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Factorization of linear array of permutations is hard. The process of listing the permutations becomes 

simple via distinct starter sets. However, a problem arises when the equivalence starter sets will 

generate the similar permutation and needed to be discarded. Then a new iterative strategy is proposed 

to generate starter sets without generating equivalence starter sets by circular based. In order to list all 

permutations after the starter sets are obtained, the circular and reverse of circular operation are used 

on each starter set. Computational advantages are presented comparing the results obtained by the new 

algorithms with two other methods. The result indicates a new algorithm is better than others two in 

term of time execution. 
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I. INTRODUCTION 

Permutation is an interesting topic in combinatorial problem 

and has a long history. In literature, there are a lot of work 

has been done in finding method to generate permutation. 

The recent methods are using factorial numbers (Borisenko et 

al., 2008), Lexicographic order with a fixed number of 

inversion (Kuo, 2009) and starter sets (Ibrahim et al., 2010). 

Permutation generation based on starter sets was proposed 

by Ibrahim et. al, (2010) by employing circular and reversing 

operation. The crucial task in their method was eliminating 

the equivalence starter sets after the distinct starter sets were 

obtained. Although this technique was simple and easy to use, 

unfortunately eliminating the equivalence starter sets was a 

quite tedious process when the number of elements 

increased. Thus Karim et al. (2010) proposed a circular 

strategy to generate starter set without generating 

equivalence starter sets. Since generating starter sets method 

is not unique, Karim et al. (2011) introduced new strategy 

based on exchanging two elements to generate starter sets 

also without discarding the equivalence starter sets. The 

advantages of distinct starter sets are redundancy of listing 

permutation can be avoided and can be applied for generating 

n order Latin squares. To see the listing of permutation by 

exploiting the 
(𝑛−1)!

2
  distinct starter sets, refer Karim et al. 

(2010).  In spite of listing permutation, starter sets can be 

applied to find the distinct circuit in complete graph (Karim 

et al., 2017). However, in this paper we highlight the 

implementation of circular operation for generating starter 

sets under iterative procedure and show the numerical result 

in term of time computation. 

 

II. ILLUSTRATION OF STARTER 
SETS AND ITS EQUIVALENCE 

Let consider bead arrangement. There are 
(n−1)!

2
 the number 

of ways that the other 1−n  bead can be arranged in circular 

as starter sets. The second half  
(n−1)!

2
 produced a similar bead 

arrangement in circular as equivalence starter sets. See the 

following figure for n = 3 and 4. 
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𝒏 = 𝟑, 𝟐!/𝟐 = 𝟏 

Starter Sets Equivalence Starter Sets 
 
 
 
 
 
 
 
 
 

 

 

𝒏 = 𝟒, 3!/2 = 3 

Starter Sets Equivalence Starter 
Sets 

  

  

 
 

 

Figure 1: Starter sets and its equivalence in beads 
arrangement 

From graphic illustration in Figure 1, the starter sets and its 

equivalence are similar which the latter need to be discarded 

in order to avoid redundancy permutation generation. 

III.  STARTER SETS GENERATION 
UNDER CIRCULAR STRATEGY 

Let 𝑆 = (1,2,3,4,5)be the set of five elements. Step 1:  Set (1, 2, 

3, 4, 5) as initial permutation and without loss of generality, 

the first element is fixed. 

Step 2:  Identify the last three elements of   initial 

permutation from step 1. By employing CP to the last three 

elements on initial permutation from step 1 will produce 

other three distinct starter sets as shown below: 

1, 2, 3, 4, 5 

1, 2, 4, 5, 3 

1, 2, 5, 3, 4 

Step 3: Identify the last four elements of each starter sets in 

step 1.  By employing CP to last four elements on each starter 

sets in step 2, the 12 distinct starter sets are obtained as 

shown below: 

 

 

The process determining the starter sets is done under 

recursively.  However, we had to modify our old recursive 

sequential algorithm in order to turn it to iterative sequential 

algorithm by combining some function from Langdon 

algorithm (1967). Its successful and our iterative algorithm 

did not generate the equivalence starter sets.  

Our result in iterative way for n = 5 is as follows: 

 

Our algorithm is as follows:  
PERMUTIT (int n) 
k=n; 
WHILE k>2; DO 
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temp = num[1]; 
for (i=1, i<k, i++) DO 
num[i]=num[i+1] 
ENDFOR 
num[k]=temp; 
if k==2 || num[k] !=k,   
BREAK 
k-- 
ENDIF 
ENDWHILE 
 

Algorithm 1:  Iterative permutation generation 
pseudo code 

The input of this algorithm is a integer number of n. 

The following table is a listing down all n! permutation. 

CP RoCP 
12543 34521 
25431 13452 
54312 21345 
43125 52134 
31254 45213 
15243 34251 
52431 13425 
24315 51342 

43152 25134 
31524 42513 
12435 53421 
24351 15342 
43512 21534 
35124 42153 
51243 34215 
15243 34251 
52431 13425 
24315 51342 
43152 25134 
31524 42513 
12543 34521 
25431 13452 
54312 21345 
43125 52134 
31254 45213 
14235 53241 
42351 15324 
23514 41532 
35142 24153 
51423 32415 

From Table 1, the purpose of ROCP is a reversing the output 

from CP in order to generate  another half of n!. 

 

 

CP RoCP 
14253 35241 
42531 13524 
25314 41352 
53142 24135 
31425 52413 
14523 32541 
45231 13254 
52314 41325 
23145 54132 
31452 25413 
12354 45231 
23541 14532 
35412 21453 
54123 32145 
41235 53214 
12534 43521 
25341 14352 
53412 21435 
34125 52143 
41253 35214 
15234 43251 
52341 14325 
23415 51432 
34152 25143 
41523 32514 
12345 54321 
23451 15432 
34512 21543 
45123 32154 
51234 43215 

 

Remark 2: The bold  mark of the permutation represent 12 

starter sets  for case n = 5. 

IV. NUMERICAL RESULT 

 
In this section, this new algorithm for listing permutation is 

compared to Langdon (1967) algorithm and Thongchiew 

(2007) algorithm. Langdon (1967) and Thongchiew (2007) 

were selected to compare because their algorithm both 

generated permutations using circular strategy under 

iterative procedure. Moreover, Langdon algorithm may run 

very fast on computer with hardware rotation capability 

(Sedgewick, 1977). The comparison over time computation 

among new algorithms, Langdon (1967) and Thongchiew 

(2007) are given in Table 1. The results are given in seconds 

without printing statement.  The sequential algorithm of the 

developed and existing methods is written in C language and 

run on HP Computer with Intel Xeon CPU E5504, 2.0GHz 

processor and 4.00 GB Random Access Memory (RAM). 
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Table 2. The comparison over time computation among a new 

algorithm, Langdon (1967) and Thongchiew (2007) under 

iterative procedure (in seconds) 

 

From Table 2, we observed that our algorithm running 

lesser than Langdon (1967) and Thongchiew (2007).  A time 

of our algorithms is about a half from Langdon (1967).  From 

our point of view, we employed RoCP operation on CP result 

where we only reverse copied. In other word, 
n!

2
 permutation 

resulted from CP operation over 
(𝑛−1)!

2
 starter sets. Then the 

second 
n!

2
 is produced by reverse copied using RoCP operation 

over the first 
n!

2
. On the other hand, Langdon (1967) and 

Thongchiew (2007) algorithm required more steps in listing 

all permutations. This factor might affect the computational 

time. In term of order of complexity, permutation generation 

algorithm fall under non polynomial time where equal O(n!). 

Remark: The check our algorithm, Langdon (1967) and 

Thongchiew (2007) results are reliable, we compared their 

application in determining determinant result and also 

compared their results with other mathematical software i.e 

MATLAB. 

 

V. CONCLUSION 

The main idea of work for listing permutation is a starter sets 

generation. A new method to generate the starter sets are 

presented based on circular operation. Then this method is 

exploited to generate all n! permutations using CP and RoCP 

operation. The major difference of our strategies from other 

conventional permutation methods is that we exploit the 

starter sets to list all permutations. Our future work is to 

apply this method for generating distinct Hamiltonian Circuit 

from complete graph. 
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n New 
algorithm 

Langdon 
(1967) 

Thongchiew 
(2007) 

8 0.000 0.000 0.000 

9 0.015 0.015 0.063 

10 0.109 0.171 0.687 

11 0.983 2.012 7.488 

12 12.839 26.520 90.106 

13 173.270 365.213 1672.510 

14 2590.946 5423.443 22448.205 

15 41885.652 85173.825 246139.962 
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