

the nanoparticle volume fraction, T  is the temperature, 

( )
f

c is the effective heat capacity of the fluid, ( )
p

c is the 

effective heat capacity ofthe nanoparticle, k  is the thermal 

conductivity,
BD  is the Brownian diffusion coefficient and 

TD  is the thermophoretic diffusion coefficient. The 

nanofluid density,   is 

 

 ( ) ( )
0 0
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 (5) 

 

where p  is the nanoparticle mass density, 
0f

  is the 

nanofluid density at reference temperature cT  and   is the 

volumetric coefficient of thermal expansion. The boundary 

conditions are a rigid lower boundary and free upper 

boundary given by 
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III. LINEAR STABILITY THEORY 

 
The system (1) – (7) will be subjected to linear stability 

theory in order to examine the onset of the stationary and 

oscillatoryinstabilities. The introduction of the scaling 

quantities Nield & Kuznetsov (2010) for the length, velocity, 

time, pressure, nanoparticles volume fraction and 

temperature give the nondimensional variables 
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where 
( )f

f

k

c



= is the thermal diffusivity of the fluid 

and asterisks denote dimensionless quantities. The non-

dimensional equations after dropping the asterisks are 
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subject to the dimensionless boundary conditions  
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The nondimensional parameters are  
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where 1  is the scaled stress relaxation parameter, 2  is the 

scaled strain retardation parameter, rP  is the Prandtl 

number, Le  is the Lewis number, Q is the Chandrasekhar 

number, 
AN  is the modified diffusivity ratio,

BN  is the 

modified particle density increment, Ra  is the thermal 

Rayleigh number, Rn  is the concentration Rayleigh number 

and Rm  is the basic density Rayleigh number.  

 

A. Perturbation Solution 
 

The fluid is at rest in the reference steady basic state 

varying in the z-direction (Nield & Kuznetsov, 2014). The 

basic state is perturbed by infinitesimal perturbations 
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where 
4  is the three-dimensional biharmonic operator, 

2  is the three-dimensional Laplacian operator and 
2

H  

is the one-dimensional Laplacian operator in the horizontal 

plane. 

 
B. Normal Modes 

 
The non-dimensional system constitutes a linear boundary-

value problem that can be solved using the method of 

normal modes given by 
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where ( ) ( ),W z z and ( )z are the amplitudes of the 

velocity, temperature and nanoparticle’s volume fraction, 

respectively. ( )
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and s  is a dimensionless complex growth rate. The system 

(17) – (21) in form of the normal modes (22) are 
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with boundary conditions 

 0, 0, 0, 0 0,W DW z= =  =  = =at  (26) 

 20, 0, 0, 0 1,W D W z= =  =  = =at  
(27) 
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where 
d

D
dz

 . The Galerkin-type weighted residuals 

method is used to obtain an approximation of the closed 

form solution to the system (23) – (27). The functions

,W   and   are in form of 
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where ,n nA B  and nC  are unknown coefficients and 

1,2,3, ,n N= . Equations (23) – (25) are multiplied by 

,W   and  , respectively of Equation (28). Performing 

integration by parts with respect to z  from 0 to 1 will lead 

to a system of 1N −  equation with 1N −  unknown. For 

rigid-free boundaries, the trial functions are 
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where 1 1,W   and 1  are trial functions that satisfying 

the boundary conditions (26) and (27). 

 

IV. RESULTS AND DISCUSSIONS 
 

The thermal Rayleigh number Ra determines the 

thresholds for the transition from stationary patterns to 

weakly chaotic evolution to highly turbulent state. For 

0s = , we will obtain the solution for the case of stationary 

convection 
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The stationary instability does not depend on the 1  and 

2 . For the case of Newtonian fluid where 1 2 0 =  =

(no scaled stress relaxation and scaled strain retardation 

parameters) and in the absence of magnetic field, Equation 

(30) reduces the result of Nield & Kuznetsov (2010) for 

stationary convection. Setting s i= we obtain the 

solution for Ra  in form of r iRa Ra iRa= + . Setting 

iRa  will give the corresponding   for oscillatory 

instability and the oscillatory Rayleigh number is 
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Figure 1 shows the neutral stability curves for the 

variations of thermal Rayleigh number, Ra  as a function 

of the wave number   for various values of 1 . Stress 

relaxation occurs when the applied deformation rate is 

reduced. The oscillatory thermal Rayleigh number 

decreases with an increase in 1 . The effect of 1  is to 

advance the onset of convection in a viscoelastic nanofluid 

layer and the system is unstable.  

Figure 2 shows the neutral stability curves for the 

variations of thermal Rayleigh number, Ra  as a function 

of the wave number   for various values of 2 . It is 

observed that, an increase in the value of 2  increase the 

oscillatory thermal Rayleigh number. 2  delays the onset 

of convection in a viscoelastic nanofluid layer thus stabilize 

the system. Figure 3 shows the thermal Rayleigh number 

increases for both stationary and oscillatory convection as 

the value of Q  increases. Increased magnetic parameter 

signifies the strength of Lorentz force since the magnetic 

field is the measure of the relative importance of Lorentz 

force to the viscous hydrodynamic force. Hence, the 

influence of magnetic field delays the onset of oscillatory 

and stationary convection thus stabilizes the system.  
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Figure 1. Neutral stability curves of the stationary and 

oscillatory convection for various values of 1 when 

2 0.1, 5, 100, 5r AP Le N = = = =  and 10Rn = −  

 

 

Figure 2. Neutral stability curves of the stationary and 

oscillatory convection for various values of 2 when 

1 1.0, 5, 100, 5r AP Le N = = = =  and 10Rn = −  

 

The critical thermal Rayleigh number is increasing when 

the value of Chandrasekhar number increases is shown in 

Figure 4. The critical thermal Rayleigh number remains 

stable for stationary convection while the critical thermal 

Rayleigh number decreasing as 1  increases for oscillatory 

convection. The critical thermal Rayleigh number for the 

stationary and oscillatory convection as functions of the 

2  for several values of Q  is shown in Figure 5. As the 

value of Q  and 2  increase, the critical thermal Rayleigh 

number increase. The critical thermal Rayleigh number 

remains stable for stationary convection while the critical 

thermal Rayleigh number increasing as 2  increases for 

oscillatory convection.  

 

Figure 3. Neutral stability curves of the stationary and 

oscillatory convection for various values of Q when 

1 21.0, 0.5, 5, 100, 5r AP Le N =  = = = =  and 10Rn = −  

 

 

Figure 4. The critical thermal Rayleigh number as function 

of 1  for various values of Q when 

2 0.1, 5, 100, 5r AP Le N = = = =  and 10Rn = −  
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Figure 5. The critical thermal Rayleigh number as function 

of 2  for various values of Q when 

1 1.0, 5, 100, 5r AP Le N = = = =  and 10Rn = −  

 

V. CONCLUSIONS 

 
The influences of stress relaxation, strain retardation and 

magnetic field on the convective instability in a deep 

viscoelastic nanofluid layer were studied analytically. The 

system of conservation equations was solved using a linear 

stability analysis. The effect of stress relaxation is to 

advance the onset of oscillatory convection while the effect 

of strain retardation is to delay the onset of oscillatory 

convection. The magnetic field delays both stationary and 

oscillatory convection. 
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