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A theoretical analysis for Jeffrey nanofluid flow induced by a sphere with mixed convection near lower 

stagnation point flow is deliberated. Formulation of the basic governing equations is according to the 

Buongiorno model. The dimensional highly nonlinear equations are first converted into non-

dimensional form with the assistance of non-dimensional variables. The complexity of the resulting 

equations is subsequently reduced using the appropriate non-similarity transformation variables. 

Numerical solution is generated via the Runge-KuttaFehlberg method (RKF 45) to probe into the 

impacts of Jeffrey fluid and nanofluid parameters on the specified distributions. Findings have shown 

that the increase of Deborah number has decelerated the fluid flow and enhanced the temperature. The 

mixed convection parameter has escalated the fluid flow, whereas the temperature performs oppositely. 

Besides, a rise in thermophoresis diffusion parameter has declined and escalated the Nusselt and 

Sherwood numbers, respectively. 
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I. INTRODUCTION 
 
 

Studies on the non-Newtonian transport phenomena have 

acquired exceptional attention from the researchers and 

engineers owing to their countless applications in various 

branches of process mechanical, chemical and materials 

engineering. A number of suggested non-Newtonian fluid 

models possessing disparate fluid features has been 

highlighted in the literature including micropolar fluid 

(Salleh et al., 2010a), Casson fluid (Arifin et al., 2017), 

viscoelastic fluid (Kasim et al., 2013), Maxwell fluid (Halim 

et al., 2017), Jeffrey fluid (Zokri et al., 2018) and many 

more. Of all, the most common and simplest model of non-

Newtonian fluid known as viscoelastic Jeffrey fluid model is 

favored essentially because of its capacity in expressing the 

dual features of retardation and relaxation.  

Nonetheless, there exists a great concern over the poor 

thermal conductivity of the Jeffrey fluid model. A modern 

science technique named nanofluid was principally 

familiarized by Choi (1995) to express the dispersion of 

nanometer-sized particles with dimension less than 100 nm 

in the conventional fluids. This fluid has also been regarded 

as one of the contemporary research areas by reason of its 

remarkable potential in enhancing heat transfer as well as 

having great potential for heat exchange rate (Tham et al., 

2013). Some latest works relating to the suspension of 

nanoparticles in the conventional fluids can be retrieved in 

(Zokri et al., 2017; Ibrahim et al., 2017; Hsiao, 2017; Hayat 

et al., 2018; Usman et al., 2018). 

Flow past a sphere with mixed convection was first 

considered experimentally by Yuge (1960). The analytical 

and experimental studies were then continued by Hieber 

and Gebhart (1969) to incorporate the impact of a very 

small local Grash of and Reynolds numbers. Then, the flow 

of viscous and micropolar fluid was discussed by Nazar et 

al. (2002a; 2002b; 2003a; 2003b) from a sphere and 

heated under the constant surface temperature and heat 

flux.A detailed discussion on the influence of mixed 

convection parameter was thoroughly explored together 

with the separation of boundary layer. In view of similar 
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problem, the joint impact of free and forced convection 

from a solid sphere was examined by Salleh et al. (2010a; 

2010b)in the respective viscous and micropolar fluid with 

Newtonian heating condition. Similarly, the combined 

convection induced by a sphere was studied by Tham et al. 

(2013) in nanofluid with gyrotactic microorganisms. Aziz et 

al. (2017) scrutinized the consequence of 

magnetohydrodynamic effect in viscoelastic micropolar 

fluid passing through a sphere.  

In all of the above study, it is apparent that the Jeffrey 

nanofluid model past a sphere has yet to be deliberated 

near the lower stagnation region. Therefore, the current 

study aims at exploring the flow of Jeffrey nanofluid from a 

sphere with mixed convection at the lower stagnation point. 

In detail, mixed convection refers to the amalgamation of 

the free and forced convections. The mixed convection 

impact can be determined by the buoyancy parameter, 

,
Re

x

n

x

Gr
 =  where ,xGr Rex  and n  are defined as the 

respective local Grash of number, local Reynolds number 

and a positive constant. According to Pop and Ingham 

(2001) and Kreith et al. (2012), the forced convection 

dominates when 0, → but free convection dominates 

when . →  

 
II. MATHEMATICAL FORMULATION 

 
 

Suppose two dimensional Jeffrey nanofluid flow from a 

sphere of radius a in the x y−  plane near the lower 

stagnation region, 0x   is considered as exemplified in 

Figure 1.  

 

 

Figure 1 Schematic diagram of the problem 
 

From Figure 1, the x  and y axes are taken in such a way 

that it determines the distance along the sphere surface and 

perpendicular to it, respectively. The direction of gravity 

acceleration, g  is oriented downwards. Further, 

,  ,  w wT T C


 and C


 be the surface temperature, ambient 

temperature, surface concentration and ambient 

concentration. The basic governing equations describing 

the situations are: 
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where u  and v  are the respective velocity components 

along the x  and y  directions. The associated boundary 

conditions are 

( ,0) 0,  ( ,0) 0,

( ,0) ,  ( ,0)           at  0

( , ) ,  ( , ) 0,  

( , ) ,  ( , )      as  

w w

e

u x v x
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u x u v x
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= = =

 →  →

 →  → →

 (5) 

In the above equations, the respective local free stream 

velocity, ratio of heat capacity of the nanoparticle to the 

fluid and radial distance from the symmetrical axis to the 

sphere surface are symbolized as ,  eu   and ( ),r x and can 

be expressed as follows 
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Furthermore, ,  ,  ,  ,  Pr,  ,  ,  ,  ,p B T T CC C D D T   

1,  ,  ,  ,       and k  are the local concentration, specific 

heat capacity, Brownian diffusion coefficient, 

thermophoretic diffusion coefficient,Prandtl number, local 

temperature, thermal expansion, concentration expansion, 

kinematic viscosity, thermal diffusivity, density, dynamic 

viscosity, ratio of relaxation to retardation times, 

retardation time and thermal conductivity. Initiating the 

succeeding non-dimensional variables: 
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Then, using Eq. (7), Eqs. (1) to (4) give rise to the ensuing 

dimensionless form of partial differential equations: 
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where 2 ,  ,  ,  Re, ,  ,  Gr N Nb Nt   and Le  denote the 

Deborah number, mixed convection parameter, Grash of 

number, Reynolds number, concentration buoyancy 

parameter, Brownian motion, thermophoresis diffusion 

parameter and Lewis number, and are given as 
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The corresponding boundary conditions are 

( ,0) 0,    ( ,0) 0,    
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( , ) ,    ( , ) 0,    
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Introducing the stream function , which is denoted as 

follows 
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When 0,x → then sin 1.x x → Therefore, it is suitable 

to inaugurate the subsequent non-similarity transformation 

variables 
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Interestingly, when 0,x   Eqs. (15) to (17) with boundary 

conditions (18) are reduced to the succeeding ordinary 

differential equations 
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The respective skin friction coefficient, Nusselt number and 

Sherwood number are denoted as ,  f xC Nu  and ,xSh and 

given by 
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where ,  w wq  and pj  are the respective surface shear 

stress, heat and mass fluxes, which are given by 
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The dimensionless form of skin friction coefficient, Nusselt 

number and Sherwood number are as the following upon 

applying Eqs. (7) and (14) 
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III. RESULTS AND DISCUSSIONS 
 
 
Comprehensive numerical solutions are engaged 

graphically to reveal the impacts of three pertinent 

parameters, comprising of the mixed convection parameter 

,  Deborah number 2  and Brownian motion .Nb These 

solutions are acquired via the Runge-KuttaFehlberg method 

(RKF 45) by employing the highly nonlinear equations (19) 

to (21) with boundary conditions (22). All parameters 

utilized in this endeavor are fixed to be as follows, 

otherwise specified: 20.1, 0.2,  = = =

0.3,  10Nb Nt N Le= = = =  and Pr 1.=  Validation of 

the computational results generated throughout this study 

is conducted by way of comparison as accessible in Table 1. 

The reported results obtained via the Keller-box method by 

two different authors, namely Nazar et al. (2003b)and 

Salleh et al. (2010b)for different values of (0) −  are 

taken into consideration, and are found to be in an excellent 

consistency with that of the present ones. Such outcome has 

guaranteed the proficiency of the implemented method, 

thus assuring the accuracy of the current results. 

Furthermore, it is worth pointing out that when 

2 0,  = = =  the boundary layer equations (19) to (21) 

come to be decoupled. In view of that, evidently, the skin 

friction coefficient for dissimilar Pr  values result in a 

unique solution, (0) 2.410183,f  =  which is in line with 

the solutions reported by Nazar et al. (2002a; 2002b; 

2003b) ( (0) 2.4151)f  =  and Salleh et al. (2010a)

( (0) 2.4104).f  =  

Illustration of the graphical outcomes for profiles of 

velocity, temperature, Nusselt number and Sherwood 

number are exhibited through Figures 2 to 7 for several 

values of 2,  ,  Nb  and .Nt From Figures 2 and 3, it is 

obvious that   has an opposite effect on the fluid flow and 

temperature. A large value of   enhances the buoyancy 

force effect that triggers a favorable pressure gradient. Such 

situation is liable to the escalation of the fluid motion and 

reduction of the temperature.  

Figure 4 and 5 demonstrate the impact of 2  on the 

velocity and temperature profiles. The fluid flow is 

significantly reduced, but the temperature acts contrarily as 

2  upsurges. Physically, 2  is basically an amalgamation 

of both viscous and elastic behaviors that capable to 

determine the viscoelasticity property of the materials. A 
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greater viscoelasticity property promotes the frictional force 

whilst slows down the fluid flow. Also, extra heat ensuing 

from the frictional force has consequently improved the 

temperature. Accordingly, the decline in the velocity and 

the rise in the temperature are predictable. 

Figure 6 and 7 are sketched to inspect the outcome of 

Nb  and Nt  towards the 
1/2Rex xNu −

 and 
1/2Re .x xSh −

 

A rise of both Nb  and Nt  gives rise to the reduction of 

the 
1/2Re ,x xNu −

 whereas the 
1/2Rex xSh −

 reflects a 

contradict behaviour. The reason is that increasing Nb  

tends to stimulate the collision amongst the particles of 

fluid and their arbitrary motions. This collision generates 

extra heat, which consequently deteriorates the heat 

transfer whilst augments the nanoparticles concentration 

transfer. 

 

Table 1. Comparative values of (0) −  with existing 

publications for different values of  when 

2 0Nb Nt N Le = = = = = =  and 𝑃𝑟 =0.7
 

  
Nazar et al. 

(2003b) 
Salleh et al. 

(2010b) 
Present 

-4.6 0.6011 0.5990 0.600969 
-4.5 0.6117 0.6115 0.611401 
-4.0 0.6534 0.6528 0.652717 
-3.0 0.7108 0.7099 0.709826 
-2.0 0.7529 0.7519 0.751819 
-1.0 0.7870 0.7860 0.785927 
-0.5 0.8021 0.8010 0.800994 
0.0 0.8162 0.8150 0.815036 
1.0 0.8463 0.8406 0.840637 
2.0 0.8648 0.8636 0.863614 
3.0 0.8857 0.8845 0.884539 
4.0 0.9050 0.9038 0.903807 
5.0 0.9230 0.9217 0.921705 
6.0 0.9397 0.9385 0.938445 
7.0 0.9555 0.9542 0.954198 
8.0 0.9704 0.9691 0.969089 
9.0 0.9846 0.9833 0.983225 
10.0 0.9981 0.9967 0.996692 
20.0 1.1077 1.1061 1.106049 

 

 

 

Figure 2. ( )f y for varied values of 𝛾 

 

 

Figure 3. ( )y for varied values of 𝛾
 

 

 

Figure 4. ( )f y for varied values of 𝜆2 
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Figure 5. ( )y for varied values of 𝜆2 
 

 

Figure 6. 
1/2Rex xNu −

 for varied values of 𝑁𝑏 and 𝑁𝑡 

 

 

Figure 7. 
1/2Rex xSh −

 for varied values of 𝑁𝑏 and 𝑁𝑡 

 

 

 

 

 

 

IV. CONCLUSION 
 
 
This study has generally presented the Jeffrey nanofluid 

flow towards a sphere near the lower stagnation region with 

mixed convection. The following general conclusions can be 

deduced from this investigation: 

• Parameter   is the accelerating function of velocity 

but declining function of temperature. 

• Parameter 2 has lessened the velocity but 

heightened the temperature.  

• Parameter Nb has augmented the velocity and 

diminished the temperature. 

 

V. ACKNOWLEDGEMENT 

 
 
The authors acknowledge the provision received from the 

Universiti Malaysia Pahang (UMP) via research grants 

PGRS1703100,RDU1703258 and RDU170358. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26  
 

 

185  

VI. ACKNOWLEDGEMENT 

 
 

Arifin, N. S., Zokri, S. M., Kasim, A. R. M., Salleh, M. Z., 

Yusoff, W. N. S. W., Mohammad, N. F. & Shafie, S. (2017). 

Aligned magnetic field on dusty Casson fluid over a 

stretching sheet with Newtonian heating. Malaysian 

Journal of Fundamental and Applied Sciences. 13, 245-

248. 

Aziz, L. A., Kasim, A. R. M., Salleh, M. Z., Yusoff, N. S. & 

Shafie, S. (2017). Magnetohydrodynamics effect on 

convective boundary layer flow and heat transfer of 

viscoelastic micropolar fluid past a sphere. Journal of 

Physics: Conference Series. 890, 012003. 

Choi, S. U. S. (1995). Enhancing thermal conductivity of 

fluids with nanoparticles. 1995 International mechanical 

engineering congress and exhibition.  San Francisco, 

United States. 12-17 Nov 1995, 99-105. 

Halim, N. A., Haq, R. U. & Noor, N. F. M. (2017). Active and 

passive controls of nanoparticles in Maxwell stagnation 

point flow over a slipped stretched surface. Meccanica. 52, 

1527-1539. 

Hayat, T., Kiyani, M. Z., Alsaedi, A., Khan, M. I. & Ahmad, 

I. (2018). Mixed convective three-dimensional flow of 

Williamson nanofluid subject to chemical reaction. 

International Journal of Heat and Mass Transfer. 127, 

422-429. 

Hieber, C. A. & Gebhart, B. (1969). Mixed convection from 

a sphere at small Reynolds and Grashof numbers. Journal 

of Fluid Mechanics. 38, 137-159. 

Hsiao, K.-L. (2017). Micropolar nanofluid flow with MHD 

and viscous dissipation effects towards a stretching sheet 

with multimedia feature. International Journal of Heat 

and Mass Transfer. 112, 983-990. 

Ibrahim, S. M., Lorenzini, G., Kumar, P. V. & Raju, C. S. K. 

(2017). Influence of chemical reaction and heat source on 

dissipative MHD mixed convection flow of a Casson 

nanofluid over a nonlinear permeable stretching sheet. 

International Journal of Heat and Mass Transfer. 111, 

346-355. 

Kasim, A. R. M., Mohammad, N. F., Shafie, S. & Pop, I. 

(2013). Constant heat flux solution for mixed convection 

boundary layer viscoelastic fluid. Heat and Mass Transfer. 

49, 163-171. 

Kreith, F., Manglik, R. M. & Bohn, M. S. (2012). Principles 

of heat transfer: Cengage Learning. 

Nazar, R., Amin, N. & Pop, I. (2002a). Mixed convection 

boundary layer flow from a sphere with a constant surface 

heat flux in a micropolar fluid. Journal of Energy Heat 

and Mass Transfer. 24, 195-212. 

Nazar, R., Amin, N. & Pop, I. (2002b). On the mixed 

convection boundary-layer flow about a solid sphere with 

constant surface temperature. Arabian Journal for 

Science and Engineering. 27, 117-135. 

Nazar, R., Amin, N. & Pop, I. (2003a). Mixed convection 

boundary-layer flow from a horizontal circular cylinder in 

micropolar fluids: case of constant wall temperature. 

International Journal of Numerical Methods for Heat & 

Fluid Flow. 13, 86-109. 

Nazar, R., Amin, N. & Pop, I. (2003b). Mixed convection 

boundary layer flow about an isothermal sphere in a 

micropolar fluid. International Journal of Thermal 

Sciences. 42, 283-293. 

Pop, I. & Ingham, D. B. (2001). Convective heat transfer: 

mathematical and computational modelling of viscous 

fluids and porous media: Elsevier. 

Salleh, M. Z., Nazar, R. & Pop, I. (2010a). Mixed convection 

boundary layer flow from a solid sphere with Newtonian 

heating in a micropolar fluid. SRX Physics. 2010. 

Salleh, M. Z., Nazar, R. & Pop, I. (2010b). Mixed convection 

boundary layer flow about a solid sphere with Newtonian 

heating. Archives of Mechanics. 62, 283-303. 

Tham, L., Nazar, R. & Pop, I. (2013). Mixed convection flow 

over a solid sphere embedded in a porous medium filled 

by a nanofluid containing gyrotactic microorganisms. 

International Journal of Heat and Mass Transfer. 62, 647-

660. 

Usman, M., Soomro, F. A., Haq, R. U., Wang, W. & Defterli, 

O. (2018). Thermal and velocity slip effects on Casson 

nanofluid flow over an inclined permeable stretching 

cylinder via collocation method. International Journal of 

Heat and Mass Transfer. 122, 1255-1263. 

Yuge, T. (1960). Experiments on heat transfer from spheres 

including combined natural and forced convection. 

Journal of Heat Transfer. 82, 214-220. 

Zokri, S. M., Arifin, N. S., Salleh, M. Z., Kasim, A. R. M., 

Mohammad, N. F. & Yusoff, W. N. S. W. (2017). MHD 

Jeffrey nanofluid past a stretching sheet with viscous 

dissipation effect. Journal of Physics: Conference Series. 

012002. 

Zokri, S. M., Arifin, N. S., Mohamed, M. K. A., Kasim, A. R. 

M., Mohammad, N. F. & Salleh, M. Z. (2018). Influence of 

viscous dissipation on the flow and heat transfer of a 

Jeffrey fluid towards horizontal circular cylinder with free 

convection: A numerical study. Malaysian Journal of 

Fundamental and Applied Sciences. 14, 40-47. 

 


