
*Corresponding author’s e-mail: mila@uum.edu.my

ASM Sci. J., Special Issue 6, 2019 for SKSM26, 157-161

Implementation of Circular Operation for Generating
Starter Sets under Iterative Procedure

Sharmila Karim* and Haslinda Ibrahim

Pusat Pengajian Sains Kuantitatif, Universiti Utara Malaysia, 06010 Sintok, Kedah

Factorization of linear array of permutations is hard. The process of listing the permutations becomes

simple via distinct starter sets. However, a problem arises when the equivalence starter sets will

generate the similar permutation and needed to be discarded. Then a new iterative strategy is proposed

to generate starter sets without generating equivalence starter sets by circular based. In order to list all

permutations after the starter sets are obtained, the circular and reverse of circular operation are used

on each starter set. Computational advantages are presented comparing the results obtained by the new

algorithms with two other methods. The result indicates a new algorithm is better than others two in

term of time execution.

Keywords: starter sets; circular; permutation; iterative procedure

I. INTRODUCTION

Permutation is an interesting topic in combinatorial problem

and has a long history. In literature, there are a lot of work

has been done in finding method to generate permutation.

The recent methods are using factorial numbers (Borisenko et

al., 2008), Lexicographic order with a fixed number of

inversion (Kuo, 2009) and starter sets (Ibrahim et al., 2010).

Permutation generation based on starter sets was proposed

by Ibrahim et. al, (2010) by employing circular and reversing

operation. The crucial task in their method was eliminating

the equivalence starter sets after the distinct starter sets were

obtained. Although this technique was simple and easy to use,

unfortunately eliminating the equivalence starter sets was a

quite tedious process when the number of elements

increased. Thus Karim et al. (2010) proposed a circular

strategy to generate starter set without generating

equivalence starter sets. Since generating starter sets method

is not unique, Karim et al. (2011) introduced new strategy

based on exchanging two elements to generate starter sets

also without discarding the equivalence starter sets. The

advantages of distinct starter sets are redundancy of listing

permutation can be avoided and can be applied for generating

n order Latin squares. To see the listing of permutation by

exploiting the
(𝑛−1)!

2
 distinct starter sets, refer Karim et al.

(2010). In spite of listing permutation, starter sets can be

applied to find the distinct circuit in complete graph (Karim

et al., 2017). However, in this paper we highlight the

implementation of circular operation for generating starter

sets under iterative procedure and show the numerical result

in term of time computation.

II. ILLUSTRATION OF STARTER
SETS AND ITS EQUIVALENCE

Let consider bead arrangement. There are
(n−1)!

2
 the number

of ways that the other 1−n bead can be arranged in circular

as starter sets. The second half
(n−1)!

2
 produced a similar bead

arrangement in circular as equivalence starter sets. See the

following figure for n = 3 and 4.

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

158

𝒏 = 𝟑, 𝟐!/𝟐 = 𝟏

Starter Sets Equivalence Starter Sets

𝒏 = 𝟒, 3!/2 = 3

Starter Sets Equivalence Starter
Sets

Figure 1: Starter sets and its equivalence in beads
arrangement

From graphic illustration in Figure 1, the starter sets and its

equivalence are similar which the latter need to be discarded

in order to avoid redundancy permutation generation.

III. STARTER SETS GENERATION
UNDER CIRCULAR STRATEGY

Let 𝑆 = (1,2,3,4,5)be the set of five elements. Step 1: Set (1, 2,

3, 4, 5) as initial permutation and without loss of generality,

the first element is fixed.

Step 2: Identify the last three elements of initial

permutation from step 1. By employing CP to the last three

elements on initial permutation from step 1 will produce

other three distinct starter sets as shown below:

1, 2, 3, 4, 5

1, 2, 4, 5, 3

1, 2, 5, 3, 4

Step 3: Identify the last four elements of each starter sets in

step 1. By employing CP to last four elements on each starter

sets in step 2, the 12 distinct starter sets are obtained as

shown below:

The process determining the starter sets is done under

recursively. However, we had to modify our old recursive

sequential algorithm in order to turn it to iterative sequential

algorithm by combining some function from Langdon

algorithm (1967). Its successful and our iterative algorithm

did not generate the equivalence starter sets.

Our result in iterative way for n = 5 is as follows:

Our algorithm is as follows:
PERMUTIT (int n)
k=n;
WHILE k>2; DO

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

159

temp = num[1];
for (i=1, i<k, i++) DO
num[i]=num[i+1]
ENDFOR
num[k]=temp;
if k==2 || num[k] !=k,
BREAK
k--
ENDIF
ENDWHILE

Algorithm 1: Iterative permutation generation
pseudo code

The input of this algorithm is a integer number of n.

The following table is a listing down all n! permutation.

CP RoCP
12543 34521
25431 13452
54312 21345
43125 52134
31254 45213
15243 34251
52431 13425
24315 51342

43152 25134
31524 42513
12435 53421
24351 15342
43512 21534
35124 42153
51243 34215
15243 34251
52431 13425
24315 51342
43152 25134
31524 42513
12543 34521
25431 13452
54312 21345
43125 52134
31254 45213
14235 53241
42351 15324
23514 41532
35142 24153
51423 32415

From Table 1, the purpose of ROCP is a reversing the output

from CP in order to generate another half of n!.

CP RoCP
14253 35241
42531 13524
25314 41352
53142 24135
31425 52413
14523 32541
45231 13254
52314 41325
23145 54132
31452 25413
12354 45231
23541 14532
35412 21453
54123 32145
41235 53214
12534 43521
25341 14352
53412 21435
34125 52143
41253 35214
15234 43251
52341 14325
23415 51432
34152 25143
41523 32514
12345 54321
23451 15432
34512 21543
45123 32154
51234 43215

Remark 2: The bold mark of the permutation represent 12

starter sets for case n = 5.

IV. NUMERICAL RESULT

In this section, this new algorithm for listing permutation is

compared to Langdon (1967) algorithm and Thongchiew

(2007) algorithm. Langdon (1967) and Thongchiew (2007)

were selected to compare because their algorithm both

generated permutations using circular strategy under

iterative procedure. Moreover, Langdon algorithm may run

very fast on computer with hardware rotation capability

(Sedgewick, 1977). The comparison over time computation

among new algorithms, Langdon (1967) and Thongchiew

(2007) are given in Table 1. The results are given in seconds

without printing statement. The sequential algorithm of the

developed and existing methods is written in C language and

run on HP Computer with Intel Xeon CPU E5504, 2.0GHz

processor and 4.00 GB Random Access Memory (RAM).

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

160

Table 2. The comparison over time computation among a new

algorithm, Langdon (1967) and Thongchiew (2007) under

iterative procedure (in seconds)

From Table 2, we observed that our algorithm running

lesser than Langdon (1967) and Thongchiew (2007). A time

of our algorithms is about a half from Langdon (1967). From

our point of view, we employed RoCP operation on CP result

where we only reverse copied. In other word,
n!

2
 permutation

resulted from CP operation over
(𝑛−1)!

2
 starter sets. Then the

second
n!

2
 is produced by reverse copied using RoCP operation

over the first
n!

2
. On the other hand, Langdon (1967) and

Thongchiew (2007) algorithm required more steps in listing

all permutations. This factor might affect the computational

time. In term of order of complexity, permutation generation

algorithm fall under non polynomial time where equal O(n!).

Remark: The check our algorithm, Langdon (1967) and

Thongchiew (2007) results are reliable, we compared their

application in determining determinant result and also

compared their results with other mathematical software i.e

MATLAB.

V. CONCLUSION

The main idea of work for listing permutation is a starter sets

generation. A new method to generate the starter sets are

presented based on circular operation. Then this method is

exploited to generate all n! permutations using CP and RoCP

operation. The major difference of our strategies from other

conventional permutation methods is that we exploit the

starter sets to list all permutations. Our future work is to

apply this method for generating distinct Hamiltonian Circuit

from complete graph.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support

received in the form of a Fundamental Research Grant

Scheme (FRGS) (Code: 13046) from Universiti Utara

Malaysia and Ministry of Education.

n New
algorithm

Langdon
(1967)

Thongchiew
(2007)

8 0.000 0.000 0.000

9 0.015 0.015 0.063

10 0.109 0.171 0.687

11 0.983 2.012 7.488

12 12.839 26.520 90.106

13 173.270 365.213 1672.510

14 2590.946 5423.443 22448.205

15 41885.652 85173.825 246139.962

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

161

VII. REFERENCES

Borisenko, A. A., Kalashnikov, V. V., Kulik, I. A., & Goryachev,

O. E. (2008). Generation of permutations based upon

factorial numbers, IEEE, pp. 57-61.

Ibrahim, H., Omar, Z., & Rohni, A. M. (2010). New algorithm

for listing all permutations. Modern Sciences , pp. 89-94.

Karim, S., Omar, Z., Ibrahim, H., Othman, K. I., & Suleiman,

M. (2010). New Recursive Circular Algorithm for Listing All

Permutations , Discovering Matematik, Vol. 32, no. 2, pp.

51-56.

Karim, S., Omar, Z. & Ibrahim, H. (2011). Integrated strategy

for generating permutation. International Journal of

Contemporary Mathematical Sciences, Vol. 6, no. 24, pp.

1167 - 1174.

Karim, S, Ibrahim, H., & Mohd Darus, M. (2017). Determining

distinct circuit in complete graphs using permutation, AIP

Conference Proceeding, Vol. 1905, Issue 1, 1-5.

Kuo, T. (2009). A New Method forGenerating Permutations in

Lexicographic Order, Journal of Science and Engineering

Technology, Vol. 5, No. 4, pp. 21-29.

Langdon, G. (1967). An Algorithm for generating

permutations. Communication of ACM , 298-299.

Sedgewick, R. (1977). Permutation generation methods.

Computing surveys , pp. 137-164.

Thongchiew, K. (2007). A computerize algorithm for

generating permutation and it's application in determining a

determinant. Proc.of World Academy of Science,

Engineering and Technology, 21, pp. 178-183.

http://einspem.upm.edu.my/ojs/index.php/dismath/article/view/78
http://einspem.upm.edu.my/ojs/index.php/dismath/article/view/78
http://einspem.upm.edu.my/ojs/index.php/dismath/article/view/78
http://einspem.upm.edu.my/ojs/index.php/dismath/article/view/78

